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Abstract 

 
The paper presents a multivariate adaptive regression splines (MARS) modelling approach for 
daily peak electricity load forecasting in South Africa for the period 2000 to 2009. MARS is a 
non-parametric multivariate regression method which is used to solve high dimensional 
problems with complex model structures such as nonlinearities, interactions and missing data in 
a straight forward manner and produces results which can be explained to management. The 
developed model consists of components that represent calendar and meteorological data. The 
performance of the model is evaluated by comparing it with a piecewise linear regression model. 
The results from the study show that the MARS model produces better forecast accuracy. 
Accurate prediction of daily peak load demand is very important for decision makers in the 
energy sector. This helps in the determination of consistent and reliable supply schedules during 
peak periods. Accurate short term load forecasts will enable effective load shifting between 
transmission substations, scheduling of startup times of peak stations, load flow analysis and 
power system security studies.   
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1.  Introduction 
 
One of the most weather sensitive sectors of any economy is the energy sector. In this sector 
accurate prediction of daily peak electricity demand is very important. It provides short term 
forecasts which are required for dispatching and economic grid management of electric energy 
[1,2,3,8,16,19,21,22]. The most important weather factors which affect daily peak demand 
(DPD) is temperature. Changing weather conditions represent the major source of variation in 
peak demand forecasting and the inclusion of temperature has  a significant effect due to the fact 
that in winter,  heating systems are used whilst  in summer  air conditioning appliances are used 
[6,10,11,13,14,15,17,18]. Other weather factors include: relative humidity, wind speed and cloud 
cover. Electricity demand forecasting has been studied extensively using various techniques 
ranging from classical time series methods, neural networks to regression methods. In this paper 
a multivariate adaptive regression splines model is developed and used to predict daily peak 
electricity demand for South Africa. An updated review of different forecasting methods can be 
found in [9,20]. 
The rest of the paper is organized as follows, in Section 2 the data used is described and a 
preliminary analysis carried out. The piecewise linear regression and the MARS models are 
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presented in Section 3. A discussion of the results is presented in Section 4 and Section 5 
concludes. 
 
 
 
2. Definitions and Data 
 
The data considered in this paper is on net energy sent out (NESO) from Distribution in response 
to some demand of electrical power. NESO (measured in megawatts) is defined as the rate at 
which electrical energy is delivered to customers. In this paper NESO is used as a proxy of 
electrical demand after adjusting for energy losses. The data is for the period 2000 to 2009.  
This definition of electrical demand has its weaknesses. Electrical demand is bounded by the 
power plants’ capacity to provide supply at any time of the day including the need for reserve 
capacity. Demand cannot exceed supply and there are no market forces acting to influence 
electricity prices and hence reducing demand in the short run. Prices are generally fixed. If 
demand were to exceed supply, intervention takes place in the form of, for example, load 
shedding. Load shedding is the last resort used to prevent a system-wide blackout. This NESO 
definition excludes the demand from people, companies, etc, who are willing (or unwilling) and 
able to (or are unable) pay for electricity but currently do not have access to electrical power. 
Despite the weakness in the NESO definition of electrical demand, it is still a good and 
measurable proxy for electrical demand. 
 
The daily peak demand (DPD) is the maximum hourly demand in a 24-hour period. Aggregated 
DPD data was used for the industrial, commercial and domestic sectors of South Africa. The 
historical data on temperature was collected from 22 meteorological stations from all the 
provinces of the country. The data was aggregated to get average daily, maximum and minimum 
temperatures for the whole country.  
The time series plot of DPD in Figure 1 shows a positive linear trend and a strong seasonal 
fluctuation. The trend is mainly due to economic development of the country. Figure 2 shows 
monthly and daily index plots. The basis for each index is 100. The seasonal peak is in July 
which is a winter month. There is another small summer peak in October.  The daily index plot 
shows that demand for electricity during the week days is above average consumption and 
decreases significantly on Saturday and Sunday. A better representation of the relationship 
between daily peak demand with temperature is shown in Figure 3. Figure 3 shows the 
relationship between DPD with peak temperature (in degrees Celsius). The peak temperature is 
the temperature recorded during the hour of peak demand on day t . The relationship is 
nonlinear. The demand of electricity is highly sensitive to temperature fluctuations in winter and 
less sensitive in summer. DPD increases sharply as temperature decreases. The non-linear 
relationship between temperature and DPD calls for derivation of two functions, one for the 
cooling degree-days and the other for heating degree-days. The cooling degree-days ( tCDD ) and 

the heating degree-days ( tHDD ) will be estimated on the basis of the following two linear 

functions as defined in [12], 
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where refT represents the temperature which separates the winter and summer periods of DPD – 

temperature relationship and tT represents the peak temperature on day t . The reference 

temperature (refT ) has been selected to be equal to 20.5oC from Figure 3.  This appears to be the 

temperature at which we get minimum demand of electricity. This temperature will be used for 
the calculation of heating and cooling degree – days. Above this temperature, electricity demand 
tends to rise slightly and below this temperature electricity demand increases significantly. 
 

 
Figure1: Time series plot of daily peak electricity demand for the period 1/1/2000 – 14/12/2009 
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Figure 2: Monthly and daily index plots 
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Figure 3: Scatter plot of daily peak demand against peak temperature (in oC)  
 
 
3. The Models 
 
A piecewise linear regression model and a multivariate adaptive regression splines model are 
presented in this section. The developed models are then used for out of sample predictions of 
DPD. In both models DPD is taken as the dependent variable. The data was transformed by 
taking natural logarithms to reduce the impact of heteroskedasticity that may be present because 
of the large data set and its high frequency [13].   
 
3.1 The Piecewise Linear Regression Model 
 
Regression based methods have been used extensively in load demand forecasting [4,9,20,22]. 
They range from simple linear to multivariate linear regression models. These methods work 
very well when the relationship between the dependent variable and the predictor variables is 
linear. They are usually fast, reliable and easy to implement with relatively robust solutions.  
The relationship between electricity demand and temperature is nonlinear as shown in Figure 3. 
This calls for use of a multivariate linear regression model with 3 piecewise linear regression 
functions. These regressions will be representing the winter, non-weather and summer sensitive 
components. 
The piecewise linear regression model used in this paper can be written as 

tttt
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where ptx represents peak temperature (in degrees Celsius). The peak temperature is the 

temperature recorded at the hour of peak demand on day t , tz denotes daily peak demand (in 

megawatts) observed on day t , wt temperature to identify where the winter sensitive portion of 
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demand join the non-weather sensitive demand component, st temperature to identify where the 

summer sensitive portion of demand join the non-weather sensitive demand component, 

0β represents the mean daily peak demand observed in the non-weather sensitive period 

)( sptw txt ≤≤ . It should be noted that daily peak demand during non-weather sensitive days does 

not depend on temperature )( ptx .The variable t represents the trend component,tH , 1H −t and 

1H +t are dummy variables representing holiday, day before and after a holiday respectively. The 

day of the week effect is represented bydtD , where d represents the days Tuesday up to Sunday 

with Monday as the base period. dtD equals 1 if day d is found in observation  t  and zero 

otherwise with nt ,...,2,1= . The monthly effect is represented by jtM , where j represents the 

months February up to December with January as the base month. jtM equals 1 if month j is  

found in observation t  and zero otherwise with nt ,...,2,1= , 
 

tttttt RRRRR εφφφφ ++++= −−−− 77552211 , where tR  is a stochastic disturbance term and tε  is the 

innovation in the disturbance with                           

=tx1  


 <−

otherwise

txif wpt

,0

0,1
   and 

=tx2  


 >−

otherwise

txif spt

,0

0,1
   

Model (1) will account for any residual correlation that may occur as a result of the week to 
week variation in peak demand and also for the day to day variation. Model (1) is based on the 
following theoretical assumptions: 
1. Peak demand on day t will be highly correlated with peak demand on day 1+t . 
2. There may be significant correlation between demand 2 days, 5 days and/or 7 days apart.  
Derivation of the equations of the 3 demand – temperature lines are shown in appendix A1. 
 
3.2 Multivariate Adaptive Regression Splines (MARS) Model 
 
Multivariate adaptive regression splines (MARS) is a non-parametric multivariate regression 
method which was developed in [8]. MARS has been used to solve high dimensional problems 
with complex model structures such as nonlinearities, interactions, multicollinearity and missing 
values [3, 11, 17, 27]. The method does not make any assumptions about the functional 
relationship between the response variable and the predictor variables. The MARS modeling 
approach overcomes the major drawbacks of using artificial neural networks which are long 
training processes, interpretive difficulties and the inability to determine the relative importance 
of potential input variables. The MARS algorithm divides the modeling space into subregions 
and then fits in each subregion simple linear regression models. The model building process is in 
two steps, the forward stepwise algorithm and the backward stepwise algorithm. In the forward 
stepwise step the MARS algorithm constructs a large number of basis functions which will over 
fit the data. In the backward stepwise algorithm basis functions are deleted in order of least 
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contribution using the generalized cross validation (GCV) criterion. The general MARS model 
can be written as in [8], 

∑
=
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where )(xBm is a basis function written as  
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 0α and  mα are parameters, M is the number of basis functions, mK is the number of knots, 

kms takes on values of either 1 or -1 and indicates the right or left sense of the associated step 

function, ),( mkv is the label of the independent variable and kmt  indicates the knot location. 

The MARS algorithm will then select variables and values of those variables for knots of the 
hinge functions. 
In order to choose the best subset model using MARS a generalized cross validation (GCV) 
criterion is used. It is a measure of the goodness of fit which takes into account the residual error 
and the model complexity. In its simplest form the generalized cross validation criterion can be 
written as in [5], 
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whereN is the sample size, )(MC is the cost-penalty measures of a model containing M basis 

functions. The numerator measures the lack of fit on the M basis function model )(ˆ
iM xf and the 

denominator represents the penalty for the model complexity )(MC . The complexity cost 
function can be written as in [8], 
 

1)BB)B(B(trace)( 1 += − TTMC , 
 
where B is the NM × data matrix of the M (nonconstant) basis functions ))(( jiij xBB = . The 

best model is one with the lowest GCV. 
The three general MARS models used in this paper are shown in equations (4), (5) and (6) 
respectively.  
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where 6100 0 ,..., and  , , cca βω are constants, tz represents daily peak demand, ptx represents peak 

temperature (in degrees Celsius),  wt  temperature to identify where the winter sensitive portion 

of demand join the non-weather sensitive demand component; st temperature to identify where 

the summer sensitive portion of demand join the non-weather sensitive demand component, 

refT represents the temperature which separates the winter and summer periods of DPD – 

temperature relationship and tT represents the daily average temperature for day t .  

 
4. Results and Discussion 
 

4.1  Piecewise  Linear Regression Model 

Three different piecewise linear functions for modeling the peak demand )( tz  and peak  

temperature )( ptx  relationship were proposed in model (1). The values of wt  and st are 17.5oC and 

24oC respectively. These values were determined from visual inspection of the graph in Figure 3. 
Piecewise linear regression models were run for various reference temperatures in the interval 17 oC - 
24oC, without any significant improvements in the results. The reference temperature (refT ) has been 

selected to be equal to 20.5oC from Figure 3. The piecewise linear function is shown in equation (7). 

t1t1t

12

1

7

1
231210 RλHδHHMD)24()5.17( ++++++−+−++= +−

==
∑∑ t
j

jtj
d

dtdtpttptt xxxxtz µταββββ

where tttttt RRRRR εφφφφ ++++= −−−− 77552211 .                                (7) 

Out of the 3636 data points, which is from 1 January 2000 to 14 December 2009, 3592 data 
points (1 January 2000 to 31 October 2009) were used for developing the models and the 
remaining 44 observations were then used for validation. Table 1 shows the parameter estimates 
of the best piecewise linear regression model. The model can be written as 
 

75211t1-tt7t

6t5t21

094.0056.0013.0819.0248.7H-810.9H-1813.4H-D6.2551-       

2279.0D-881.7D-)24(21.0)5.17(8.232t9.126274

−−−−+ ++++

−+−−+=

tttt
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xxxxz
 

                                                                                                                                          (8) 
 
The coefficient of t is positive showing a positive linear trend. The dummy variable tx1 which was 

defined as                           

=tx1  


 <−

otherwise

txif wpt

,0

0,1
 

in equation (1) is positive showing that if temperature decreases by one degree from 17.5oC, 
electricity demand will increase by 232.8 MW.  The coefficient of tx2  which was also defined as 

=tx2  


 >−

otherwise

txif spt

,0

0,1
 

is also positive showing that if temperature increases by one degree from 24oC, electricity 
demand will increase by 21 MW. This shows that electricity demand is more sensitive to winter 
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than summer. All the coefficients of the dummy variables representing Friday, Saturday, Sunday, 
holiday, day before holiday and day after holiday are negative. This shows that there is a 
decrease in demand during these periods. The largest decrease is on Sunday out of the three days 
of the week. During holidays, demand for electricity decreases significantly compared to a day 
before and after a holiday. The least decrease is experienced a day after a holiday. 
 
Table 1: Parameter estimates of the piecewise linear regression model  
Par c  

tH  1−tH  1+tH  Friday Saturday Sunday 

Coef 26274.0 
(0.000) 

-1813.4 
(0.000) 

-810.9 
(0.000) 

-248.7 
(0.000) 
 

-881.7 
(0.00) 

-2279.0 
(0.000) 

-2551.6 
(0.000) 

Par t  
tx1  tx2  1φ  2φ  5φ  7φ  

Coef 1.9 
(0.000) 

232.8 
(0.000) 

21.0 
(0.4963) 
 

0.819 
(0.000) 

0.013 
(0.4679) 
 

0.056 
(0.000) 

0.094 
(0.000) 

 
 
4.1 The MARS Models  

4.1.1  Model 1 

 
Model (1) is a simple MARS model which was used to determine the reference temperature 
which seperates the winter from the summer periods of the daily peak demand – temperature 
relationship. DPD was the dependent variable with the peak temperature as the regressor 
variable. The best MARS model had a GCV value of 61066744.8 × and the reference temperature 
was found to be 20.9oC. This is given in equations (9) and (10) respectively. 
 
 )max(0,),0max( 430 ptrefrefptt xTcTxcz −+−+= ω                                                                       (9) 

 
The basis functions are 
 BF1 = max (0, Xpt - 20.9); 
 BF2 = max (0, 20.9 - Xpt); 
Z = 27833.6 - 125.423 * BF1 + 384.209 * BF2; 
 
and the complete model can be written as 
 

)max(0,20.9 209.384)9.20,0max( 423.1256.27833DPD ptpt xx −+−−= .                               (10) 

 
If temperature decreases by a degree from 20.9oC, DPD will increase by 384.209MW. Similarly 
an increase by one degree above 20.9oC will result in a decrease of 125.423MW. This shows that 
DPD is more sensitive to low temperatures. This model is used to determine the number of 
heating degree days and also the number of cooling degree days. It cannot be used for 
predictions since only one predictor variable was used which is peak temperature. 
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Figure 4: MARS plot of model 1  
 

4.1.2  Model 2   

 
Out of the 24 predictor variables the MARS algorithm selected 8 as the most important. These 
are shown in table 2 in order of their importance. The piecewise linear GCV was 51002477.9 × . 
 
Table 2: Important predictor variables using MARS 

Variable Importance GCV 
t  100.000 7.27027E+06 

ptx  58.25802 3.06371E+06 

t7D  34.58035 1.66394E+06 

t6D  31.78196 1.54569E+06 

tH  18.85743 1.12892E+06 

1H −t  14.80247 1.04201E+06 

t5D  12.35992 9.99758E+05 

1H +t  8.76643 9.51416E+05 
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The basis functions are                            
 
BF1 = max (0,t  - 2735); 
BF2 = max(0, 2735 - t ); 
BF3 = max(0, ptx  - 19.2); 

BF4 = max(0,19.2 - ptx ); 

BF5 = ( t7D = 0); 

BF7 = ( t6D = 1); 

BF9 = ( tH = 0); 

BF11 = ( t5D = 0); 

BF13 = ( 1H −t = 0); 

BF15 = ( 1H +t = 0) * BF13; 

Z = 24676.4 - 1.74202 * BF1 - 2.9918 * BF2 - 235.381 * BF3 + 411 * BF4 + 2598.11 * BF5 -   
       2367.12 * BF7 + 2722.32 * BF9 + 924.862 * BF11+ 500.434 * BF13 + 1280.82 * BF15; 
 
The final model is given in equation (11). 
 

0)0)(HH(82.12800)H(43.5000)D(86.924           

0)H(32.27221)D(12.2367 0)D(11.2598)-9.2411max(0,1           

)2.19,0max(38.235)2735,0max(99.2)2735,0max(74.14.24676DPD

1-t1t1-t5t

t6t7t

==+=+=+

=+=−=++

−−−−−−=

+

pt

pt

x

xtt

    (11) 

The coefficient of basis function 1 is negative meaning that if trend is above 2375 electricity 
demand will decrease  by 1.74 MW and when its below this knot it will decrease by 2.99MW. 
Basis function three’s coefficient is negative implying that if peak temperature is above 19.20C 
DPD will decrease by 235.381MW and if peak temperature is below this knot DPD will increase 
by 411MW. Coefficient for basis function 5 is positive meaning if the day of the week is not 
Sunday, DPD will increase by 2598.11MW, but if the day is Saturday there will be a decrease in 
DPD of 2367.12MW. The coefficient of basis function 9 is positive meaning that if the day t is 
not a holiday the DPD will increase by 2722.32MW and if it is not a day before a holiday DPD 
will increase by 500.434MW. There is one bivariate interaction between a day before and a day 
after a holiday. If day t is not a day before or after a holiday the DPD will increase by 
1280.82MW. If day t is not a Friday there will be an increase in DPD of 924.862MW. 

4.1.3 Model 3 

 
The third model is a MARS model for Average Daily Energy Sent Out (ADESO) with average 
daily temperature (ADT) as the predictor variable. The model identifies the winter sensitive, 
weather neutral and summer sensitive periods. The basis functions are 
 
BF2 = max(0, 22 - ADT); 
BF3 = max(0, ADT - 16); 
 
Z = 564863 + 7332.94 * BF2 + 3714.8 * BF3; 



12 

 

 
)16ADTmax(0, 8.3714ADT)22,0max( 94.7332564863ADESO −+−+=                             (12) 

The piecewise linear GCV was 91082422.3 × . The graphical plot of ADESO against average 
daily temperature is shown in Figure 4. The three demand-temperature equations are shown in 
equations 13 – 15.  
If average daily temperature is less than or equal to 160C we use 
 

ADT)22,0max( 7333564863ADESO −+=                                              (13) 
 
That is, if the temperature decreases by 10C (e.g. from 160C to 150C) electricity demand will 
increase by 7333MW, which is about 1.2% increase. 
 
If average daily temperature is greater than or equal to 220C we use 
 

)16ADTmax(0, 3715564863ADESO −+=                                             (14) 
 
If temperature increases by 10C (e.g. from 220C to 230C) electricity demand will increase by 
3715MW, which is about 0.6% increase. 
 
For the average daily temperature between 160C - 220C we use 
 

)16ADTmax(0, 3715ADT)22,0max( 7333564863ADESO −+−+=                                      (15) 
 
If temperature decreases by 10C in the range 160C - 220C (e.g. from 220C to 210C) electricity 
demand will increase by 3618MW, which is about 0.6% increase. 
The graphical plot for average daily energy sent out against average daily temperature and the MARS 
plot are shown in Figure 5 and 6 respectively. The modeling space is divided into three subspaces 
separated by two knots at 160C and 220C as shown in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13 

 

 
Figure 5: Scatter plot of average daily energy sent out against average daily temperature 
 
 

 
 
 
Figure 6: MARS plot of model 3 
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4.2 Evaluating the goodness of fit of the models 
 
The root mean squared error (RMSE) is used for the evaluation of the piecewise regression 
model and the MARS model for peak load demand forecasting in the out of sample predictions 
for the period 1 November to 14 December 2009. The training period was 1 January 2000 to 31 
October 2009. The RMSE is calculated as  
 

( )
n

zz
n

t
ftat∑

=

−
= 1

2

RMSE                (16) 

where n  is the number of out of sample forecast data points and ftat zz −
 
represents the forecast 

errors. The terms ftatz z and are the actual DPD and its future forecast respectively. Table 3 

presents the comparative performances of the piecewise and MARS model in terms of testing 
error. The MARS model outperformed the piecewise linear regression model. 
  
Table 3: Comparative Analysis results of the piecewise and MARS models  
 R-Squared Adjusted RMSE 

Validation (Testing Period) 
 
Piecewise Linear  

 
0.91626 

 
940.84331 

 
MARS Model 2 

 
0.980964 

 
446.013 

 
 
5. Conclusions 
 
A MARS model was developed for predicting daily electricity peak demand and the performance 
of the model was compared with a piecewise linear regression model. There were 3636 data 
points, from 1 January 2000 to 14 December 2009. 3592 data points were used for developing 
the models and the remaining 44 observations were then used for validation. The MARS model 
outperformed the piecewise linear regression model. The developed MARS model is easy to 
explain to management. The model is capable of clustering together categories of variables that 
have similar effects on the dependent variable. Accurate prediction of daily peak load demand is 
very important for decision makers in the electricity sector. This helps in the determination of 
consistent and reliable supply schedules during peak periods. Accurate short term load forecasts 
will enable effective load shifting between transmission substations, scheduling of startup times 
of peak stations, load flow analysis and power system security studies. Future research should 
look at the investigation of weather sensitivity analysis on daily and seasonal peak electricity 
demand done on each of the provinces of South Africa. Another interesting area to investigate 
would be the development of a hybrid model which will integrate the multivariate adaptive 
regression splines approach with neural network techniques and also the use of other adaptive 
techniques such as classification and regression trees (CART), TreeNet and Random Forests. 
These studies will be done elsewhere.  
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APPENDIX A1 
 
Derivation of the equations of the 3 demand – temperature lines 
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Substituting (A2) into (A1) we get three equations for winter-sensitive, summer-sensitive and 
non-weather sensitive months. The equations are (A3), (A4) and (A5) respectively.  
 
Winter – sensitive months 
ie 0,1, 21 ==< ttwpt xxtx we get 
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Summer – sensitive months 
ie 1,0, 21 ==> ttspt xxtx we get 
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Non – weather sensitive months 
ie 0, 21 ==≤≤ ttsptw xxtxt we get 

0)( β=tzE                (A5) 

Where 0β represents the mean daily peak demand observed in the non-weather sensitive period. 

 
 


