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Abstract

The paper presents a multivariate adaptive regnessglines (MARS) modelling approach for

daily peak electricity load forecasting in Southriéd for the period 2000 to 2009. MARS is a
non-parametric multivariate regression method whishused to solve high dimensional

problems with complex model structures such asineatities, interactions and missing data in
a straight forward manner and produces results lwhan be explained to management. The
developed model consists of components that represdendar and meteorological data. The
performance of the model is evaluated by compatingth a piecewise linear regression model.
The results from the study show that the MARS maalelduces better forecast accuracy.
Accurate prediction of daily peak load demand isyvenportant for decision makers in the

energy sector. This helps in the determinationooiscstent and reliable supply schedules during
peak periods. Accurate short term load forecasts emiable effective load shifting between

transmission substations, scheduling of startuggirof peak stations, load flow analysis and
power system security studies.

Key words: MARS, temperature, peak demand forewgspiecewise linear regression.
1. Introduction

One of the most weather sensitive sectors of aoyauy is the energy sector. In this sector
accurate prediction of daily peak electricity dechas very important. It provides short term
forecasts which are required for dispatching amshemic grid management of electric energy
[1,2,3,8,16,19,21,22]. The most important weathetdrs which affect daily peak demand
(DPD) is temperature. Changing weather conditi@masent the major source of variation in
peak demand forecasting and the inclusion of teatper has a significant effect due to the fact
that in winter, heating systems are used whitssummer air conditioning appliances are used
[6,10,11,13,14,15,17,18]. Other weather factortumhe: relative humidity, wind speed and cloud
cover. Electricity demand forecasting has beenistu@xtensively using various techniques
ranging from classical time series methods, neuedlorks to regression methods. In this paper
a multivariate adaptive regression splines modalegeloped and used to predict daily peak
electricity demand for South Africa. An updatediesv of different forecasting methods can be
found in [9,20].

The rest of the paper is organized as follows, écti®n 2 the data used is described and a
preliminary analysis carried out. The piecewisesdin regression and the MARS models are

1



presented in Section 3. A discussion of the reggltpresented in Section 4 and Section 5
concludes.

2. Definitions and Data

The data considered in this paper is on net enszgiyout (NESO) from Distribution in response
to some demand of electrical power. NESO (measuredegawatts) is defined as the rate at
which electrical energy is delivered to customémsthis paper NESO is used as a proxy of
electrical demand after adjusting for energy los$ee data is for the period 2000 to 2009.

This definition of electrical demand has its wealses. Electrical demand is bounded by the
power plants’ capacity to provide supply at anyetiof the day including the need for reserve
capacity. Demand cannot exceed supply and therenarmarket forces acting to influence
electricity prices and hence reducing demand indhert run. Prices are generally fixed. If
demand were to exceed supply, intervention takesepin the form of, for example, load
shedding. Load shedding is the last resort usqmdeent a system-wide blackout. This NESO
definition excludes the demand from people, comgmretc, who are willing (or unwilling) and
able to (or are unable) pay for electricity butreatly do not have access to electrical power.
Despite the weakness in the NESO definition of teleal demand, it is still a good and
measurable proxy for electrical demand.

The daily peak demand (DPD) is the maximum houdgdnd in a 24-hour period. Aggregated
DPD data was used for the industrial, commercia doamestic sectors of South Africa. The
historical data on temperature was collected froPn n2eteorological stations from all the
provinces of the country. The data was aggregatggt average daily, maximum and minimum
temperatures for the whole country.

The time series plot of DPD in Figure 1 shows aitp@slinear trend and a strong seasonal
fluctuation. The trend is mainly due to economizalepment of the country. Figure 2 shows
monthly and daily index plots. The basis for eactiek is 100. The seasonal peak is in July
which is a winter month. There is another small suenpeak in October. The daily index plot
shows that demand for electricity during the wealysdis above average consumption and
decreases significantly on Saturday and Sunday.eteb representation of the relationship
between daily peak demand with temperature is showirigure 3. Figure 3 shows the
relationship between DPD with peak temperaturedégrees Celsius). The peak temperature is
the temperature recorded during the hour of peakade on dayt. The relationship is
nonlinear. The demand of electricity is highly sémes to temperature fluctuations in winter and
less sensitive in summer. DPD increases sharplyeaperature decreases. The non-linear
relationship between temperature and DPD callsdfavation of two functions, one for the
cooling degree-days and the other for heating @edag's. The cooling degree-daysiD, ) and

the heating degree-day$iDD,) will be estimated on the basis of the follogitwo linear
functions as defined in [12],



CDD, =max(, - T, ,0)
and
HDD, = max({, —T,,0)

where T, represents the temperature which separates thervdntl summer periods of DPD —
temperature relationship and, represents the peak temperature on dayThe reference
temperature T, ) has been selected to be equal to ZDffom Figure 3. This appears to be the

temperature at which we get minimum demand of etgigt This temperature will be used for
the calculation of heating and cooling degree -sdAyove this temperature, electricity demand
tends to rise slightly and below this temperatleetecity demand increases significantly.
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Figurel: Time series plot of daily peak electriadigmand for the period 1/1/2000 — 14/12/2009
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Figure 2: Monthly and daily index plots
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Figure 3: Scatter plot of daily peak demand agaiesk temperature (fiC)

3. TheModels

A piecewise linear regression model and a multatariadaptive regression splines model are
presented in this section. The developed modelsham used for out of sample predictions of
DPD. In both models DPD is taken as the dependanable. The data was transformed by
taking natural logarithms to reduce the impact eteloskedasticity that may be present because
of the large data set and its high frequency [13].

3.1 The Piecewise Linear Regression Model

Regression based methods have been used extensiiesd demand forecasting [4,9,20,22].

They range from simple linear to multivariate lingagression models. These methods work
very well when the relationship between the dependariable and the predictor variables is

linear. They are usually fast, reliable and easynfglement with relatively robust solutions.

The relationship between electricity demand andoeature is nonlinear as shown in Figure 3.
This calls for use of a multivariate linear regressmodel with 3 piecewise linear regression
functions. These regressions will be representiggwinter, non-weather and summer sensitive
components.

The piecewise linear regression model used inpidyer can be written as

7 12
Zt = 180 +181t +ﬁ2(xpt _tw)xlt +ﬁ3(xpt _ts)XZt +ZadDdt +ZT]'M jt +IUHt +d_|t—l +AHt+l + Rt (1)
d=1 =1

wherex, represents peak temperature (in degrees Celsiu®. peak temperature is the
temperature recorded at the hour of peak demandagrt, z denotes daily peak demand (in

megawatts) observed on day t,temperature to identify where the winter sensipeogtion of
5



demand join the non-weather sensitive demand coempt) temperature to identify where the

summer sensitive portion of demand join the nonthera sensitive demand component,
B,represents the mean daily peak demand observedheinnbn-weather sensitive period

(t, <X, <t,). It should be noted that daily peak demand dunioig-weather sensitive days does
not depend on temperatyse, .The variabletrepresents the trend componeéft, H,_,and
H,,,are dummy variables representing holiday, day leefod after a holiday respectively. The
day of the week effect is representedy, whered represents the days Tuesday up to Sunday
with Monday as the base perio®.,equals 1 if daydis found in observationt and zero

otherwise witht =12,...,n. The monthly effect is represented by, , where jrepresents the

months February up to December with January abdake monthM ; equals 1 if monthj is
found in observatiort and zero otherwise with=12,...,n,

R=¢gR,+aR_,+@aR_+@R_, +& , whereR is a stochastic disturbance term ands the
innovation in the disturbance with

1 if x,-t,<0
X, = { " and

0, otherwise

1, if x,-t;>0
X2t = .

0, otherwise

Model (1) will account for any residual correlatitimt may occur as a result of the week to
week variation in peak demand and also for thetdajay variation. Model (1) is based on the
following theoretical assumptions:

1. Peak demand on dawill be highly correlated with peak demand on danyi.

2. There may be significant correlation between aet2 days, 5 days and/or 7 days apart.
Derivation of the equations of the 3 demand — teatpee lines are shown in appendix Al.

3.2 Multivariate Adaptive Regression Splines (MARS) Mbd

Multivariate adaptive regression splines (MARS)aisnon-parametric multivariate regression
method which was developed in [8]. MARS has beerdus solve high dimensional problems
with complex model structures such as nonlineaitieteractions, multicollinearity and missing
values [3, 11, 17, 27]. The method does not make assumptions about the functional
relationship between the response variable andptbdictor variables. The MARS modeling
approach overcomes the major drawbacks of usinficeatt neural networks which are long
training processes, interpretive difficulties ahé inability to determine the relative importance
of potential input variables. The MARS algorithnvidies the modeling space into subregions
and then fits in each subregion simple linear regioa models. The model building process is in
two steps, the forward stepwise algorithm and thektvard stepwise algorithm. In the forward
stepwise step the MARS algorithm constructs a lawgaber of basis functions which will over
fit the data. In the backward stepwise algorithnsiddunctions are deleted in order of least



contribution using the generalized cross valida{iGiCV) criterion. The general MARS model
can be written as in [8],

f(x)=a, +iamBm(x) (2)

where B (X )is a basis function written as

B (X) = E![Skm(xv(k,m) _tkm)]'

a, and a,, are parametersM is the number of basis function& is the number of knots,
Smtakes on values of either 1 or -1 and indicatesrigiiet or left sense of the associated step
function, v(k,m)is the label of the independent variable apdindicates the knot location.

The MARS algorithm will then select variables aralues of those variables for knots of the
hinge functions.
In order to choose the best subset model using MARJ&neralized cross validation (GCV)
criterion is used. It is a measure of the goodiés$is which takes into account the residual error
and the model complexity. In its simplest form generalized cross validation criterion can be
written as in [5],

GCV(M) =%ZN1‘,[y -f, (x)]z/[l—%}z 3)

whereN is the sample sizeC(M i9 the cost-penalty measures of a model contaifihbasis

functions. The numerator measures the lack ofrfithe M basis function modeI‘AM (x)and the
denominator represents the penalty for the modehpbexityC(M ). The complexity cost
function can be written as in [8],

C(M)=tracB(B'B)"'B") +1,

where Bis the M x N data matrix of theM (nonconstant) basis functior®, =B (x; .)Jhe

best model is one with the lowest GCV.
The three general MARS models used in this papershown in equations (4), (5) and (6)
respectively.

7 12
Z =g, + qmax(o, Xot _tw) +szax(o!)(pt _ts) + Zad Ddt +ZT1 M it +/'A_|t + d_lt—l +/]Ht+1 T & (4)
d=1 j=1

7 12
z = @ +e;maxQT, — T ) +C,Max(0T ~T)+ > @Dy + D 1M +4H, +H, +AH, + £ (5)
T =

| z.=B,+c;MaxOT, T, ) +c;max(OT . ~T,) +&, (6)



where a,, @,, B, andc,,...,c;are constantsz represents daily peak demanx], represents peak
temperature (in degrees Celsius), temperature to identify where the winter sensitpagtion

of demand join the non-weather sensitive demandpooent; t,temperature to identify where
the summer sensitive portion of demand join the-weather sensitive demand component,
T represents the temperature which separates thesrwartd summer periods of DPD —

temperature relationship afgrepresents the daily average temperature fortday

4. Results and Discussion

4.1 Piecewise Linear Regression Model

Three different piecewise linear functions for miowethe peak demanz, 3gnd peak
temperature(X ) relationshipwere proposed in model (1). The valuestgpfandt are 17.8C and

24°C respectively. These values were determined frasmav inspection of the graph in Figure 3.
Piecewise linear regression models were run foiouarreference temperatures in the intervaf@ 7z

24°C, without any significant improvements in the fesuThe reference temperaturé, ) has been
selected to be equal to 285from Figure 3. The piecewise linear functionhiswn in equation (7).

7 12
Z = ﬂo + ﬂl t+ /Bz(xpt _17'5))(1t + ﬂS(Xpt - 24)X2t + ZadDdt +
d=1

TjM jt +IUHt +8Ht—l +)\’Ht+l + Rt
j=1
whereR =gR,+ @R, +@R s+ @R, +¢&. (7)
Out of the 3636 data points, which is from 1 Japuz000 to 14 December 2009, 3592 data
points (1 January 2000 to 31 October 2009) weral dee developing the models and the
remaining 44 observations were then used for viidaTable 1 shows the parameter estimates
of the best piecewise linear regression model.fbdel can be written as

7, = 26274+ 19t - 2328(x,, ~175)%, +21.0X,, — 24)X,, -881.7D, - 2279.0D,
-25516D., -1813.4H -810.9H, - 248.7H,, + 0.819,_, + 0.013_, + 0.056z, . +0.094z, ,
(8)

The coefficient oftis positive showing a positive linear trend. Thenduy variable x;, which was
defined as

L i X%, -t, <0
. 0, otherwise

in equation (1) is positive showing that if temgara decreases by one degree from %A7,.5
electricity demand will increase by 232.8 MW. Tduefficient of x,, which was also defined as

L, if x,-t;>0
X2t = .
0, otherwise

is also positive showing that if temperature insesaby one degree from °2%4 electricity
demand will increase by 21 MW. This shows that teleity demand is more sensitive to winter
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than summer. All the coefficients of the dummy ahtes representing Friday, Saturday, Sunday,
holiday, day before holiday and day after holidag aegative. This shows that there is a

decrease in demand during these periods. The tailgesease is on Sunday out of the three days
of the week. During holidays, demand for electyicdecreases significantly compared to a day
before and after a holiday. The least decreaseperenced a day after a holiday.

Table 1:Parameter estimates of the piecewise linear reigressodel

Par C H, H.. Hin Friday Saturday Sunday
Coef | 26274.0 |-1813.4 | -810.9 -248.7 -881.7 -2279.0 -2551.6
(0.000) (0.000) | (0.000) (0.000) (0.00) (0.000) (0.000)
Par |t X Xor @ @ @ @
Coef | 1.9 232.8 21.0 0.819 0.013 0.056 0.094
(0.000) (0.000) | (0.4963) | (0.000) (0.4679) | (0.000) (0.000)
4.1 The MARS Models
411 Model 1

Model (1) is a simple MARS model which was usedd&sermine the reference temperature
which seperates the winter from the summer perafdhe daily peak demand — temperature
relationship. DPD was the dependent variable wite peak temperature as the regressor

variable. The best MARS model had a GCV valu®.66744x10° and the reference temperature
was found to be 20°@. This is given in equations (9) and (10) respetyi

Z[ = % + CgmaX(O’ Xpt _Tref) + C4max(0’Tref - Xpt) (9)

The basis functions are

BF1 = max (0, Xpt - 20.9);

BF2 = max (0, 20.9 - Xpt);

Z =27833.6 - 125.423 * BF1 + 384.209 * BF2;

and the complete model can be written as

DPD = 278336 -125423max(, x,, - 20.9) + 384209max(0,20.9- X,,) . (10)

If temperature decreases by a degree from°@Q) BPD will increase by 384.209MW. Similarly
an increase by one degree above ZDWill result in a decrease of 125.423MW. This shdhat
DPD is more sensitive to low temperatures. This ehagused to determine the number of
heating degree days and also the number of codéggee days. It cannot be used for
predictions since only one predictor variable wssduwhich is peak temperature.



33000 4 T
32000 — \\
1000 .

30000 — "~

DPD (MW)
rd

20000 | 3
28000 — B

27000 —

T B 9 10 11 12 13 14 15 16 IF¥ 18 19 20 21 22 23 24 35 2§ 27 28

Figure 4: MARS plot of model 1

41.2 Model 2

Out of the 24 predictor variables the MARS algariteelected 8 as the most important. These
are shown in table 2 in order of their importaritiee piecewise linear GCV wa92477x10°.

Table 2: Important predictor variables using MARS

Variable Importance GCV

t 100.000 7.27027E+06
Xt 58.25802 3.06371E+06
D, 34.58035 1.66394E+06
Dy, 31.78196 1.54569E+06
H, 18.85743 1.12892E+06
H,, 14.80247 1.04201E+06
Dy, 12.35992 9.99758E+05
H,., 8.76643 9.51416E+05
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The basis functions are

BF1 = max (0t - 2735);

BF2 = max(0, 2735 t);

BF3 = max(0,x,, - 19.2);

BF4 = max(0,19.2 %, );

BF5 = (D, = 0);

BF7 = (D, = 1);

BF9 = (H, = 0);

BF11 = (D, = 0);

BF13 = H,,=0);

BF15 = (H,,,= 0) * BF13;

Z =24676.4 - 1.74202 * BF1 - 2.9918 * BF2 - 233.38F3 + 411 * BF4 + 2598.11 * BF5 -
2367.12 * BF7 + 2722.32 * BF9 + 924.862 *HF 500.434 * BF13 + 1280.82 * BF15;

The final model is given in equation (11).

DPD = 246764 - 174max(,t - 2739 - 299max(0,2735-t) - 23538max(0, x,, ~19.2)
+411max(0,9.2- x,,) + 259811D,, = 0)-236712(D, =1)+272232(H, =0)  (11)

+92486(D,, = 0)+50043(H,, =0)+128082(H,,, = 0)(H,, =0)
The coefficient of basis function 1 is negative mieg that if trend is above 2375 electricity
demand will decrease by 1.74 MW and when its belug knot it will decrease by 2.99MW.
Basis function three’s coefficient is negative igipy that if peak temperature is above 1@.2
DPD will decrease by 235.381MW and if peak tempaets below this knot DPD will increase
by 411MW. Coefficient for basis function 5 is pos#t meaning if the day of the week is not
Sunday, DPD will increase by 2598.11MW, but if theey is Saturday there will be a decrease in
DPD of 2367.12MW. The coefficient of basis functi®ns positive meaning that if the dais
not a holiday the DPD will increase by 2722.32MW aiit is not a day before a holiday DPD
will increase by 500.434MW. There is one bivariateraction between a day before and a day
after a holiday. If daytis not a day before or after a holiday the DPD wiltrease by
1280.82MW. If daytis not a Friday there will be an increase in DP@24.862MW.

4.1.3 Model 3

The third model is a MARS model for Average Dailgefgy Sent Out (ADESO) with average
daily temperature (ADT) as the predictor variablée model identifies the winter sensitive,
weather neutral and summer sensitive periods. @bk lunctions are

BF2 = max(0, 22 - ADT);
BF3 = max(0, ADT - 16);

Z = 564863 + 7332.94 * BF2 + 3714.8 * BF3;
11



ADESO= 564863+ 733294 max(022— ADT) +37148max(0ADT —16) (12)

The piecewise linear GCV w882422x10°. The graphical plot of ADESO against average
daily temperature is shown in Figure 4. The thremand-temperature equations are shown in
equations 13 — 15.

If average daily temperature is less than or etuab’C we use

ADESO=564863+ 7333max(022—ADT) (13)

That is, if the temperature decreases b@ fe.g. from 18C to 15C) electricity demand will
increase by 7333MW, which is about 1.2% increase.

If average daily temperature is greater than oaeu22C we use
ADESO=564863+3715max(0ADT -16) (14)

If temperature increases bycl (e.g. from 22C to 23C) electricity demand will increase by
3715MW, which is about 0.6% increase.

For the average daily temperature betweélc1&22C we use
ADESO=564863+ 7333max(022—ADT) +3715max(0ADT -16) (15)

If temperature decreases b§Clin the range 1% - 22C (e.g. from 22C to 2C) electricity
demand will increase by 3618MW, which is about Oi6%6ease.

The graphical plot foaverage daily energy sent out against average tiailperature and the MARS
plot are shown in Figure 5 and 6 respectively. Tinedeling space is divided into three subspaces
separated by two knots 36°C and 22C as shown in Figure 6.
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4.2 Evaluating the goodness of fit of the models

The root mean squared error (RMSE) is used foretveduation of the piecewise regression
model and the MARS model for peak load demand #&sttg in the out of sample predictions
for the period 1 November to 14 December 2009. ffaieing period was 1 January 2000 to 31
October 2009. The RMSE is calculated as

(16)

where n is the number of out of sample forecast data pantdz, — z, represents the forecast

errors. The termsz,, andz, are the actual DPD and its future forecast respeygt Table 3

presents the comparative performances of the piseemand MARS model in terms of testing
error. The MARS model outperformed the piecewisedr regression model.

Table 3: Comparative Analysis results of the pigsevand MARS models
R-Squared Adjusted RMSE
Validation (Testing Period)

Piecewise Linear 0.91626 940.84331
MARS Model 2 0.980964 446.013
5. Conclusions

A MARS model was developed for predicting dailyottesity peak demand and the performance
of the model was compared with a piecewise linegrassion model. There were 3636 data
points, from 1 January 2000 to 14 December 20092 3fata points were used for developing
the models and the remaining 44 observations wexe tised for validation. The MARS model
outperformed the piecewise linear regression moblet developed MARS model is easy to
explain to management. The model is capable oteriug together categories of variables that
have similar effects on the dependent variable ufate prediction of daily peak load demand is
very important for decision makers in the electyigector. This helps in the determination of
consistent and reliable supply schedules during peaiods. Accurate short term load forecasts
will enable effective load shifting between transsion substations, scheduling of startup times
of peak stations, load flow analysis and powerewssecurity studies. Future research should
look at the investigation of weather sensitivityasis on daily and seasonal peak electricity
demand done on each of the provinces of South &fdmother interesting area to investigate
would be the development of a hybrid model whichl witegrate the multivariate adaptive
regression splines approach with neural networkriegies and also the use of other adaptive
techniques such as classification and regressems t(CART), TreeNet and Random Forests.
These studies will be done elsewhere.
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APPENDIX Al

Derivation of the equations of the 3 demand — teatpee lines

7 12
Z, = Sy + Bit+ By (X 1) %y + Ba (X —15) Xy +ZadDdt +ZTmM mtHH +H +AH  +R
d=1 m=1
(A1)
7 12
Let > @Dy =D 1, M =tH, =M, ,=AH, =0 (A2)
d=1 m=1
Substituting (A2) into (Al) we get three equatidos winter-sensitive, summer-sensitive and

non-weather sensitive months. The equations arg (A3) and (A5) respectively.

Winter — sensitive months
ie X, <t,, X, =1 X, =0we get

E(Zt) = /80 + ﬂl(xpt _tw)(l) +/82 (Xpt —ts)(O)
E(Zt) = ,Bo + lgl(xpt _tw) (As)
E(z)=(5, - Bt,)+ lglxpt

Summer — sensitive months
ie X, >t;, X%, =0, X, =1we get

E(Zt) = /80 + ﬂl(xpt —tw)(O) +ﬂ2(xpt _ts)(l)
E(Zt) = ,Bo + 182 (Xpt _ts) (A4)
E(z)=(5, - Bt)+ IBZXpt

Non — weather sensitive months
iet, <x,<t, X, =X, =0we get

E(z) =5 (A5)
Where S, represents the mean daily peak demand observed imon-weather sensitive period.
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