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Abstract 

 

The risk of flood is affected by factors such as land use, meteorological events, 

hydrology and the topology of the land. In South Africa, the geography of apartheid, 

as another example, is also a key factor affecting flood vulnerability since it influenced 

the geographic location of population sectors.  Poverty encouraged settlement 

patterns that neglected flood risk in certain areas, especially in rural areas. The 

Msundusi area is one such region which has been vulnerable to flood disasters. This 

research explores the use of artificial neural network models to predict the onset of 

floods. Rainfall is considered as the primary factor influencing the likelihood of flood, 

and a number of artificial neural network architectures were evaluated as  flood 

prediction model s . 

 

The  mean  percentage  accuracy  and  correlation  coefficient  were  used  to  evaluate  

the performance  of trained neural  networks. Training  simulation  results  indicate  

that a feed-forward model with six input neuronal  units,  four hidden units and one 

output unit produced the best predictive  results  for this type of neural  network. 

However, recurrent network models are shown to perform better t h an  feed-forward 

models. The best flood prediction result  was obtained for the recurrent Elman 

network, with a mean prediction percentage of 58.8%. 

 

While the  results  obtained  are not  as good as some published  results, those techniques 

involved a number of predictive variables, and in some cases required in-depth 

knowledge of the characteristics (for example hydrological, topographic or land use 

properties) of the region and physics of these processes. A key advantage of this 

approach is that no such knowledge is required. Moreover, the method used is 

parsimonious in that only a single predictive variable, namely precipitation is needed to 

model flood prediction. Under these conditions, this approach produced acceptable 

results for the neural network architectures that were studied. 
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Chapter 1 

 

Introduction 

 

Summary 

 

This chapter introduces the problem of flood prediction, the proposed research, the 

research methodology and the expected output of this research as presented further in 

this thesis. The research entails the exploration of suitable artificial neural network 

architectures that can be used to model flood prediction, given prior daily rainfall 

data for a specific region. The chapter also introduces the concepts and effects of flood 

as background to the area of study, the problem statement, research objectives and 

questions to be addressed. 

 

1.1 Effects of Floods 

 

Natural disasters such  as flood and tropical cyclones  are regarded to  be caused by 

extreme weather conditions as well as changes in global and regional climate. South 

Africa and other countries are faced with environmental and ecological challenges 

particularly in view of the impact of climate change. These include the occurrence of 

natural disasters such as fire, floods, tropical storms, major accidents, drought, 

epidemic diseases and food shortage [DPLG, 2007]. 

 

Floods are the most frequent natural hazards globally [Verdin, 2002], and the hazard 

of flooding can be divided into primary, s e c o n d a r y  an d  tertiary effects.   The 

primary effects of floods are those due to direct contact with the flood waters, with the 

water velocities resulting in floods as the discharge velocity increases. Secondary effects, 

such as disruption of infrastructure and services and health impacts , a r e  primary 

effects, while tertiary effects are viewed as the long-term changes that occur, for 

example changes in the position of river channels [Nelson, 2010]. 
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Previous years‟ flooding have been the most costly disasters i n  terms of property an d  

human casualties. These floods cause great losses  and damage that also have 

devastating socio-economic, hydrological and climatic tertiary effects [Varoonchotikul, 

2003]. For example the flooding of the river Arno in Italy caused serious damage valued 

at more than 1 5 . 5  billion euro [Campolo et al., 2003]. The river crosses the city of 

Florence as it leaves the mountain region.  In the United States  between  1989 and 

1999, floods caused the loss of at least 988 lives and about 4.5 billion US dollars in 

economic losses [Barros and Kim, 2001]. Many parts of Europe experienced dramatic 

summer floods in 1938, 1966, 1981, 1997 and 1998, which placed their economic and 

environmental situation at risk [Barros and Kim, 2001]. 

 

1.1.1 Floods in South Africa 

 

In South Africa, a total of 946 hazardous events were recorded during the period 

between 1800 and 1995. Of these, the occurrence of floods was the highest on the list 

of such hazardous events [DPLG, 2007]. In the early 2000, areas of the southern region 

of Africa, especially the Mozambican coast and northern parts of South Africa were hit 

by a series of tropical cyclones, namely Astride, Gloria, Hudah and Eline. Cyclone Eline 

was considered to be the most severe cyclone which caused landfalls in parts of 

Mozambique and saturated soil in the Limpopo basin [Verdin, 2002]. This type of 

disaster was described as the most devastating flood disaster experienced in Southern 

A f r i c a  [Verdin, 2002]. Many lives were lost and more than ten million people had no 

access to potable water . Thousands of people in Mozambique and approximately 200 

in South Africa were relocated to refugee camps. The infrastructure such as roads, 

bridges and buildings damaged within South Africa and Mozambique, were estimated to 

cost more than one billion rand to repair [Alexander, 2002]. 

 

The provinces most frequently affected by floods in South Africa are regarded to be the 

coastal provinces such as the Western Cape, KwaZulu-Natal and the Eastern Cape 

[DPLG, 2007]. From historical records, the KwaZulu-Natal province has experienced a 

number of flood events over the past decades [Kjeldsen et al., 2001] and appears to be 

more vulnerable to heavy rains, storms and cyclones that cause flash floods. These 

events affect the economy and lives of the communities, especially in the rural 
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areas  of the Msundusi municipality in KwaZulu-Natal. Different studies and models 

such as statistical analyses for flood magnitude frequency have been undertaken but 

none  of them have accurately predicted t h e  occurrences of floods [Alexander, 2002]. 

Regional frequency analysis including the use of L-moments together with the index-

flood method was applied successfully in a number of case studies from the USA, 

Australia and the Kwazulu-Natal province in South Africa, for modelling floods 

[Kjeldsen et al., 2001]. 

 

The floods that occurred in t h e  year 2000 over the Southern A f r i c a n  region caught 

South Africa and Mozambique in a state of unpreparedness. In 1995 severe flooding 

took place in the Msundusi catchment which caused loss of life of around 1 6 0  people. 

Infrastructural damage amounted to R20 million and at least 586 families lost their 

homes. These flood disasters emphasise the importance of accurate flood prediction 

methods for South Africa and neighbouring countries. The implementation and 

improvement of hydrological models in prediction will  assist in reducing the impact of 

flood to human and economic losses in South Africa and other countries [Verdin, 2002, 

Campolo et al., 2003]. However, hydrological models are often complex and 

computationally intensive to run, requiring expertise in environmental hydrology and 

accurate data for many geographical, environmental and meteorological parameters 

[Barros and Kim, 2001]. 

 

1.2 Flood Forecasting Models 

 

Early warning flood systems can be implemented i n  order to provide effective warning 

for natural disasters t h a t  can be caused by floods. This can be accomplished by the 

combination of technologies such as Geographical Information Systems (GIS), remote 

sensing, and Information and Communications Technologies (ICT) that translate data 

into useful information and make this information accessible to the role players and 

communities at risk [DPLG, 2007]. Floods cannot be prevented, but damage can be 

reduced by proper planning. Flood prediction i s  a complex process influenced by 

geographic location, rainfall, soil type and size of catchments that affect river water 

levels. Models such as Quantitative Flood Forecasting (QFF) and Artificial Neural 

Networks (ANN) have been developed and implemented in different locations to help 

in weather forecasting over the past decades [Barros and Kim, 2001]. Some of the 
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existing data sources used in flood modelling are: 

 

 Radar information Sys tems 

 Stream and rain-gauge networks and hydrograph analysis 

 Linear statistical models 

 Non-linear time series analysis and prediction. 

 

This research thesis focuses on a non-linear time series analysis and prediction 

technique. The non-linear time series regression model is used throughout this research 

is the Artificial Neural Network (ANN). 

 

1.2.1 Study area 

 

The Msundusi Municipality is located in KwaZulu-Natal province of South Africa 

within the Umgungundlovu District Municipality. The Msundusi local municipality is 

located approximately 75 kilometres from the urban centre of Durban and serves a 

population of over half a million people in Pietermaritzburg and surrounding areas. 

Figure 1.1 shows the geographical location of this region in South Africa.  

 

The legacy of apartheid is still felt in the uneven development between the urban 

centres and poorly developed townships and surrounding rural settlements. The 

Municipality include the Msundusi River catchment, as indicated by Figure 1.2, 

Pietermaritzburg city and the areas Ashburton, Vulindlela and Claridge. The Msundusi 

River flow catchment is 540km2   covering the entire municipality including the rural, 

peri-urban areas and the city of Pietermaritzburg [Emanuel, 2009]. 
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Figure 1-1 Map of South Africa showing the Msundusi  region, which is the  area  of  study.  Accessed at 
http://www.csir.co.za/nre/ 

 

 

The Msundusi River is the major river draining the catchment region, and it flows in a 

west-east direction through the municipality. Parts of its passage through the city have 

been canalised in order to improve drainage capacity as well as to reduce flooding. This 

region has been identified for the investigation conducted in this study. 

 

 

Figure 1-2 Map of Msundusi catchment showing detailed of the study area.   From http://www.csir.co.za/nre/  

 

 

http://www.csir.co.za/nre/
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1.3 Aims of Study 

 

This research work entails the research and development of models for improving the 

prediction of floods in areas which are frequently at risk. We study the application of 

artificial neural networks, a non-linear auto-regressive machine learning technique trained 

on patterns of preceding rainfall values in order to predict the likelihood of a flood. 

 

1.3.1 Problem statement 

 

An increase in the risk of a flood hazard can be caused by several factors, including 

land use changes such as deforestation and rapid urbanization. Demographic pressures 

also cause the encroachment of informal settlements on hazardous locations in flood 

plains. Numerous other factors are likely to be the root causes of flood disasters. In 

South Africa these factors include the geography of apartheid, which led to increased 

and differentiated trends in flood vulnerability. These trends together with poverty in 

informal settlements, especially in rural areas, have encouraged settlement patterns 

that inhabit flood risk areas such as flood plains and areas of poor vegetation cover. 

KwaZulu-Natal is vulnerable to weather-related natural disaster such as floods 

affecting the rural and urban areas. A great number, about 4 200 people, in the Msundusi 

local municipality are living next to the river catchment [IDP, 2002]. 

 

The water quality is also very poor due to flash-flooding and bacterial contamination 

such as e.coli, which poses a serious health risk to the inhabitants. Consequently, the 

majority of people who are settling in flood plain areas have been severely affected by 

flood disasters. One of the difficulties is that there are no known accurate flood 

prediction methods for the Msundusi municipality. The problem is compounded by the 

lack of communication and effective information transfer in the event of flooding; 

hence, previous floods caused lot of environmental, economic and social damage. 
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1.3.1.1 Scope of study 

 

This study does not cover flash floods, because of the resolution of the data needed for 

rainfall over small areas. It does not cover flooding due to very extreme weather events 

such as tropical storms and hurricanes, since the region that is studied is not prone to 

these types of events. 

 

This research is applied to one region, as proof of concept, which is Msundusi area in 

KwaZulu Natal, but the results intended to obtain may be useful more generally for 

flood predictions. The research is primarily focused on the use of artificial neural 

networks trained on historical rainfall values to predict subsequent rainfall values. The 

advantage of the proposed method is that it requires very few variables and very little 

knowledge, if any, of related concepts such as hydrology to model the dynamics of 

flooding. 

 

1.3.2  Significance of study 

 

A flood prediction model can play a key role in providing relevant information of 

possible impending floods in populated locations. The development of such models can 

reduce the damage in areas such as the Msundusi municipality by decreasing the 

economic and environmental impacts of floods. More importantly, a prediction system 

developed for South Africa, especially the Msundusi area, can effectively lower the risk 

of harm and loss of life. If artificial neural network (ANN) models can provide 

sufficiently accurate forecasts, even one day ahead, the lead time for flood warning can 

be extended and the subsequent flood emergency measures can be better planned and 

executed. 

1.4 Research Objectives 

 

The main objective of this study is to research and develop artificial neural networks 

that can be used as model to predict the onset of floods in a region such as the 

Msundusi River catchment. Several types of artificial neural network model are studied, 

including their architectures and variations of associated learning rules to determine the neural 
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network parameters that will provide the best prediction for impending floods. A number of 

sub-goals have been identified toward this end. 

1.4.1  Sub-objectives 

 

The sub-goals of this research work are: 

 

 To pre-process historical weather data into a form that is suitable for training neural 

networks and to identify the salient variables for training neural networks. 

 

 To show that artificial neural networks can be used as a valid and effective approach to 

predict floods from meteorological data. 

 

 To determine the architecture of neural network that will yield the best predictive 

performance for precipitation. 

 

 

1.4.2  Research questions 

 

The research questions to be addressed in this study are: 

 

 What is the most effective neural network architecture for predicting floods? 

 

 Which variables (meteorological such as precipitation, wind speed and direction, 

humidity, hydrological and geographic variables) can be used to most effectively predict 

impending floods? 

 

 How should these variables be represented in order to derive accurate predictive 

patterns for an impending flood? 

 

 How can neural networks be trained to learn predictive patterns for floods? 

 

 

Chapter 2 presents a review of the current literature of flooding, showing previous 

work done and introduces the general theory of artificial neural networks (ANN).  

 

Chapter 3 the neural network architecture and model data are described, the 

methodology used in the research, the experimental method and the software used.  
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Chapter 4 presents preliminary results obtained from training simulations.  

 

Chapter 5 presents the results, an analysis and a discussion of the results obtained from 

data of a weather station within the Msundusi municipality.  

 

Chapter 6 presents a summary and conclusions of this research as well as 

recommendations for future research.
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Chapter 2 

 

 

Flood Prediction Using Neural Networks 

 

Summary 

 

This chapter presents the technical concept of flooding and describes findings in 

literature related to flood prediction. Current flood prediction techniques are presented 

along with a discussion of their relative advantages and disadvantages. The concept, 

techniques, structure, types, model description and use of artificial neural networks for 

flood forecasting are also discussed in this chapter. 

 

2. 1 Flooding and Flood Prediction 

 

Wallingford [Wallingford, 2008] defines flood as a temporary covering by water of land 

not covered by water. This includes floods from rivers, mountain torrents and floods 

from the sea in coastal areas. Another definition of flood refers to excessive water run-off 

or the rise in water level in a particular area which is more than the particular 

environment can absorb [Nelson, 2009]. Floods are caused either by cloud bursts, 

continuous rain in the same area, landslides, storm winds or the excessive release of 

water from dams. Rainfall intensity and duration are the key elements which contribute 

to flooding. There are different types of floods such as riverine flooding, coastal floods, 

urban floods and flash floods; the type and factors affecting them are described further 

in this chapter.  

 

2.1.1  Factors affecting floods 

 

Flooding is influenced not only by meteorological factors, but also by hydrological 

factors such as terrain slope, land use, vegetation,  soil types,  soil moisture, as well as 

hydrological processes related  to run-off channels subject to flooding. Various 
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combinations of rainfall intensity and duration may lead to flooding, depending on the 

hydrologic and hydraulic factors of a watershed [DPLG, 2008, Smith, 2001]. 

Combinations of these factors can give rise to various types of flooding events, some 

which are described below: 

 

Riverine flooding: this type of flooding occurs along rivers, usually seasonally 

during summer in the northern parts of South Africa, and during winter in southern 

parts of South Africa. Rainfall causes river basins to fill with too much water, too 

quickly. Torrential rains from tropical cyclones can also produce river flooding as was 

experienced in the 2000 floods in Mozambique and the northern parts of South Africa. 

 

Coastal floods: this type of flooding can be produced by sea waves called tsunamis 

which were the case in the 2004 East-Asia tsunami. It normally occurs when seismic 

sea-bed disruptions or winds generated from tropical storms and cyclones, drive ocean 

water inland and cause significant flooding. 

 

Urban floods: this type of flooding is caused by urbanisation due to the decrease in 

run-off from two to six times more than what would occur on natural terrain. In other 

words, buildings, paved areas and roads reduce run-off capacity. Poor or blocked 

drainage infrastructure cannot cope with the sudden increase in precipitation, usually 

resulting in vastly increased volumes of water concentrated in small areas. This normally 

causes the streets to turn into swift-moving rivers, and buildings can be damaged during 

urban flooding [DPLG, 2008]. 

 

Flash floods: flash flood events are usually characterized by sudden bursts of 

excessive rainfall events such as thunderstorms, hail storms and hurricanes. More 

insight into the flash flood dynamics may be obtained from one-dimensional and two- 

dimensional hydraulic models [Borga et al., 2008]. The monitoring of flash flood events 

gives the opportunity to observe how catchments respond when most of the surface and 

subsurface hydrologic flow paths are active. However, flash flood events are difficult to 

monitor because of the limited spatial extent and time scales over which they develop. 

Borga [Borga et al., 2008] noted that flash flood monitoring requires rainfall estimates 

of small spatial scale (1km) and short-time scales (15-30 minutes and even less in 

urban areas).  Therefore, these events are generally better observed by weather radar 
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networks. The rapid rate of urbanisation and consequent residential development in 

urban centres in South Africa over recent years have caused existing drainage systems to 

be inadequate to cope with excessive precipitation and hence increased the likelihood 

of flash flooding in urban areas. 

 

The occurrence of flooding is determined by weather, hydrology, topography, run-off 

and urban infrastructure such as roads and buildings. Flood forecasting provides a 

basis for warning and to inform decision- makers and those in the path of floods in order 

to minimize flood damages, which are normally measured in economic terms. Flood 

damage refers to all varieties of detrimental effects caused by flooding. Flood damage 

effects are categorised into direct or primary flood damage, which include damage 

linked to the immediate physical contact of flood water to humans, property and the 

environment. Indirect or secondary flood damage occurs as a further consequence of the 

flood, and the disruptions of economic and social activities [Messner and Meyer, 2005, 

McCarthy et al., 2007]. Considering the types of floods mentioned, it is clear that all of 

them impact on economic development and are dangerous to human beings. 

 

2.1.2  Flood prediction techniques 

 

Three main approaches have been used for flood risk prediction, namely, statistical 

techniques, flood modelling and mapping, and the monitoring of water and ice levels 

[Sparks et al., 1998]. Statistical techniques have been used to determine the likelihood, 

frequency and intensity of water discharges causing flooding [Hazarika et al., 1979]. 

Models and maps can be used to determine and visualise the extent of possible 

flooding, abnormal amounts of rainfall and sudden large water discharges that can be 

monitored to provide short-term flood predictions [Alho, 2009]. 

 

The use of the Quantitative Precipitation Forecasting model (QPF) in flood 

forecasting plays an important role, allowing for extension of the lead-time for the river 

flow forecast, which enables timelier implementation of flood control measures. QPFs 

were used within hydrologic forecast models to simulate impact on rivers throughout 

the United States. QPFs produced by the Hydromet Forecasters (HAS) routinely 

includes 24 hours of forecast rainfall (QPF) throughout the year. 
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A reliable QPF is not an easy task to obtain due to rainfall being one of the most 

difficult elements of the hydrological cycle to forecast. Much uncertainty still affects 

the performance of rainfall prediction models [Reynolds, 2003]. However, numerical 

weather prediction models such as the timely use of remote sensing observations (for 

example radar data and satellite images) allows the issue of short-term forecasts [Xue 

et al., 2000]. 

 

Although the output from satellite and radar images provides useful information on 

precipitation patterns they do not usually provide a satisfactory assessment of rain 

intensities. Radar detection is difficult in mountainous regions because of elevation and 

altitude effects [Toth et al., 2000]. Radar imagery forecasting techniques, on the other 

hand, show higher accuracy than model forecasts within six to s e v e n  hours of the time 

of the radar image. 

 

The QPF model can also be obtained by means of time series analysis techniques. Some 

examples of time-series analysis techniques which are discussed further, are linear 

modelling, for example linear stochastic auto-regressive moving-average models (ARMA) 

and non-linear modelling such as artificial neural networks (ANN) and K-nearest-

neighbour (K-NN) methods. 

 

2.2  Linear Models for Flood Prediction 

 

2.2.1  Linear stochastic auto-regressive moving-average models 

 

Linear stochastic processes are among the most widely used time-series technique for 

modelling future water resources [Toth et al., 2002]. A stochastic process is a process 

with random outcomes in probability theory, and can be viewed as the counterpart to 

a deterministic process. A stochastic process considers many probable outcomes instead 

of dealing with only one possible reality of how the process might evolve over time. In 

a stochastic process, even if the initial condition is known, there are many possible paths 

that the process might follow, but some paths may be more probable and others less so 

[Toth et al., 2002, Papoulis and Unnikrishna, 2001]. In terms of rainfall prediction, 

these processes express the future rainfall as a linear function of historical data. 
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The Autoregressive Integrated Moving Average (ARIMA) model is frequently used as 

predictive model, and simple Autoregressive Moving Average (ARMA) models are 

referred to as Box-Jenkins models. Most of the time-series techniques traditionally used 

for modelling floods fall within the framework of the ARMA class of linear stochastic 

processes [Toth et al., 2002]. 

 

In general, the ARMA model is a tool for understanding and predicting future values in 

a given time series of data, X (t). ARMA models describe each observation of a time-

series X (t) as a weighted sum of p of previous data, and the current as well as q 

previous values [Toth et al., 2002]. The notation AR(p) refers to the autoregressive 

model of order p. The AR(p) model is described by Equation 2.1, where εt  is a 

variable for white noise, c is a constant value and ϕ1..., ϕp   are parameters of the 

model. 

 

 

        (2.1) 

 

 

The application of low-order ARMA processes to model short-term precipitation 

values is normally used in flood prediction [Lee, 1996]. 

 

2.3  Non-Linear Models for Flood Prediction 

 

This section focuses on non-linear time series analysis and prediction techniques for 

floods. The K-Nearest Neighbour (K-NN) and Artificial Neural Network models are 

presented with indications of the differences discussed in some detail. 

 

2.3.1  K-Nearest neighbour method 

 

The nearest neighbour algorithm is a statistical technique used to classify a value of a 

variable according to the closest training examples in a feature space
1
 .   The K-nearest 

                                                           
1
 A  feature space  is an  abstract space  with  as  many  dimensions (axes)  as  there  are  features.  For       

example,   classes  for  the  three  features of temperature, rainfall  and  humidity  can  be  defined  in  a  3- 

dimensional feature space. 
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neighbour (k-NN) algorithm considers the k examples nearest to the point that has to 

be classified. Originally a pattern recognition procedure, the algorithm was 

subsequently extended to time-series and forecasting problems [Karlsson and Yakowits, 

1987]. 

 

The k-NN prediction technique uses k historical data of measurements to predict the 

value of an outcome variable of a sample based on its „closeness‟ to the k previous 

measurements [Baoli et al., 2003]. Usually the Euclidean („straight line‟) distance is 

used as a measure of closeness, as illustrated by Figure 2.1. 

 

The prediction of a time series is based on a local approximation, making use of only 

the nearby observations. For each forecast instant t, a d-dimensional feature vector is 

defined as the vector (or tuple) of the past k observations of the variable x. The method 

thus assumes to be able to summarise statistically, the entire past of the forecast 

instant t [Toth et al., 2000, Toth  et al., 2002]. In the case of rainfall prediction, the k-

NN algorithm considers all consecutive d-dimensional vectors in the historical rainfall 

dataset and locates k of these vectors, which are closest to the vector of the d most 

recent rainfalls. In this method, the prediction of the next rainfall is then taken to be the 

average of the rainfall values subsequent to this k historical nearest neighbours. 

 

 

 

Figure 2-1Example of k-NN classification   [Wikipedia, 2007]. 
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The k-NN algorithm generally achieves good performance for different data sets. 

Hydrology researchers have successfully applied the k-NN method in hydrological field 

problems [Baoli et al., 2003]. The advantage of k-NN is that the  technique  does not 

require  the  selection  of a  class of models  and  the  estimation of the  models  

parameters,  so that the  identification  of a specific form of the  input-output  

relationship is not needed  [Toth et al., 2000]. Hence this  method  does not  attempt to 

identify  an input/output mapping  function  and  thus is not  capable of extrapolating 

an unfamiliar  input vector  into the  future.   In contrast, other non-linear models such 

as ANNs, attempt to identify a mapping function from input to output and have 

extrapolation ability. 

 

2.3.2  Artificial neural networks 

 

The  artificial  neural  network  (ANN)  is an  example  of a non-linear  prediction  

(NLP) method,  which  have  been  extensively  studied  and  applied  to  a  variety  of 

problems, including  meteorological  simulation  and  forecasting  [Varoonchotikul, 

2003].   Tingsanchali  [Tingsanchali, 2009] and  Campolo  et al.[Campolo et al., 2003] 

have conducted  several ANN-based studies  directed  at the prediction  of river flows at 

a time scale ranging from one year to one day in the Chao Phraya  River and Arno 

River in Italy, with only the use of past flow observations.   

 

The large majority of the ANN hydrologic applications predict future flows based on 

the knowledge of previous rainfall values along with past observed flows. Results  from 

artificial neural network experimental  approaches  in daily discharge forecasting  show 

that statistical NPL  methods  provide more accurate  forecasts  over a shorter 

prediction  period such as one to six hours, while the ANN method provides more 

accurate results  over prediction  periods exceeding 24 hours [Damle, 2003]. 

 

The use of artificial neural networks is a popular data-driven technique that has been 

frequently applied to a broad range of fields.  An ANN is able to handle non-linearity 

and automatically adjusts t o  new information, w h i l e  generally requiring little 

computational effort [Rietjes and de Vos, 2008]. ANNs are widely accepted as 

powerful ways of modelling complex non-linear and dynamical systems for which there 
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are large amounts of sometimes noisy data [Chen et al., 2002]. ANNs were selected as 

the applied method for this investigation for the following reasons: 

 

 They are well suited to time series pattern matching problems, and are 

efficient in terms of information s torage  for the trained model. 

 

 They can deal with incomplete, noisy and ambiguous data [Haykin, 1994]. 

 

 They are pedagogic as opposed to decompositional; for example whereas 

decompositional  methods  require  knowledge of the  domain  or the  physical  

characteristics of the problem,  a pedagogical method  requires only data  and 

does not depend on knowledge  of the  relationships between  factors  that 

affect  the  problem.    Thus i t  is possible to train ANNs without having 

intimate knowledge of the hydrological or other aspects of flood forecasting. 

 

The behaviour of a neural network is defined by the way its individual comput ing  

e lements  are connected and by the strength of those connections.  These weighted 

connections are automatically adjusted during training of the network.  ANNs with 

one hidden layer are  commonly  used  in modelling since it  has  been  found  that a 

more  than  one hidden  layer does not yield any significant improvement in 

performance on a network with a single hidden  layer [Chen et al., 2002]. More detail 

on artificial neural networks is given in the following sections. 

 

2.3.3  ANN development 

 

The artificial neural network model was inspired by the biological nervous system and 

has allowed scientists and researchers to build mathematical models of neurons in order 

to simulate neural behaviour [Fu, 1994, Zurada, 1992]. Models of a neuron were 

introduced in the  early  1940s by  McCulloch  and  Pitts by which  they  described  

simple  logic for neural  networks,  and  was later  credited  with  a learning  law, the  

Perceptron Learning Algorithm  [McCulloch and Pitts, 1990, Fu,  1994]. 

 

The research on the limits to what one layer perceptrons can compute was 

demonstrated by Minsky and Papert with the use of elegant mathematics [Minsky and 
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Papert, 1972, Haykin, 1994].  The  back-propagation algorithm  developed by 

McClelland  and  Rumelhart,   is  the  most  popular  learning  algorithm   for  the  

training   of multilayer   perceptrons [Rumelhart and McClelland,  1987]. In the late 

80s, many neural networks research programmes  were introduced  as  is indicated  by 

the  rapidly  growing number  of conferences and  journals  devoted  to the  field.  

Presently, neu ra l  networks are widely applied t o  systems such as: 

 

 support for medical diagnosis 

 

 financial market  prediction 

 

 voice and handwriting recognition 

 

 flood prediction, and solar flare forecasting  

 

 a variety  of signal processing systems. 

 

ANNs were first introduced to water resources research for t h e i r  use to predict 

monthly water consumption and to estimate occurrences of flood. Since then, ANNs 

have been used for a number of different water resource applications which include 

time-series prediction for rainfall forecasting, rainfall-runoff processes and river 

salinity.  ANNs have also been used for modelling soil and water table fluctuations, 

pesticide movement in soils, water table management and water quality management 

[Parson, 1999]. 

 

2.3.4  Models of artificial neural network 

 

There is  no single definition for  an artificial n eu r a l  n e t w o r k . Zurada [ Zurada, 

1992] defined a neural network as follows: 

A neural network is simply a class of mathematical algorithms, since a net-work can be 

regarded e s se n t i a l l y  as a graphic notation for a large class of algorithms.  Such 

algorithms produce  solutions to a number of specific problems. 
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Another  definition  by  Smith  [Smith, 2001] describes  a  neural  network  as  “a  form  

of multiprocessor  computer system”  with: 

 

 Simple processing elements 

 

 A high degree of interconnection 

 

 Simple scalar messages 

 

 Adaptive interaction between elements. 

  

 

According to Haykin [Haykin, 1994] a neural network is a massive l parallel for 

storing experiential  knowledge and making it available for use. It resembles the 

brain in two respects: 

 

 Knowledge is acquired by the network through a  learning process. 

 

 Inter-neuron connection strengths known as synaptic weights are used to 

store the knowledge. 

 

An ANN can be described as a network of simple but interconnected processing units 

called neurons (or neuronal units), which are able to automatically adjust 

to information  and  learn  aspects  of this  information  by  storing  it  in  the  

connection  strengths, represented as weights between neurons  as shown in Figure 2.3.   

 

The  ANN  contains  a  large  number  of simple  neuron-like  processing  elements  and  

a large number of weighted connections  between the elements.  The weights of 

connections encode the knowledge embedded in the network.  The “intelligence”  of a 

neural  network emerges  from  the  collective  behaviour  of neurons,  each  of which  

performs  only  very limited  operation.   Each individual neuron finds a solution by 

working in parallel.  The following list describes the overall tasks involved in 

constructing an ANN. 

 

1. Determine  the network  properties  or architecture: This includes the network 

connectivity, the  types of connections,  the  order  of the  connections  (if any),  and  the 

weight range values. 
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2. Determine the system dynamics:  this entails the weight initialization method, the 

activation-calculating formula, and the learning rule. 

 

The topology of a neural network is specified by the number of layers, the number 

of units per layer and the weighted connections among all the units.  These types 

of layers are the Input layer, the Hidden layer (of which there may be none too 

many), and the Output layer [Fu, 1994] as shown in Figure 2.2. In a feed-forward 

network, data flows as indicated by the arrows, from the Input to  the Output 

layer. 

 

The  Input  layer  receives input  signals  or data  from the  external  world  and  a node 

in this  layer  is called an Input  unit.   These units represent and encode the data o r  

signal pattern presented to the network for processing [Fu, 1994, Kumar et al., 2004]. 

 

Figure 2-2 Neural network layers. 

 

The layer following the Input layer is the Hidden layer, and the nodes in this layer are 

called Hidden units.  The Hidden layer can consist of one or more layers of neurons with 

the succeeding layers receiving input from preceding layers in feed-forward 

architecture. The Output layer is the final layer of the network, and the nodes in this 

layer are called Output units. These units represent encoded concepts (or values) for the 

training application under consideration. The neurons p resent  in this layer present 

the output of the network. Non-input neurons represent linear or non-linear 

combinations of the input and weights. 
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2.3.5  Neural network architectures 

 

One  class  of ANN  architecture is the  feed-forward  network  as  shown  in  Figure  

2.4, and  is  discussed  in detail  further  in this  chapter.  For this class of ANN, data 

s igna ls  always propagate in one direction from the Input layer to the Output layer 

and without consideration of any time delays.  The  other  class of ANN architecture is 

the  recurrent neural  network, which contains  feedback connections  from units  in 

subsequent layers to units  in preceding  layers as shown in Figure  2.5. 

 

The neural unit processes the input information i n t o  the output information.   Each 

of these units is a simplified model of a neuron and transforms i t s  input information 

i n t o  a neuronal output response.  This transformation involves the activation of the 

neuron as computed by the weighted sum of its inputs.  This activation is then 

transformed into a response by using a transfer function.  Figure 2.3 depicts an example 

of this process.  

 

 

 

Figure 2-3 Schematic representation of a neural network unit. 

 

The  network  architecture determines  the  number  of connection  weights  and  also 

the way  information  flows through  the  network.   The determination of the best 

network architecture is one of the difficult tasks in the model building process but one 

of the most important step to be taken.  The ANN models employed in this study are 

feed-forward networks and recurrent networks with hidden and special hidden layers of 

neurons.  The following neural networks are commonly used for flood prediction. 
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Feed-forward networks-The initial ANN models used in this study were feed-

forward networks with one hidden layer of neurons as shown in Figure 2.4.  The  

simplest way to  define  feed-forward  network,  all connections  point in one direction  

from the  input  towards  the  output layer.   Multi-layered  perceptrons are  feed-

forward structures with  one  or  more  layers between  the  input  and  output nodes.   

The advantage  of multilayer  perceptrons  (with  one or more hidden  layer)  is that the 

number  of nodes in the  hidden  layer  can  be  varied  to  adapt to  the  complexity of 

the  relationships between  input  and  output  variables.   One of the  experimental  

objectives of this  research  was to determine  the  size  of the  hidden  layer that 

produces  the  best  predictive  performance.    Feed-forward  neural  networks  (FFN)  are 

found to perform  best for one time-step  forecasting,  when applied  to data  for which 

the  sampling  or measuring  time interval  is less than  or equal to time in 24 hours 

[Varoonchotikul, 2003]. 

 

Recurrent Neural Networks (RNNs)-These are models with bi-directional data 

f low. While feed-forward  network  propagates data  from input to  output, RNNs  

propagate data  from ‟downstream‟  processing  units  to  earlier units.   Thus  RNNs,  

have feedback  connections  between  units  of different  layers or loop type self-

connections  [Kumar et al., 204, Ahmad  and Ismail, 2004]. This implies that the 

output of the network not only depends on the external inputs, but also on the state of 

the network in the previous time step as is shown in Figure 2.5. The model shown 

employs full feedback and interconnections between all nodes. There are several 

advantages of  RNNS over FFNs, the first one being that RNNs have the capability to  

retain values from previous cycles of processing, which can be used in current 

computations. This advantage allows RNNs to produce complex, time varying outputs 

in response to simple static inputs. 
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Figure 2-4 Feed Forward Neural Network 

 

Since a RNN can have connections  between units of any of the layers, the output of 

each unit has to be identified in terms  of time steps,  for example outputs at  time step 

t − 1 can be inputs  at time step t. It is also possible with some RNN architectures, to 

preserve a copy of outputs at a previous time step by means of context units.  Context 

units retain these outputs, which can be re-used as inputs in subsequent training 

steps.  Both feed-forward and recurrent architectures were studied as prediction 

models . 

 

2.3.5.1 Activation functions 

 

Inputs to  an ANN can be binary or real valued.   In order to compute the single value 

output for each neuron, the weighted sum of the inputs to a neuron is used in an 

equation called a transfer or activation function. 

 

The input nodes  of a neural network can be completely connected to  the hidden 

units in the hidden layer and each connection has an independent weight attached to 

it.  The term connectivity in this context r e fe r s  to the extent to which a node is 

connected to  other nodes in the adjacent layer.   

 

A unit that is connected to all units in the preceding layer is said to be fully forward 

connected; a unit that is connected to all the units in a subsequent layer (as for RNNs), 

is said to be fully backward connected.  In other cases a unit, and hence the neural 
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network, is said to be partially connected.  Connection weights may be real or integer 

valued. 

 

 

 

Figure 2-5 A simple recurrent network or Elman network 

 

The numbers of hidden units are dependent upon the problem to be solved.  Since there 

is no general process, the number of hidden units is usually determined by an iterative 

process of increasing or decreasing the hidden layer size during training. There are 

three types of common activation functions, namely the threshold, the piecewise-linear 

and the sigmoid function.  The threshold  function has a value of 0 if the summed input  

is less than  a certain  threshold  value (θ), and the value 1 if the summed  input  is 

greater  than  or equal to the threshold  value.  The Piecewise-linear function can have 

values between 0 and 1. 

 

A common transfer function is the sigmoid function, which can have a range of 0 to 1 or 

a range of -1 to 1. The hyperbolic tangent function is one example of a sigmoid function 

as denoted by Equation 2.2, where S is the weighted sum of the inputs of the unit. 
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Another form of sigmoid function is given by Equation 2.3 
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                            (2.3)

 

 

The common non-linear  functions used for activation in the form of ‟soft‟ (smooth)  

non-linearity,  are (a)  sigmoid and  (b)  tanh  functions,  and  for abrupt, ‟hard‟ non-

linearity,  the (c) signum and (d) step functions as shown in Figure 2.6 [NeuroAI2007, 

2007]. This is a first-order  basis  function  and  the  net  value  is a linear  combination 

of the  inputs i n  Figure  2.6 

 

 

 

Figure 2-6 Common non-linear functions used for activation [NeuroAI2007, 2007] 

 

A correct mapping of  input to  output requires determining the correct weights for 

the neural network.  The processing that takes place in ANN is shown by Figure  2.7 

where the  input  values  from preceding  neurons  (x)  are  multiplied  by  the  weight  

(w)  that accompanies  their connection.  The results are summed and an additional 

value bias (b) is commonly added to this value.  Thus, for n input units, the unit sum S 

for a neuronal unit is defined by equation 2.4 

          

 

                           (2.4) 
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The resulting unit input is transformed by the activation value of neuron, denoted as in 

Figure 2.7. This activation value is propagated to subsequently connected neurons. 

 

 

 

Figure 2-7 Schematic representations of the transformation inside a neuron unit 

 

2.3.5.2 Training 

 

The process of optimising the connection weights is known as training or  learning.  

The network  learns  a  function  by  adapting   the  strength of its  connection  weights  

in  response to the  training  examples  presented  to it i n  accordance  with  a 

predefined  learning law   [Fan et al., 2002].  ANNs are trained by applying an 

optimising algorithm, w h i c h  attempts to reduce the error in the network output by 

adjusting the matrix of network weights and the neuron biases.   

 

A common approach to  ANN training i n  function approximations is to use supervised 

training algorithms.   Supervised  training algorithms  are  used  in combination with  

sample  input  and  output data  of the  system  that is to be simulated.   The back 

propagation algorithm i s  regarded as the most popular ANN training a lgo r i t hm .   It is 

essentially  a procedure  to train feed-forward  models by which the  outputs are  sent 

without  a delay to  the  next  layers.   Kumar et al. [Kumar et al., 2004] consider the 

process of selecting a suitable archi tecture  for a required problem as (1) fixing the 
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architecture, (2) training the network and (3) testing the network. 

 

 

For  ANN  flood forecasting  to  work well, Openshaw  [Openshaw and Openshaw,  

1997] suggested that extensive data  of a more than  15 years period with 24 input  

variables  are required.  The  variables  which must  be used should  be long-term  

rainfall  accumulation for 90  days,  evapotranspiration of the  previous  day,  mean  

daily  temperature for six previous days, mean daily rainfall for six previous days, 

mean river level for six previous days,  numbers  of hours  of daylight  and  a day-night  

flag.  A single variable  is used in this  study,  namely  the  previous  daily  rainfall  value  

obtained  from the  South  African Weather Services. 

 

The size of the steps taken in weight space during training is a function of the number 

of internal network parameters and learning parameters. The learning parameters 

include the learning rate, momentum value, error function, epoch size and gain of the 

transfer function [Kumar et al., 2004, Dandy and Maier, 2000]. These parameters are 

discussed in some detail further in  Chapter 3 . 

 

In order to optimise the performance of neural networks trained with the back 

propagation algorithm, i t  is essential to have a good understanding of the impact that 

step size has on training [Dandy and Maier, 2000]. 

 

The initialization of weights is the first step in preparing the internal parameters for 

training a neural network.  For the back propagation algorithm,  the weights are 

initialised to small zero-mean random  values, and studies  also suggested  that a 

number  of different sets  of random  starting values  should  be  used  to  see whether  

consistent  results  are obtained. 

 

Activation functions  that are commonly  used,  are sigmoidal  functions  such as the  

logistic  and  hyperbolic  tangent  functions. In this research, sigmoidal func t ions  

w e r e  used. However, studies show that non-sigmoidal transfer functions perform best 

when the data is noiseless (for example contains no errors) and contain highly non-linear 

relationships [Parson, 1999]. Dandy [Dandy and Maier, 2000] suggested that  using 

sigmoidal transfer func t ions  in the hidden layers and linear transfer funct ions  in the 
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output layer could be advantageous when it was necessary to extrapolate beyond the 

range of the training data. 

 

Another  parameter which is commonly taken into consideration in neural network 

training  algorithms  such as the  back propagation algorithm  is the  Error  function,  

which is the  function  that is to be minimised  during  training.  The mean square error 

N

i

i
N

MSE
1

21
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 is the network error, where i is the error produced when the input pattern is presented to 

the network. The MSE is a commonly used error function and it has the advantages that (1) 

it can be calculated easily during training, (2) it penalises large errors and (3) it relates 

closely to the normal distribution. 

 

2.3.6 Advantages and disadvantages of neural network models 

 

The ANN learns  how to relate  the  inputs  to the  outputs without  being given any 

explicit  equations  when compared  with  K-Nearest  Neighbour  and  ARMA  method.   

The only real requirements for the ANN model are for sufficient data for flood 

modelling events, and the specification of appropriate neural network parameters 

values to be used.  ANNs have relatively low computational demands and can easily be 

integrated with other techniques.  They  perform  tasks  that a linear  programme  

cannot,  and  when an element of the neural  network  fails, it can continue  without  

any problem  due to their  highly parallel nature  [Openshaw and Openshaw,  1997].   

 

One disadvantage of ANNs is that the optimal form or value of most network design 

parameters can differ for each application and cannot be theoretically defined in 

general.  However, these values are commonly approximated us ing trial and error 

approaches [Kumar et al., 2004].  The  other  disadvantage of neural  networks  is that 

they  require  training to operate,  and  this  may require  much processing time  for large 

neural  networks  [NeuroAI2007, 2007]. Hence the neural network as non-linear model 

is a promising approach compared to linear models for flood forecasting.   As indicated  

by the  results  found during  this  research,  their  performance results  are comparable  

with other  prediction  modelling techniques. 
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Chapter 3 

 

Neural Networks and 

Experimental Setup 

 

Summary 

 

This chapter reviews the flood prediction methodologies used in previous studies, and 

the procedures followed in this study.  Artificial Neural Networks applied to flood 

forecasting are reviewed in this chapter. Data  sets were generated  from meteorological  

data  for the area  of  interest, obtained  from the  South  African  Weather Services.   

These data s e t s  were pre-processed into a format that is appropriate for training, 

validation an d  testing of neural networks.  Several neural network architectures were 

selected for training and  validation. The trained networks were tested in order to 

assess their performance. 

 

3.1 Introduction 

 

Previous  studies  have  shown that the  ANN  is an  acceptable  technique,  with  a 

good likelihood of successfully modelling  rainfall  forecasts  [Rientjes and de Vos, 

2005].  The unique approach in this research is that only one variable, considered to be 

the primary input variable for rainfall prediction, was considered in this study.  The main 

reason for this approach i s  that it allows one to model rainfall prediction w i th  a little 

amount of domain knowledge using the minimal number of variables.   No detailed  

knowledge of the  underlying  physical  characteristics  such as hydrological,  

meteorological  and  environmental processes,  and  no complex  mathematical 

computations are  needed.   The modelling technique  is therefore  entirely  event-

based,  a  sensible  approach  for modelling rainfall  prediction, and also a key benefit 

of using neural  networks. 

 

The  choice  of rainfall  as  primary   input  variable  is  supported  by  previous  

research. Hung  [Hung et al., 2009] for example,  describes  ANN  models  that could  
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easily  identify the  patterns characterizing rainfall  when using the  rainy  periods  data  

as training  data.  Rainfall forecasts from trained artificial neural networks were more 

accurate than predictions from a simple persistent method that was also studied.  

Their  ANN models, however, used a  combination of meteorological  parameters, 

namely  relative  humidity, air  pressure,  wet  bulb  temperature and  cloudiness.   The  

models  were  provided  with screened  input  data  that  contained  only rainy  periods.   

Sensitivity a n a l y s i s  indicated that the most important input parameter in 

forecasting f loods  was rainfall, f o l l o w e d  by the wet bulb temperature.  The  trained 

networks  produced  satisfactory forecasting performance  for a  period  of one  to  

three  hours  ahead.    In most  cases this  predictive  period  is insufficient  for the  

purposes  of flood  warning,  preparation procedures  and mitigation measures. 

 

ANN were also used by French [French et al., 1992] to forecast rain intensity  fields 

over space as well as time,  for example over an area with a lead time of one hour.  

Input and output rainfall fields are presented to  a three layer neural network as a 

series of learning sets. Results indicated that a neural network is capable of learning the 

space-time relationship model for rainfall for short-term forecasting.   Comparisons wi th  

actual values  indicate that in most cases this method performed well when a relatively 

large number of hidden nodes are used.  The performance of the neural network was 

compared with two other methods for short-term forecasting, namely persistence and 

now casting. 

 

Another  investigation was conducted  on the  effect of input  data  with and without  

seasonal variation on the performance  of ANN models, and the results  indicated  that 

ANNs have the ability to cater for irregular  seasonal variation in the data  with the aid 

of additional  hidden layer nodes [Dandy and Maier, 2000]. Besides rainfall  

forecasting,  neural networks  have also  been  applied  to  model many  hydrologic  

processes such as rainfall runoff [Abrahart, 2003, Hsu and Sorooshian,  1995, 

Shamseldin  and Ling, 1997], stream flow [Abrahart and See, 2000, Campolo and 

Andreussi,  1999, Zealand  et al., 1999], and groundwater management [Rogers and 

Dowla, 1994] as well as studies  of water  quality simulation  [Dandy and Maier, 1996]. 

 

A similar  procedure  followed by Hung [Hung et al., 2009], was followed in this 

research with  the  most important difference that only the  rainfall  parameter was 
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used for neural  network  training.  Moreover, the prediction l e a d  time was increased 

to one day, using the preceding six days‟ rainfall as input parameters .  The choice of 

a one-day lead time is based on the reasoning that this would provide adequate time to 

prepare for the eventuality of flood. 

 

3.2  Neural Network Learning 

 

The most significant aspect of a neural network is its ability to learn from its 

environment, and to improve its performance through learning.  A neural network 

learns about its environment or a dynamic system through an  iterative process  of 

adjustments applied to its weights and biases.  The environment is characterised by a 

set of exemplars, which is typically a group of patterns of „environmental‟ variables.  

The network becomes more “knowledgeable” about its environment after each 

iteration of the learning process.  Like learning in human  beings and  animals,  neural  

network  learning  is an inferred process which cannot  be perceived directly,  but can be 

assumed to have happened by observing changes in performance  [Zurada, 1992]. 

 

Learning  in the  context  of neural  networks  is defined as a process by  which  the  

free parameters  of a  neural  network  are  adapted through  a  process  of presenting  

signals from the  environment in  which  the  network  is embedded
2
.   The type of 

learning i s  determined by the manner in  which the parameter changes take place 

[Haykin, 1994]. The  notion  of learning  in a  neural  network,  is the  process of 

guiding  the  network  to provide a particular output or response for a specific given 

input.   

 

Learning is necessary when information a b o u t  input-output relationship is unknown or 

incomplete a-priori.  There are two different types of learning, namely unsupervised 

learning, which  identifies or creates pattern-class information as the learning outcome.  

In this case, no desired or target classes  are known beforehand, and thus no output 

information is known a-priori. The second neural network learning mode is supervised 

learning w h e r e  a desired set of responses, outputs or classes for given inputs are known 

and provided during the learning process.  In this case, the neural has to learn the 

                                                           
2
 A free parameter of a neural network is any independent variable that can be set or modified by the process of 

learning. 
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function, mapping or transformation that will produce the desired output for new 

inputs [Fu, 1994, Zurada, 1992]. Supervised and unsupervised can thus be 

distinguished as follows: 

 

 Supervised learning algorithms u t i l i z e  information o f  class membership 

f o r  each training instance.  This information allows supervised learning 

algorithms to detect pattern misclassification as feedback information for  

adapting their responses. 

 

 Unsupervised learning algorithms u s e  unlabelled instances.   This type of 

learning often has less computational complexity and less accuracy than 

supervised learning algorithms.  It can be designed to learn rapidly which 

makes it more practical i n  many high-speed, real-
i
time environments. 

 

Supervised training i s  hence used in applications where a desired output is known and 

where the network performance can be evaluated by comparing its output with a 

desired output. For flood prediction, supervised learning is used, with historical data 

for selected parameters such as rainfall and humidity and cloud cover typically used as 

inputs with the known event or non-event of flooding used as desired output for the 

given inputs. Unsupervised training can be used to perform some initial 

characterization of inputs.  In this study some pre-processing is performed to transform 

input and output data into an appropriate format form neural network training. This 

pre-processing also involves some level of filtering and classification which is described 

in more detail in Section 3.5. 

3.2.1  Neural network topology 

 

Neural network architecture is determined by the number of layers, number of nodes (or 

neuron units) in each layer and the weighted connections between nodes. The topology 

of a neural network is defined by the nodes and their connections [Zurada, 1992]. 

The number  of layers  include  the  input  layer,  hidden  layers (if any)  and  the  output 

layer. Thus,  a three  layer  network  will have one hidden  layer (in  addition  to  the  

input  and output layers)
3.

 

                                                           
3
 The layer counting convention used in this thesis is the commonly adopted convention, and differs 

from another approach where the input layer is ignored when counting the number of layers. In the 
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The  determination of the  network  architecture is one of the  most  important  steps  

in developing  a  model for a given  problem.    Although n e u r a l  n e t w o r k  

cons t ruct ion  has been extensively researched [Geman and Doursat, 1992, Kwok and 

Yeung, 1995], there is no known procedure or algorithm for this process for the general 

case. Two approaches have been proposed, namely constructive and  destructive 

methods .  In both constructive and destructive methods, the numbers of hidden nodes 

are considered. 

 

Constructive methods  start with  a  small  number  of network  units,  which  is 

usually under-parameterised, and then  proceed to increase the number  of units  

during  training until the performance  of the network reaches a satisfactory level. Some 

of the most popular such methods are the Cascade Correlation Algorithm [Fahlman 

and Lebiere, 1991] and the Upstart  Algorithm [ Frean, 1991].   Destructive  neural  

network  methods,  also called pruning  methods, determine  a suitable  neural  network 

structure by starting with a large number of units and then progressively removes 

some of these units during training until some or other  performance criterion  is met. 

 

A constructive approach  was adopted  in this research,  since this approach  is more 

suitable to  the  problem  of time  series prediction  and  was shown to be more 

successful in general [Nabhan and Zomaya, 1994]. 

 

The  most  used  neural  network  for prediction  and  forecasting  applications is the  

feed-forward networks, whereby  nodes in one layer are connected  to nodes in the  next  

layer. Feed-forward networks are the most commonly used network architecture, but 

both feed- forward and recurrent networks are used for time series prediction
4
. Unlike 

feed-forward networks, recurrent networks have the  ability  to ”remember”  past  

events  and  they  are generally  regarded  to be more  effective  for time  series prediction  

problems.   However, feed-forward architectures also perform well under certain 

circumstances. 

 

Recurrent networks have the ability to cater for moving average components whereas 

                                                                                                                                                                                  
latter case, a neural network with one hidden layer would be described as a two-layer network. 
4
 A forecasting competition is held annually (http://www.neural-forecasting-competition.com/) and 

the best results are presented at several symposia. 
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feed-forward networks cannot.  However, feed-forward networks have been used almost 

exclusively for the prediction and forecasting of water resources variables, and they 

process data faster than the other models which are currently in use [Rientjes and de 

Vos, 2005]. While recurrent networks have potential advantages for time series 

applications they do not provide specific benefits over feed-forward networks for data 

limited by a number of time steps.  For such time windows, feed-forward networks 

have been found to perform well in comparison with recurrent networks in many 

practical app l i ca t ions . Both feed-forward and recurrent network architectures were 

used with different numbers of hidden nodes for prediction exper iments . 

 

The  neural  network  topology  can  be  determined in  two  ways,  namely by  fixing the 

number  of hidden  nodes  and  by  selecting  the  number  of connection  weights  to  

each node.  The relative properties o f  smaller and larger networks must also be 

considered when selecting the network.    Smaller  networks  requires  less storage  and  

have  higher processing  speed  during  training and  testing;   however  the  error  graph  

can  be  more complicated  and such networks sometimes contains  more local minima 

[Hutchins, 1995]. Larger networks tend to learn quickly in terms of the number of 

training cycles required and have an increased ability to avoid local minima in the error  

surface
5
, however they require  a  large  number  of training samples in order  to achieve 

better generalisation ability
6   [Zurada, 1992]. 

 

In this  study,  several numbers  of hidden  nodes have been explored  during  the  

training  of both feed forward and recurrent networks,  with each architecture 

providing  a different performance when increasing  and decreasing  hidden  nodes. 

3.3  Neural Network Training Software 

 

Neural  network simulation  software  are  programmes  that allow one to  build,  train,  

and evaluate  neural  networks,  and  are referred  to as neural  network  simulators.   It 

was not the purpose  of  this  research  to develop new neural  network  simulation  

                                                           
5
 Each of the N weights and thresholds of the network is taken to be a dimension in space.  The N+1th 

dimension is the network error. For any possible configuration of weights the error can be plotted in the N+1th 

dimension, forming an error surface. The main objective of the network training is to find the lowest point in 

this many-dimensional surface. 

 
6
 Generalization in neural net is to have the outputs of the net approximate target values given inputs that is not 

in the training set. 
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software  since many  maturely  developed training  simulation  software  packages  

exist,  both  commercially and  as open source  packages.   Commonly used applications 

for the purposes of research, include the Stuttgart Neural Network Simulator (SNNS), 

Emergent, JavaNNS and Neural Lab.  Commonly used biological network simulators 

include Neuron, GENESIS, Nest and Brian.  Some of these applications are discussed 

below, including the one used in this research. 

 

3.3.1  Training simulators 

 

The NeuroSolutions software [Bullinaria2005, 2005], Stuttgart Neural Network 

Simulator  (SNNS)  and  Java  Neural  Network  Simulator  (JavaNNS)   are  popular  

neural  network simulators  used  for  research  purposes.   SNNS and JavaNNS are open 

source, for example are freely available online
7
. 

 

In this  study,  the  JavaNNS  package was used to perform  the  training  and  testing  

simulations  for all the  experiments.    JavaNNS was developed at the Wilhelm 

Schickard-Institute for Computer Science (WSI) in Tubingen, Germany.  The simulator 

is based on the SNNS 4.2 kernel, with a graphical user interface written in a Java set 

developed for it. The capabilities of JavaNNS are equal to the one of the SNNS, while 

the user interface has been newly designed.   The advantage o f  JavaNNS is that it is 

independent of the operating sys tem whereas SNNS was developed with primarily 

UNIX operating sys tems in mind.  The installation process differs for Windows and 

UNIX operating systems.  The Linux operating s y s t e m  (Ubuntu distribution, with 

kernel version 2.6.32-25-386) was used in this study.  JavaNNS ran in a Java Runtime 

Environment (JRE) on Linux. JavaNNS is a jar file and can be invoked from the 

command p rompt .   

 

This  presents a  JavaNNS  workspace  interface which contains  an  empty  Network 

window where the network  is  constructed as  shown in  Figure  3.1.   

 

While JavaNNS holds the copyright to the JavaNNS Group, the software is distributed by 

the University of Tubingen and is freely available online
8
. 

 

                                                           
7
 http://www.ra.cs.uni-tuebingen.de/downloads/ 

8
 http://www.ra.cs.uni-tuebingen.de/downloads/JavaNNS/ 
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Figure 3-1 The graphic interface of the JavaNNS workspace. 

 

The units were  generated b y  the Tools-Create-Layer menu option, which  allows one 

to specify the selected input unit types and to create the neural network.  Figure 3.2 

shows the graphic interface as an example of the features presented in JavaNNS. Neural 

network units are represented as filled squares in the Network window and can be 

edited by right-clicking on them, as shown in Figure 3.3. 

 

After units are edited, weight connections are created using the Tool-Create-

Connections menu item.  The colour of connection lines for the weights indicates their 

value according to the colour bar on the left of this window (see Figure 3.4).  The 

network can then be saved under a desired name with the .net extension.  A number of 

networks were created in this way, initially feed-forward architectures with the number 

of hidden nodes ranging from two to 12. Performance results for the trained networks 

are shown in Chapter 4. 
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Figure 3-2 The JavaNNS Control Panel, Error Graph and Network Creation windows.   The Create Layers dialogue box 
allows one to specify the network units and topology. 

 

3.3.2  Neural network training 

 

Neural  network  training  amounts  to  iteratively  adapting the  connection  weights  of 

a neural network,  until  the  connection  weights defines an input-output function  that 

approximates the relationship between  the  input  and  output patterns of a given 

training  data  set.  In this research the network weights were adapted using the back-

propagation algorithm for all neural networks considered. This error back-propagation 

algorithm i s  widely used for training f e e d - forward networks. For a three-layer 

network, the  back-propagation algorithm is  described by the following pseudo code 

fragment: 

 

1.  In i t ial ize the weights in the network 

2.  S = the training set of input - output examples 

3.  Repeat 

4.                   For each input - output pair P in S 

5.  X = input pattern in P 

6.  T = desired or target output pattern in P 

7.  Compute Y = neural -net - output ( network  X) 

8.  Calculate network error E = (T - Y) for the output units 

9.  Compute Weight Change for all weights from hidden to output layer  10.  Compute Weight    

               Change for all weights from input to hidden  layer 

11.  Update the weights in the network 

12.  Unti l stopping cri terion sat isf ied 
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In the pseudo code above, all the network weights are set to small non-zero random 

values in line 1.  In line 2 a training se t  S, of input-output pattern pairs is read, 

usually from a file. From lines 3 to 12 the network weights are repeatedly adapted 

using the training set P, until a training stopping criterion is met.   

 

 

Figure 3-3 Edits units window of JavaNNS allows one to specify parameters for each created neural network unit. 

 

Each such presentation of the training set is termed a training epoch. The stopping  

criterion  for training  can be a combination of several conditions,  such as when all 

examples  in P  are classified correctly or when a certain  number  of epochs  have 

elapsed, or when a predefined  network  output error threshold have been reached. 

 

For each pattern pair P, the input pattern X and desired output pattern T is identified 

in lines 5 and 6, respectively.   The network output Y   is computed i n  line 7, and the 

network output error є = (T − Y) is computed in line 8. In lines 9 and 10, the network 

weight  changes are  computed  according  to the  network  output error,  and  in line 11, 

the  network  weights  are  adapted according  to  these  computed  weight changes.   

The steps 8 to 11 form the error back-propagation process.  More formally,  if W (t) is 
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the network  weights  at  training  step  t,  then  the  new weights  at  training  step  (t + 

1)  are given by Equation 3.1, where ∆W is the computed  weight changes and η is the 

weight adaptation step size or learning  rate. 

 

                                               W (t + 1) = W (t) + η∆W (3.1)  

 

The step  size, η, is a number  between  0 and  1 and  determines  the  fraction  of the 

computed  weight  changes  that is used to adapt the  weights.   The  main  reason  for 

using a fractional value  of the  total  weight  change,  is that the  weight  adaptation 

for a given training  pair  might be an over correction  of the  overall network  error.    

 

Figure 3-4 Connections between neural network units shown in the Create Network window of JavaNNS. 

 

It  is important to  consider  the  effect of the  step  size on training; a too small value 

implies a low approximation, but  perhaps  more focussed learning of the target  function  

whereas a high step size might cause the network weights to be adjusted more rapidly  

but  with greater variation. 

 

The magnitude of the  steps  taken  in the  weight space
9

 
  during  training  is a function  

                                                           
9
 A „point‟ in weight space is that coordinate point in the Cartesian space defined by the current set of weights.  

The weight space is the set of all possible values of the weights. 
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of a number  of internal  network parameters including the learning  rate,  momentum 

value, error function,  epoch size and the transfer  function which are discussed in more 

detail in this section. 

 

3.3.3  Learning rate 

 

The learning rate is a constant used in error back-propagation learning that affects the 

speed of learning. The smaller the learning rate, the more steps it takes to get to the 

stopping criterion. 

 

The learning rate is usually determined prior to training and  while it can remain fixed 

during training, more sophisticated training a l g o r i t h m s  c a n  vary this value as 

training proceeds. The learning rate should  ideally be decreased as training 

p r o g r e s s e s , since  the network weights tend to approximate the desired function 

more closely as training continues. 

 

3.3.4  Momentum 

 

The momentum parameter is used to prevent the system from converging to a local 

minimum
10

.  The momentum term i s  an additional term tha t  is added to  the weight 

values, when the weights of the network are updated after  each epoch.  The value of 

the momentum term is a fraction of the previous weight update values.  Thus, if ∆wi 

(t − 1) is the weight update value during the previous epoch (t − 1), and ∆wi (t) is the 

weight update during the current epoch i, then the weight update rule is given by 

Equation 3.2 

 

∆wi (t + 1) = wi + ∆wi (t) + M ∆wi (t − i)  (3.2)  

 

 The momentum term in Equation 3.2 is M ∆wi (e − i), where M is a val between 0 

and 1. The value M thus determines  what  fraction  of the previous weight update  

value should  be  added  to the  current  weight  update.   Momentum ca n  speed up the 
                                                           
10

 When  a learning  algorithm in ANN  causes  the  total error  of the net  descend  into  a  valley  of the error  

surface,  that valley may or may not lead to the lowest point on the entire error  surface.  Therefore, the minimum 

i n t o  which the total error will eventually fall is referred to a local minimum. 
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training process by several orders of magnitude [Zurada, 1992, Dandy  and Maier, 2000].  

Once the  training  phase  has been completed  the  performance  of trained network  

has to  be validated on an independent data  set.  Poor validation can be caused by a 

poor choice of network architecture, or poor data pre-processing.   

 

The momentum term is a factor that can be used to speed up the training process by 

several orders of magnitude and the momentum factor is a value less than 1.0. If the 

momentum value is low, it can prevent the network from learning.   When  a steep  

error  slope  occurs during  training  phase,  a small momentum factor  is optimal  and  

towards  the  end,  a  large  momentum factor  is desirable.    Figure  3.5 shows the  

JavaNNS  error  graph  for how the  sum  of the  mean squared  error, 2 , decreases 

with  epoch (learning  cycle).  The red graph indicates the validation whereas the blue 

graph indicates the training of a network during the learning cycle. 

 

3.3.5  Epoch size 

 

The  epoch  size is equal  to  the  number  of training  samples  presented  to  the  

network between  weight  updates.  Network weight adaptation can be done in on-line  

or batch mode.  In on-line mode, the weights are updated a f t er  the presentation of 

each training pair, a s  is the case in line 11 in the pseudo code above. 

 

 

                                    Figure 3-5 Shows the steep error slope 
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In  batch  mode,  the  weight changes for each training pair  is accumulated, and  the  

sum of these  changes  is applied after presentation of the entire training  set, for 

example after one epoch.  The preferred option in many applications is batch  mode 

since weight changes for individual  training  pairs  can cancel each  other  and  a more 

accurate  overall weight  change  is obtained.   This guides the learning to move in the 

direction of the actual gradient at each weight update.  The weight update mode can 

be set to in JavaNNS as shown in Figure 3.6. 

 

3.3.6  Error function 

 

The error function E is the function that is minimised during training. The most commonly 

used error function is the mean squatted error
N

i

i
N 1

1
, where єi is the network error Ti-

Di for all the training patterns 1< i < N in the training set. The error function can penalise 

large errors and it relates to normal distribution. 

 

The criteria used to decide when the training process should be stopped are important, 

as they determine whether the neural network has been optimally or sub-optimally 

trained. In the  case of  this  study,  training  was stopped  when the  training  error  had 

reached a sufficiently small value  or when changes  in the  training  error  remained  

within  a small interval. The network training p a r a m e t e r s  described above, can be 

specified or adjusted in JavaNNS, as shown in Figure 3.6. 

 



53 

 

 

                        Figure 3-6 JavaNNS Control panel indicating the learning, pruning, patterns, momentum, learning function 
and cycles parameters. 

 

3.4  Neural Network Time Series Modelling 

 

The research problem in this thesis can be viewed as the development of a predictive 

model from a time series of rainfall data. Time series modelling has been extensively 

researched, and the use of neural networks is an established technique [Corne et al., 

1997]. Typical examples of neural network applications are market predictions, 

meteorological and network traffic forecasting [Davey et al., 1997, Chan et al., 1993, 

Dorffner, 1996, Collobert  et al., 1995]. 

 

A time series T is a sequence of vectors, tuples or patterns, x (t), t = 0, 1. . . where t 

is the elapsed time instant. That is, 

 

T = {x(t0 ), x(t1 ), . . . , x(ti ), . . .} 

 

The sequence x(t) may be scalar values or structured objects such as vectors or 

images. Since  rainfall  is a  scalar  value,  we consider  here  only  sequences  of scalars,  

although  these  concepts  can easily be transferred to series of structures.  The value 
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x can vary continuously with t, such as rainfall, but in practice it is sampled as a series 

of discrete data values usually at equal time intervals. In our case, rainfall values are 

sampled daily at the same time. The sampling rate determines the temporal resolution of 

the time series.  However, it is not  always the  case that the  highest  resolution  will 

produce the  best  predictive performance;  it may be the  case that every n-th  point in 

the  series produces an improved prediction  model. 

 

The forecasting problem can be stated as developing a model f that can be used to 

estimate a future value from a set of values up to the present time. Formally, this can 

be stated as finding the function f such t h a t  f: RN → R that is used to obtain an 

estimate of x at time t + d by using the historical values of x for N time steps preceding 

the time step t. 

 

3.5  Data Preparation 

 

The  daily  raw  rainfall  values  for  a  number  of weather   stations   in  and  around   

the KwaZulu-Natal province was used for experimental training  simulations.  Fifteen 

years‟ data (from 1995 to 2009) daily rainfall records obtained from SAWS were used 

to train the ANN models. 

 

The weather  station  code numbered  30160, in the  vicinity  of Msundusi  municipality 

in Pietermaritzburg coordinate  (Latitude = −29.66763 and  Longitude  = 30.40599) 

was selected  as first experimental data  set.  This station was selected because it is 

located within the region under consideration, namely the Msundusi River catchment 

area. 

 

3.5.1  Data set generation 

 

Split-sample t raining i s  a common ANN training m e t h o d .   The basic idea behind 

this approach is to withhold a small subset of the data for validation, and to train the 

network on the remaining data  [Hung et al., 2009, Dandy and Maier, 2000].  However, it 

might be difficult to construct a representative validation set when a limited amount 

of data is available. 
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Dandy and Maier [Dandy and Maier, 2000] indicate that the holdout method is the only 

method which maximises utilization of available data.  A small percentage of the 

training data set, is set aside in order to determine whether there is improvement in 

generalization thus avoiding over-training. 

 

This subset of the data i s  used as a testing set in a trial phase to determine how long 

training should continue in order to achieve acceptable generalization ability. The testing 

subset  can  then be added  to  the  initial  training  data  set  and  the  whole data  set  

can ultimately be used  to  train  the  network  for a fixed number  of epochs,  based  on 

the results from the trial  phase [Dandy and Maier, 2000]. 

 

The generalisation ability  of a neural  net  refers to the  ability  of this  net to correctly 

provide  responses,  for instances  that the  network  has  not  been  trained   on 

previously unseen, extrapolated or interpolated data inputs [Geman and Doursat, 

1992]. Generalisation ability is affected by the number of times a given data pair is used 

to train  the network  and the number  of parameters in the neural  network  (the  latter, 

indicated  by the  number  of trainable weights in the neural  network).   

 

If the  same instance  or set of instances  are not  representative of the entire function  

space and they  are repeatedly  presented  to  a neural  network,  then  the  network  

might  fit that particular sample  set too closely, and  could be unable  to extrapolate 

beyond  the  range  of the  data  used for training.  Such a network is said to be over-

trained.  Conversely, if a neural network is not sufficiently trained on a representative 

sample set, the trained network might fit the training data  too loosely. Such a neural 

network is said to under-train. 

 

The cross validation t e ch n i q u e  is also frequently used in ANN training.  However, 

this method substantially compromises t h e  a m o u n t  of data   available f o r  training. 

In  this method,  the  complete  data  set  is split  into  two  sub-sets,  namely  a  training  

set  and an independent validation  set. 

 

In order  to  train  the  network  using  the  JavaNNS  software,  it  is necessary  to  
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create ASCII files containing  training, validation  and  test  data  instances  in a 

specific format. An example of the training data file format required by JavaNNS or 

SNNS was calculated on the excel spreadsheet Figure 3.7. 

 

The overall set of rainfall values was partitioned into subsets.  These subsets were 

reformatted into ASCII files of 100 input-output data pairs, which served as neural 

network training, validation and test data sets for JavaNNS. 

 

The  validation  data  set  was used  for cross validation  to  evaluate  the  neural  

network performance  during  training.   The  testing  data  set  was  used  to  evaluate  

the  neural network performance  after  training  had been completed. 

 

Poor flood forecasts can be expected when the validation data contain values outside 

of the range of those used for training. The training  and validation  sets were 

representative of the  same  population since i t  was a must  when doing the  validation  

in training  of the available  data  in ANNs. 

 

Figure 3-7 JavaNNS file format 

 

 

3.5.2  Data pre-processing 

  

As previously no ted , t h e  data w a s  divided into  sub-sets f o r  training, validation   

and testing.  The output of a neural  network  is typically between  0 and 1 therefore  
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the  raw rainfall  figures have to be scaled to a range  between  0 and 1 before it can be 

used as input. Feed-forward neural network  architecture was considered in all of the 

initial training experiments discussed in this section. 

 

Initially input d imens ions  of five and six nodes were considered.   The input data  

r e p r e s e n t  a moving window of the previous five or six days of rainfall values.   

Thus  for a time  window of  rainfall  figures for five days, for example  Di , Di+1 , 

Di+2 , Di+3 , Di+4 as inputs  and  the  neural  network,  was trained on the  following 

day (Di+5 ).  Given the previous days‟ rainfall figures, the ANN should output the 

next day‟s rainfall figure. Initially, a hidden layer of six units was used.  The output 

dimension varied according to the classification method used as discussed further in 

this section. 

 

Sets of 100 such pre-processed values (as shown in Table 3.1) were transferred to a 

text file in the JavaNNS file format.  The results of training s imulat ions  for  various 

network architectures are presented and discussed in Chapter 4. 

 

Table 3.1 is an example of raw and scaled data.  Column one contains  values with 

merged zeros,  column  two  indicate  scaled  training data  between  0 and  1,  and  

columns  3-8 indicate  the sixth  day used as input,  while column 7 contains  the 

output  used. 

 

                              TABLE3.1:  EXAMPLE  OF RAW AND SCALED DATA.   
Rain Scaled In1 In2 In3 In4 In5 In6 Out 

0 0 0 0.1 0.96 0 0.54 0.1 0 

0.2 0.10 0.1 0.96 0 0.54 0.1 0 0.09 

4 0.96 0.96 0 0.54 0.1 0 0.09 0.99 

0 0 0 0.54 0.1 0 0.09 0.99 0.96 

1.2 0.54 0.54 0.1 0 0.09 0.99 0.96 0 

0.2 0.10 0.1 0 0.09 0.99 0.96 0 0.38 

0 0 0 0.09 0.99 0.96 0 0.38 0.2 

0.19 0.09 0.09 0.99 0.96 0 0.38 0.2 0.1 

5.6 0.99 0.99 0.96 0 0.38 0.2 0.1 0 

4 0.96 0.96 0 0.38 0.2 0.1 0 0.2 

0 0 0 0.38 0.2 0.1 0 0.2 0 

0.8 0.38 0.38 0.2 0.1 0 0.2 0 0.2 

0.4 0.20 0.2 0.1 0 0.2 0 0.2 0.14 

0.2 0.10 0.1 0 0.2 0 0.2 0.14 1 

0 0 0 0.2 0 0.2 0.14 1 0.83 
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Rain Scaled In1 In2 In3 In4 In5 In6 Out 

0.4 0.20 0.2 0 0.2 0.14 1 0.83 0 

0 0 0 0.2 0.14 1 0.83 0 0.2 

0.4 0.20 0.2 0.14 1 0.83 0 0.2 0 

0.28 0.14 0.14 1 0.83 0 0.2 0 1 

8.2 1.00 1 0.83 0 0.2 0 1 0.2 

2.4 0.83 0.83 0 0.2 0 1 0.2 0.92 

  0 0 0 0.2 0 1 0.2 0.92 0 

0.4 0.20 0.2 0 1 0.2 0.92 0 0.38 

0 0 0 1 0.2 0.92 0 0.38 0 

6.4 1.00 1 0.2 0.92 0 0.38 0 1 

0.4 0.20 0.2 0.92 0 0.38 0 1 0.98 

3.2 0.92 0.92 0 0.38 0 1 0.98 0.99 

0 0 0 0.38 0 1 0.98 0.99 0.76 

0.8 0.38 0.38 0 1 0.98 0.99 0.76 0.66 

0 0 0 1 0.98 0.99 0.76 0.66 1 

8.6 1.00 1 0.98 0.99 0.76 0.66 1 1 

4.6 0.98 0.98 0.99 0.76 0.66 1 1 0.72 

 
 
 
 

5.6 

0.99 0.99 0.76 0.66 1 1 0.72 0.2 

2 0.76 0.76 0.66 1 1 0.72 0.2 0.29 

1.6 0.66 0.66 1 1 0.72 0.2 0.29 1 

10.2 1.00 1 1 0.72 0.2 0.29 1 0 

40.4 1 1 0.72 0.2 0.29 1 0 0.2 

1.8 0.72 0.72 0.2 0.29 1 0 0.2 0 

0.4 0.20 0.2 0.29 1 0 0.2 0 0.76 

0.6 0.29 0.29 1 0 0.2 0 0.76 0.6 

10.2 1.00 1 0 0.2 0 0.76 0.6 0.1 

0 0 0 0.2 0 0.76 0.6 0.1 0.93 

0.4 0.20 0.2 0 0.76 0.6 0.1 0.93 1 

 
 

Initially, several data s c a l i n g  and network configurat ions  m e t h o d s  w e r e  

implemented. The goal of this approach was to determine a data pre-processing and 

network architecture as sensible starting point for training.  We discuss these methods 

and the reasons for using them as a progression of our research efforts. 

 

 Real valued outputs-The  raw data  was scaled by calculating  the  maximum  

(Rmax ) value and minimum  (Rmin ) value over a n entire  data  set and  for each 

rainfall  value (ri ) in the  set.   Equation 3.3 shows the  transformation used  for 

scaling,  where Rmax  and xmin  are the maximum  and minimum  rainfall  values, ri 

is the original, and xi  is the scaled value. 

                                              minmax

min

RR

Rr
x i

i

                                 

(3.3)
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Since the minimum rainfall is 0, Xmin = 0 and the scaling process amounted to X/Xmax. 

The data set contained few non-zero values (rainy days) and since Xmax was a relatively 

high value, the largest majority of the scaled data set - as high as 90% - contained zero or 

near-zero values. This presented a problem in that the neural network weights would tend 

to all default to zero during training on such sparse sets since in this state, the trained 

network would achieve correct a classification performance of 90%. It became clear from 

performance results of networks trained on these data sets, that a sensitivity analysis was 

needed to obtain a true picture of the neural network performance. 

 

Two network input layer dimensions were considered for training, thus effectively 

resulting in two types of training data sets. The data t raining p a i r  used for the first 

training method consisted of five input values and one output value. The second 

data set used to train the ANN consisted of the first six daily rainfall values as input 

and the ANN was then trained on the seventh daily rainfall value. Training was 

repeated for 100 cycles of epochs.  The ANN was validated after every training  epoch  

in  order  to  determine  the  fraction  of the  times  it  produced  the correct  output. 

 

 The performance  of networks trained to produce real-valued  output were assessed by  

determining the  percentage  of outputs within  a certain  range  of the  desired 

outputs.  This indicated that a categorical subdivision of the target outputs would be a 

more appropriate approach to evaluate network performance. 

 

Categorical outputs- In order to obtain an idea of a trained network‟s predictive 

ability, it is reasonable to use a set of categorical outputs indicative of the probability of 

rainfall, thus effectively, a flood prediction index. The third training data pre-processing 

set hence consisted of the first six daily rainfall values as input, but categorical outputs 

for the seventh day instead of a real valued output. Two categorisations were 

considered;  the  first  consisting  of two  categorical  probabilities of flood,  namely  Low 

and  High.  A three category output classification, namely Low, Medium and High, 

was also used to classify the outputs. In either case, the number of output nodes was 

equal to the number of categories. 
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The  classification  of rainfall  data  into  categories,  was achieved  as follows:  the 

maximum  rainfall  value  for the  period  1995-2009 was calculated.   For  the  case of 

three categories,  two threshold  values were selected,  namely  a lower threshold  value 

tl , which  separates  the  Low and  Medium  flood probability categories,  and an upper  

threshold  value  th , which  separates  the  Medium  and  High categories. The  

maximum  rainfall value, Rmax  was determined and  several sets of values for tl  and  

th  were experimented  with.   For  example  in the  case where the  range  of rainfall 

values were divided into three equal intervals,  tl  and th  had values Rmax /3 and  

2Rmax /3,  respectively.  Thus the output categories for the rainfall value r were 

determined as follows. 

 

 Low is the range of rainfall  values 0 to X  mm where X  represents  one third of 

the maximum  rainfall  value range thus, 1 ≤ r ≤ Rmax /3] 

 Medium is the range from Rmax /3 < r ≤ 2Rmax /3 

 High is the range 2Rmax < r ≤ Rmax. 

 

Thus for a two category partition of the outputs, only one threshold was necessary. The 

fourth data set consisted of the raw rainfall figures scaled to a range between 0 and 1 

by using Equals 3.4. 

 

                                     
 (3.4)

 

 

Since we were interested only in the probability of flooding, we replaced contiguous 

sequences of zero rainfall values (no rain) by a single zero value.  The argument for this 

action is that for the region under study, flooding is only possible if it rains.  

 

The training algorithm that was used in the data sets above was back -propagation 

with variable learning rates and momentum values. The results obtained indicated that 

ANN model performance is very dependent on the number of nodes in the hidden layer.  

These are discussed in Chapter 4.  
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Chapter 4 

 

Results: Experimental Results 

 

Summary 

 

The results of network training simulations that have been conducted are presented in 

this chapter. The goals of these experiments  were to determine  the data  set 

composition and  neural  network  architecture that would  produce  the best  predictive  

performance for rainfall  and hence, impending  flood. These experiments address the 

two main questions of this research. We investigated predictive performance for the 

following day, for example for a 24 hour time step, given the previous five or six days‟ 

rainfall figures. The findings indicated that data set composition and neural network 

architecture had a critical influence on rainfall predictive performance. 

 

Several initial ANN models were selected for investigation; these include feed-forward 

and recurrent network architectures. For each of these initial models, we adopted an 

incremental approach in adapting and refining the model.   An initial plausible 

architecture was selected and repeatedly modified in order to determine a model that 

produced improved performance.   The findings of these experiments were compared 

with each other, as well as with results presented in the literature in Chapter 2. 

 

4.1  Introduction 

 

The ANN models implemented in  this study are of both feed-forward and recurrent 

architecture that are commonly used for solving regression problems [Hung et al., 

2009]. The models typically consist of three layers, namely an input, hidden and 

output layer. 

 

For recurrent networks, a r c h i t e c t u r e s  that use special hidden units were  also 

implemented.  An initial  ANN model was selected and  an iterative  approach  was 

adopted  in improving the  predictive  performance  of the  initial  neural  network 
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architecture.  This process mainly  entailed  modifying the  number  of hidden  neurons,  

and  evaluating  the performance  of the resulting trained neural  network. 

 

Two ‟base‟ categories of ANN models were explored,  namely feed-forward 

architectures trained  on a five or six day input  window, and  recurrent  architectures 

trained on the previous  six days  of rainfall  values.  In general, the following below 

procedure was followed for a selected ANN flood prediction model. Specific 

parameters used for the initial neural network architectures are presented in Tables 4.1 

and 4.2. 

 

          Repeat for each selected init ial ANN model ( feed - forward or recurrent): 

 

1. Select ini t ial input and output d imensions of the model. 

2. Configure init ial network architecture. 

4. Select and compose the data sets needed to train, val idate and test the 

  Model. 

5. Repeat unti l peak or asymptotic ANN model performance is observed. 

    5.1 Train and test the trained network using performance eva luat ion 

             Stat is tics. 

    5.2 Incremental ly modify the number of hidden layer neurons. 

 

We proceeded from the premise that an initial ANN model performance would 

improve or degrade if the architecture was modified slightly.  If the performance 

remained largely the same, a larger modification was made upon which, if no 

significant change was observed, the original architecture was retained. The 

implication in  the latter case was thus that the changed parameter did not have any 

significant effect on performance f o r  the given model. 

 

The first ANN models considered for training and testing were simple multilayer feed-

forward and Elman models  with sigmoid transfer f u n c t i o n .   The  three  layers,  

namely input,  hidden, special hidden  and output nodes were selected as a base 

architecture for the network since that was the de-facto standard for pattern 

recognition  training  problems as is the case in this study. 

 



63 

 

4.2  Model design 

 

In the model design stage, several ANN models were tested on the data from one 

weather station code 30160 in order to find an appropriate ANN architecture that 

could be employed in the forecasting flood for our study. 

 

4.2.1  Data normalization 

 

As mentioned in Chapter 3, the split-sample training is a common method to train 

ANN models.   The  fifteen  years  data  obtained  were divided  into  training, 

validation  and test  data  sets  after  it had  first been normalized  to  a  certain  range  

as  discussed  below  in further  detail.   Hung et al.  [Hung et al., 2009] in their  recent 

works show that a model with improved  performance  on the training  set does not  

always provide better  performance during testing.  In this study, the accuracy of the 

training set and the validation set were observed and recorded during the training 

process. 

 

The observed historical data for rainfall was first normalized within a range of 0.1...0.9 

as the ANN model used the sigmoid transfer funct ion .  Sigmoid functions, for 

example the  logistic  function  indicated  in Figure  5.1.2 is used or recommended  over 

the  other functions  such as  threshold  or step  function  when applied  to hidden  units  

because  of its flexibility, and  is easier  to train  from.  Range  values close to 0 or to 1, 

would have asymptotic domain  values as shown in Figure  4.1 and these range values 

were avoided. 

 

 

Figure 4-1 A sigmoid with a range between 0 to +1 
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The normalized data was then presented to the ANN model at the input layer.  Hidden 

layers with  different dimensions  were tested  as shown in Table  4.3.1 and  4.3.2 

number of units  in the  output layer represents  the  number  of values to  be 

estimated.  In this study only one output node was considered for feed-forward network 

models and Elman network models. This output value indicates the predicted rainfall 

value for the next day. 

 

4.2.2  Model parameters 

 

One hydrological  parameter as already  mentioned  earlier,  the  historical  rainfall  data  

in millimetres, was used in this study  since the advantage  of our approach  is that it 

does not require many variables  and very little knowledge of the flooding domain.  The 

model parameters such as the number of epochs were varied to achieve improved 

performance by conducting several training and testing experiments for different model 

architectures. In particular, the modifications considered for improving performance 

were as follows: 

 Normalizing the historical rainfall data. 

 The neurons in the hidden layer were progressively increased from 2 to 

1neurons. An improvement in the performance of the model was observed as the 

hidden layer dimension was increased. 

 The number of training epochs was set to 100 as a result of trials conducted 

with  different and higher values. 

 

The first network architecture employed during this part of the study is known as a 

multilayer perceptron (MPL), which  is trained with accuracy correction back-

propagation learning algorithm.   Each  weight  in the  network  is adapted by correcting  

the  current value  of weight  with  a  term  that is proportional  to  the  current  output 

accuracy  as determined by the gradient-descent learning  method. 
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4.3  Elman and Feed-Forward Networks Architecture 

 

One disadvantage associated  with neural network learning is that it is necessary to 

specify the  network  architecture in  terms  of the  number  and  configuration  of its  

hidden units  beforehand.  ANN model performance and  learning ability depend on 

the suitability of its architecture.  If a network  is too small,  it  may  have insufficient 

degrees of freedom (number  of  parameters) to fully capture  all the  underlying  

relationships in the  data.   On the  other  hand,  if  a network  is too large,  it  may  not  

generalise  events in the training  data  that are not necessarily  representative of the 

system  under  consideration  [Hanavar et al., 1999]. 

Following above procedure for the feed-forward networks used in this experiment, it was 

started with a small hidden layer of two nodes (network type A in the table), and then 

the number of hidden layer nodes progressively incremented by two.  The same 

procedure was carried out till the number of hidden layer nodes reached 14. The  same 

procedure  was used in Elman  network,  whereby the  hidden  layer of two nodes 

(network  type H in the table)  were increased  up to 14 hidden  nodes for both  two 

hidden  layers.  The architecture of these models was varied as given in Table 4 .3 .1  

and Table 4 .3 .2 , recurrent networks .  

 

The different models of feed-forward network and Elman network are shown in the 

number of  hidden nodes  and special nodes.   Table 4.3.1 and 4.3.2 show feed-forward 

and recurrent networks.  The first column contains a label for the network architectures, 

which are named label A to G and label H to N for feed- forward and recurrent 

networks respectively. The second column contains the neural  network architecture used 

in this experiment whereby the  numbers, for example  for  feed-forward 6-2-1 and  

recurrent network  6-2-2-1,  indicate  the  six input  nodes,  two  hidden  nodes and two 

special hidden  nodes for recurrent network  and one output node respectively.  The 

third column contains the learning function, for example feed-forward networks were 

trained by the back-propagation, while the recurrent network was trained by the JE 

back-propagation. 
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4.3.1 Feed-forward network architecture 

 

 The first model (Model A) used the feed-forward network with a simple 

structure involving six nodes in the input  layer, t h e  hidden  layer having two 

hidden  nodes, and one node in the output layer (6-2-1).  The learning function 

used was back-propagation. 

  

 The second model (Model B) the network type, learning function and input data 

were kept the same as model B, but  the number  of hidden  nodes was increased  

from two to four (6-4-1). 

 

   

 In the third model (Model C), the procedure was the same as model A and B 

except that the hidden nodes were increased from four to six (6-6-1).   

 

 The fourth model (Model D) was also kept the same as model A, B and C, but 

the hidden nodes were also increased from six to eight hidden nodes (6-8-1).   

 

 The fifth model (Model E), sixth  model (Model F) and seventh  model (Model 

G) were kept the same as model A and the hidden  nodes were increased  to ten  

(6-10-1), twelve (6-12-1) and  fourteen (6-14-1)  respectively as indicated in Table  

4.3.1. 

 

4.3.2  Recurrent networks 

 

The eighth model (Model H) and other remaining models used the Elman network 

with a structure involving six nodes in the input layer, two hidden layers having two 

hidden nodes and output layer having one node (6-2-2-1).  The learning function used 

here was JE back-propagation. The ninth model (Model I) was kept the same as model 

H except that there were four hidden nodes in the first and second hidden layer, and 

the output node remained the same (6-4-4-1). 
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                       TABLE 4.1: Feed-forward network architectures  

Feed-Forward Input-Hidden-Output Learning Function 

A 

B  

C  

D  

E  

F  

G 

6 – 2 – 1 

6 – 4 – 1 

6 – 6 – 1 

6 – 8 – 1 

6 – 10 – 1 

6 – 12 – 1 

6 – 14 – 1 

Back-propagation 

Back-propagation 
Back-propagation 
Back-propagation 
Back-propagation 
Back-propagation 
Back-propagation 

 

The  tenth  model (Model J)  was kept  the  same as Model H, but  the number  of 

hidden  nodes in both  hidden  layers were increased  from four to six (6-6-6-1).  

The same was applied to model eleven, twelve, thirteen and fourteen except that 

the hidden nodes in the hidden layers were increased to eight (6-8-8-1), ten (6-10-

10-1), twelve (6-12-12-1) and fourteen (6-14-14-1) respectively, referring to Table 

4.3.2. Elman  network  architectures  used  in  this  study;  column  one  contains the  

label of the  network  architecture, column two contains  different hidden  nodes 

and column three  indicates  the learning  function  used. 

 

                TABLE 4.2:   ELMAN NETWORK ARCHITECTURES 

Elman Input-Hidden-Special Hidden-Output Learning Function 

H 

I  

J  

K  

L  

M  

N 

6 – 2 – 2 – 1 

6 – 4 – 4 – 1 

6 – 6 – 6 – 1 

6 – 8 – 8 – 1 

6 – 10 – 10 – 1 

6 – 12 – 12 – 1 

6 – 14 – 14 – 1 

JE Back-propagation 

JE Back-propagation  

JE Back-propagation  

JE Back-propagation  

JE Back-propagation  

JE Back-propagation  

JE Back-propagation 

 

The  differences  between  the  Elman  network  and  feed-forward  network  

architectures are seen on the extra  hidden  layer, which is normally  called special 

hidden  layer. 

 

4.4  Training Procedure and Pattern Set 

 

Architecture models were selected and only models which performed well. The results 

are listed in tabular form. The following procedure was followed for a developing the 
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ANN flood prediction model: 

 

1. The daily rainfall data was selected to be used for training, validation and testing 

of the models, and also the input and output variables were selected. 

 

2. The initial network architecture as presented in Table 4.3.1 and 4.3.2 were 

configured. 

 

3. The  number  of hidden  layer  neurons  was determined in order  to  improve  the 

performance  of the neural  network. 

 

4. The t r a i n e d  neural n e t w o r k  w a s  tested using selected  p e r f o r m a n c e    

evaluation statistics such as mean percentage accuracy, correlation coefficient and 

contingency table or confusion matrix. 

 

5. From item four was repeated until  a predetermined predictive performance 

criterion was satisfied. 

 

The above-mentioned summarised t h e  ANN development.  More detailed training 

p r o c ed u r e  was conducted as follows: training data patterns were presented 

sequentially to the input layer and this data was then propagated through the 

network.  The resulting output predictions were  yi (p),  where 1 ≤ i ≤ N  ranged  over 

the  number  of output nodes and 1 ≤ p ≤ P  denoted the  pattern number.   These 

values were compared with the corresponding desired or actual output, di (p). Equation 

4.1 was used to calculate t h e  Mean Square Error, E, over all the patterns P in the 

training data set.  Thus, a batch weight update p rocedure  was adopted.   

 

The back-propagation learning rule was used to adjust the weights until E had 

decreased till the training stopping criterion was met. 
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The steps fol lowed when applying b a c k -propagation in training   the neural  

n e t w o r k , included the following: 

1. The weights and bias were initialized to small random values between 0 and 1. 

2. The training data  was normalized. 

3. The training  set inputs  were presented  to the neural network and for each training  

input,  the  network  output of the  neurons  in the  hidden  layer and  in the  output 

layer were  computed.   Equation 4.2 shows how the network output was computed for 

the node i, with N input signals and a threshold value θi. 

4. The activation output for each network output  was computed b y  applying t h e  

sigmoid activation rule. 

5. The global network error was computed. 

6. The weights of the network were adjusted using the back-propagation rule. 

7. Steps 3 to 5 were repeated until the global network error converged to a 

predetermined level or until a fixed number of epochs had elapsed. 

  

 ; θi is a threshold  for node i  (4.2) 

 

4.4.1  Pattern set composition 

 

The number of epochs for both training and validation were adjusted to 1 000 with the 

number of training and validation patterns per training set to 100. A training p a i r  

consisted of rainfall figures data for  six consecutive days as input data, and the 

rainfall figure for the following day (seventh day) as output data. 

 

A training  data  set consisted of 100 such training  pairs, obtained  by moving a 

”window” of six plus one rainfall values sequentially  over the given rainfall data.  The 

first pattern set was prepared by taking the first seven normalised daily rainfall data 

and splitting them into six inputs and one output, sequentially. The  same procedure  

was repeated  sequentially  until  100 of six input  and  100 of one output were created  
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Figure  3.7.    

 

Following the same procedure for the input variables, daily rainfall data was divided 

into three different subsets, sequentially:  one subset for training the neural network 

(100 patterns set), one for model validation (100 pattern set) and one for model testing 

(100 pattern set)
11

. The training pattern set in this case was used to update the weights 

of the network; while the validation set was used to observe the progress of training. 

The testing data set was used for the final evaluation of the model performance.  This 

procedure  was carried  out for at  least  five such training, validation  and  testing  

pattern sets,  for  both  the  Elman and feed-forward networks. 

 

The next step was to determine suitable output values for flood prediction. The 

output was  then  determined by the  continuous  values,  the  two  categories  and  the  

categories below.   At first only one output node was considered  for feed-forward  

network models and  Elman network  models which were not  normalised,  and  the  

results  obtained showed that models did not perform well since the mean percentage  

accuracy  was less than  20%.   The  second  procedure  was to  categorise  the  seventh  

day  rainfall  data  or the output into two categories.  The results also showed bad 

performance. The third procedure was then followed in this manner:   

 

 The output value was then categorised (flood and no flood; low, medium and 

high flooding) after it had been trained.   

 

 Each
11

 Testing (100 pattern set) in this study was named Experimental  

simulation.   

 

 Exp1 to Exp5 categories  were  assigned  to  a  neural  network  output interval,  

and  these  intervals  were adjusted to more appropriately suit the likelihood and 

extent of flooding.  

 

The following threshold values 0.25, 0.5, 0.75 were used in order to compare the neural 

network results with the observed data.  The motivation for choosing one output and 

categorising it, was that it would be reasonable for the neural network to provide a 

                                                           
11

 Testing (100 pattern set) in this study were named Experimental simulation, Exp1 . . . ..Exp5 
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categorical output rather than a, numeric output for flood prediction.  That is, the  

focus for flood prediction  is not  a predicted  measure  of rainfall,  but  rather an  

indication  of whether,  and  the  extent  to which, a flood is likely to occur.  The 

performance of all the models are summarised and described in later sect ions . 

 

4.5  Experimental Performance 

The results  of each network  performance  in both  Elman  and  feed-forward  neural  

networks  which  were compared  with  the  observed  data  are  summarised  in Tables  

below. The network performance was thus assessed by considering true and false 

positive and negative classifications. 

 

4.5.1  Performance of neural network 

Table  4.3 provides a summary  of the results  performance  in mean percentage  of 

trained network  under  Elman  neural  network  for all models.  Each network was 

trained from three different pattern sets, namely training, validation and testing.  

These three sets are named simulation experiment (SE) Exp1 . . . Exp5.  The target 

output range of 0 to 1 was divided into two categories (see Figure 4.2), indicating low 

and high probabilities of flood, respectively.   

 

 

 

Figure 4-2 Target output range of 0 to 1 divided into two categories 

 

The threshold value 0.75 in Table 4.3 was used to separate the two categories when 

comparing the computed data or trained data with observed data. Table 3 shows 

Elman computed results performance mean in % with the threshold value of 0.75. 
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       TABLE 4.3: ELMAN COMPUTED RESULTS PERFORMANCE M E A N    

SE (6-2-2-1) (6-4-4-1) (6-6-6-1) (6-8-8-1) (6-10-10-1) (6-12-12-1) N(6-14-14-1) 

Exp1 48 45 47 57 53 56 46 
Exp2 58 61 65 57 65 63 65 
Exp3 57 52 66 49 49 63 48 
Exp4 57 53 51 55 52 43 45 
Expe5 61 42 53 63 64 69 70 

 

Table 4.4 shows a summary o f  the performance of a network trained in Elman neural 

network for all models.  The target o u t p u t  range of 0 to 1 was divided into two 

categories, indicating low and high probabilities of flood, respectively.  These categories 

were separated by a threshold value of 0.5. 

TABLE 4.4:  PERFORMANCE MEAN IN % FOR DIFFERENT CONFIGURATIONS OF ELMAN 
NETWORK 

 

 

 

 

 

Tables 4.5 and 4.6 indicate the summary performance in mean of networks trained in 

Elman neural network for all models. The target output  range of 0 to 1 was divided 

into three categories  this  time  (see Figure  4.3),  indicating  low, medium  and  high 

probabilities  of flood, respectively.  These categories  were separated by a threshold  

value of 0.5 . . . .0.75 and  0.25 . . . .0.5 as indicated  in Tables  4.5 and 4.6  respectively  

when compared  with  observed data. 

 

Figure 4-3 Target output range of 0 to 1 divided into three categories 

        

 

 

SE 
(6-2-2-1) (6-4-4-1) (6-6-6-1) (6-8-8-1) (6-10-10-1) (6-12-12-1) N(6-14-14-1) 

Exp1 50 54 45 53 56 56 58 
Exp2 4848 57 59 52 55 48 56 
Exp3 57 46 57 54 43 52 47 
Exp4 50 40 48 44 45 51 48 
Expe5 57 41 49 62 55 66 67 
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TABLE 4.5: ELMAN COMPUTED RESULTS PERFORMANCE MEAN  IN %, THRESHOLD 0 . 5 .. . 0.75 
 

SE (6-2-2-1) (6-4-4-1) (6-6-6-1) (6-8-8-1) (6-10-10-1) (6-12-12-1) (6-14-14-1) 

Exp1 42 38 39 48 48 49 44 
Exp2 44 50 56 33 49 39 56 
Exp3 49 43 52 44 40 52 41 
Exp4 45 40 41 43 40 39 36 
Exp5 57 36 45 55 52 61 65 

 

TABLE 4.6:  ELMAN  COMPUTED RESULTS  PERFORMANCE  MEAN,  THRESHOLD  0.25 . . . .0.5 
 

SE (6-2-2-1) (6-4-4-1) (6-6-6-1) (6-8-8-1) (6-10-10-1) (6-12-12-1) (6-14-14-1) 

Exp1 46 50 38 41 50 49 57 
Exp2 41 43 50 33 24 32 47 
Exp3 49 34 43 51 32 33 39 
Exp4 41 32 38 33 39 48 43 
Exp5 40 34 40 46 43 46 46 

 

The same procedure  done in t h e  Elman  network  table  was also applied  to feed- 

forward networks as  follows: Tables  4.7 and 4.8 provide a summary  of the  results  

performance in mean  of each network  using feed-forward  neural  network  for all 

models. 

 

The target o u t p u t  range of 0 to 1 was divided into two categories, indicating l o w  

and high probabilities of flood respectively.  These categories were separated by 

threshold values of 0.75 and 0.5, as in Table 4.7 and 4.8. 

 

           TABLE 4.7:  FEED-FORWARD C O M P U T E D  RESULTS PERFORMANCE MEAN  %, THRESHOLD 0 . 7 5  
 
 

SE (6-2-1) (6-4-1) (6-6-1) (6-8-1) (6-10-1) (6-12-1) (6-14-1) 

Exp1 53 43 47 48 52 47 52 

Exp2 48 58 57 52 58 45 61 

Exp3 54 49 49 44 46 47 56 

Expt4 42 55 55 45 54 51 50 

Exp5 64 58 44 61 63 63 68 

 
 

The Table 4.8 indicates the results for feed-forward  neural network performance mean, 

the  target output range  of 0 and  1 was  divided  into  two categories,   indicating   

low and  high  probabilities of flood.  The threshold v a l u e  of 0.5 was used to separate 

these categories.  
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                      TABLE 4.8:  FEED-FORWARD C O M P U T E D  RESULTS PERFORMANCE M E A N  IN %  
 
 

SE (6-2-1) B(6-4-1) C(6-6-1) (6-8-1) (6-10-1) (6-12-1) (6-14-1) 

Exp1 44 41 39 47 47 45 58 

Exp2 52 49 54 49 53 47 54 

Exp3 47 42 41 49 48 46 53 

Exp4 51 48 50 51 45 50 49 

Exp5 58 59 37 56 60 56 57 

 

Tables  4.9 and  4.10 provide the  summary  performance  mean  of each network  

trained in feed-forward  neural  network  for all models.   The target o u t p u t  range of 0 

to 1 was divided into three categories, indicating low, medium and high probabilities 

of flood respectively.  These categories were separated by threshold values of 0.5 . . . 

0.75 and 0.25 . . . 0.5 see Table 4.9 and 4.10 respectively. 

 

            TABLE 4.9:  FEED-FORWARD COMPUTED RESULTS PERFORMANCE MEAN 

SE (6-2-1) B(6-4-1) C(6-6-1) (6-8-1) (6-10-1) (6-12-1) (6-14-1) 

Exp1 44 41 39 47 47 45 58 

Exp2 52 49 54 49 53 47 54 

Exp3 47 42 41 49 48 46 53 

Exp4 51 48 50 51 45 50 49 

Exp5 58 59 37 56 60 56 57 

 

Table 4.10  was  applied  the  same  procedure  as to Table  4.9, but  this  time  the 

categories (low, medium  and high) were separated by threshold  values of 0.25 . . . .0.5. 

The results obtained in mean percentage are summarised in  Table 4.10. 

                 TABLE 4.10: FEED-FORWARD C O M P U T E D  RESULTS PERFORMANCE M E A N  

                 PERCENTAGE,   

 

 

 

 

 

 

 

 

 

4.5.2  Overall performance 

 

The results in the form of mean percentage  accuracy obtained  for feed-forward  models 

(A, B, C, D, E, F, G) with different categories  used are shown in Table  4.11 threshold 

0.5, Table 4.12 threshold  0.75, Table  4.13 thresholds  0.25 . . . .0.5, Table  4.14 

 
 
SE 

(6-2-1) (6-4-1) (6-6-1) (6-8-1) (6-10-1) (6-12-1) (6-14-1) 

Exp1 40 33 34 42 43 38 48 

Exp2 42 45 49 37 49 40 52 

Exp3 45 35 39 40 38 44 50 

Exp4 38 43 45 41 42 45 44 

Exp5 57 54 34 56 58 41 44 
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thresholds 0.5 . . . .0.75. 

 

TABLE 4.11:  FEED-FORWARD N E T W O R K S  SCALE USED 0. 

 

 

 

 

 

 

 

 

Table 4.12 provides the summary p e r f o r m a n c e  i n  mean percentage o f  each model 

for feed-forward neural  networks with threshold va lue  of 0.75. 

 

                                                  TABLE 4.12:  FEED-FORWARD N E T W O R K S  SCALE USING 0.75 

 

 

 

 

 

 

 

Table  4.13 provides  the  summary  performance  in mean  percentage  of each  model 

in feed-forward  neural  network.   The output range [0, 1], was discretised into three 

categories output with threshold values of 0.25 and 0.75 between categories. 

 

                                                          TABLE 4.13:  FEED-FORWARD N E T W O R K S  SCALE USING 0.25 . . . .0.5 

 

 

 

 

 

 

  

Table  4.14 provides  the  summary  performance  in mean  percentage  of each  model 

in feed-forward  neural  network.   Again here, the output range [0, 1], was discretised 

Feed-forward  network,  threshold  0.5 

Model Architecture used Mean accuracy% 

A 

B  

C 

D  

E  

F  

G 

6 – 2 – 1 

6 – 4 – 1 

6 – 6 – 1 

6 – 8 – 1 

6 – 10 – 1 

6 – 12 – 1 

6 – 14 – 1 

50.4 % 

47.8 % 

44.2 % 

50.4 % 

50.6 % 

48.8 % 

54.2 % 

Feed-forward  network,  threshold  0.75 

Model Architecture used Mean accuracy% 

A 

B  

C  

D 

E  

F  

G 

6 – 2 – 1 

6 – 4 – 1 

6 – 6 – 1 

6 – 8 – 1 

6 – 10 – 1 

6 – 12 – 1 

6 – 14 – 1 

52.2 % 

52.6 % 

50.4 % 

50.0 % 

54.6 % 

50.6 % 

57.4 % 

Feed-forward  network,  threshold  0.25 . . . .0.5 

 

 

 

Model Architecture used Mean accuracy% 

A 

B  

C  

D  

E  

F  

G 

6 – 2 – 1 

6 – 4 – 1 

6 – 6 – 1 

6 – 8 – 1 

6 – 10 – 1 

6 – 12 – 1 

6 – 14 – 1 

41.4 % 

40.2 % 

35.4 % 

44.0 % 

39.2 % 

41.2 % 

40.6 % 
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into three categories output with threshold va lues  0.5 and 0.75 between categories. 

 

                                              TABLE 4.14:  FEED-FORWARD N E T W O R K S  SCALE USED 0.5 . . . 0.7. 

 

 

 

 

 

 

 

 

The summarised r e s u l t s  for  Elman network in the form of mean percentage 

a c c u r a c y  w e r e  obtained for model (H, I, J, K, L, M, N). The target output range 

[0, 1] was divided into two categories as shown in Table 4.15 with threshold values  0.5 

between the categories, and Table 4 .16 with threshold v a l u e  0.75.   As previously  

discussed,  in Table  4.17 and Table  4.18 the  target  output  range  [0, 1] was divided  

into  three  categories  with  the threshold  0.2, 0.5, 0.5 and 0.75 respectively. 

 

                                                               TABLE 4.15:  ELMAN NETWORKS SCALE USING 0.5 

 

 

 

 

 

 

 

 

Table  4.16 provides  the  summary  performance  in mean  percentage  of each model 

for Elman  neural  networks  with  threshold   value  of 0.75.  The first  column  indicates  

the models  used,  the  second  column  shows the  architecture and  the  third  column  

is the percentage  mean accuracy  obtained  during  the training  of networks. 

 

 

 

 

Feed-forward  network,  threshold  0.5 . . . .0.75 

Model Architecture used Mean accuracy% 

A 

B  

C  

D  

E  

F  

G 

6 – 2 – 1 

6 – 4 – 1 

6 – 6 – 1 

6 – 8 – 1 

6 – 10 – 1 

6 – 12 – 1 

6 – 14 – 1 

44.4 % 

42.0 % 

40.2 % 

43.2 % 

46.0 % 

41.6 % 

47.6 % 

Elman  (recurrent) network,  threshold  0.5 

Model Architecture used Mean accuracy% 

H 

I  

J  

K  

L  

M  

N 

6 – 2 – 2 – 1 

6 – 4 – 4 – 1 

6 – 6 – 6 – 1 

6 – 8 – 8 – 1 

6 – 10 – 10 – 1 

6 – 12 – 12 – 1 

6 – 14 – 14 – 1 

52.4 % 

47.6 % 

51.6 % 

53.0 % 

50.8 % 

54.6 % 

55.2 % 
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                                                           TABLE 4.16:  ELMAN NETWORKS SCALE USING 0.75 

Elman  (recurrent) network,  threshold  0.75 

Model Architecture used Mean accuracy% 

H 

I  

J  

K  

L  

M  

N 

6 – 2 – 2 – 1 

6 – 4 – 4 – 1 

6 – 6 – 6 – 1 

6 – 8 – 8 – 1 

6 – 10 – 10 – 1 

6 – 12 – 12 – 1 

6 – 14 – 14 – 1 

56.2 % 

50.6 % 

56.4 % 

56.2 % 

56.6 % 

58.8 % 

54.8 % 

 

Table 4 .17  provides the summary p e r f o r m a n c e  i n  mean percentage o f  each 

model in Elman neural network.   The first column indicates the models used, the 

second column shows the architecture and the third column is the percentage mean 

accuracy obtained during the training of networks.  Again here, the output range [0, 1], 

was discretised into three categories output with threshold va lues  0.25 and 0.5 

between categories. 

 

                                                       TABLE 4.17:  ELMAN NETWORKS SCALE USING 0.25 . . . .0.5 

Elman  (recurrent) network,  thresholds  0.25 . . . .0.5 

Model Architecture used Mean accuracy% 

H 

I  

J  

K  

L  

M  

N 

6 – 2 – 2 – 1 

6 – 4 – 4 – 1 

6 – 6 – 6 – 1 

6 – 8 – 8 – 1 

6 – 10 – 10 – 1 

6 – 12 – 12 – 1 

6 – 14 – 14 – 1 

43.4 % 

38.6 % 

41.8 % 

40.8 % 

37.6 % 

41.6 % 

46.4 % 

 

 

Table 4 . 1 8  provides the summary p e r f o r m a n c e  i n  mean percentage o f  each model in 

Elman neural network.   The  first column indicates  the  models used, the  second 

column shows the architecture and the third  column is the percentage  mean accuracy  

obtained  during  the  training  of networks.    The  output range  [0, 1], was  discretised  

into  three categories  output  as  in  the  previous  table  but  this  time  was separated 

by  threshold values 0.5 and 0.75 between categories. 

 

Another pa ramete r  used to interpret the network simulation r e s u l t s  was  a 
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classification model which could be defined as a mapping of instances into a certain 

class [Fawcett, 2004]. The classifier result is a real value or continuous output in which 

the classifier boundaries between classes are determined by the threshold value.   

                                                         

                                                        TABLE 4.18:  ELMAN NETWORKS SCALE USING 0.5 . . . 0.75 

 

  

 

 

 

 

 

 

 

For these experimental studies, a two class prediction problem was considered, in 

which the outcomes were labelled either as positive (p) or negative (n) class. The four 

outcomes from this type of binary classifier are as follows: 

 

 If the  outcome  from a prediction  is p and  the  actual  value  is also p, then  it  

is called a true  positive (TP); where the actual  value is n then  it is said to be a 

false positive (FP). 

 

 A true  negative  is found when both  the  prediction  outcome  and  the  actual 

value are n, and false negative is when the prediction  outcome is n while the 

actual  value is p. 

 

For  this  study,  two selected  Elman  and  Feed-Forward neural  network  simulations  

were considered in order to determine  whether  the neural  network predicted  low (no 

rainfall) and  high  (rainfall)  flood correctly.   The results of the two best performing 

models are presented in Figure 4.4 and Figure 4.5. 

 

In the tables in the figures below, TP represents a high rainfall prediction corroborated 

by a high expected result.   FP represents false positives.  Similarly, true negatives are 

represented by TN and false negatives by FN. Some of the terms used are: 

 

Elman  (recurrent) network,  threshold  0.5 . . . .0.75 

Model Architecture used Mean accuracy% 

H 

I  

J  

K  

L  

M  

N 

6 – 2 – 2 – 1 

6 – 4 – 4 – 1 

6 – 6 – 6 – 1 

6 – 8 – 8 – 1 

6 – 10 – 10 – 1 

6 – 12 – 12 – 1 

6 – 14 – 14 – 1 

47.4 % 

41.4 % 

46.6 % 

44.6 % 

45.8 % 

48.0 % 

48.4 % 
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 The sensitivity is an indication of how well the model can discriminate positive 

expected values. It is simply the True Positive proportion of all positive events. 

Sensitivity gives information about the proportion of cases picked out by the model. 

True Positive rate is given by 
FNTP

TP
TPR  

 

 The False Positive Rate is given by 
TNFP

FP
FPR , i.e., incorrectly identified positive 

events 

 

 The Accuracy is given by
NP

TNTP
ACC , whereby the P and N are the prediction 

results from 100 positive and negative instances. In this case a false positive 

occurred when the network predict a high flooding output (p), but actually there is 

low flooding expected value (n). 

 

On the  other  hand  a false negative  occurs when the  network  predicts  low flooding 

(n), but actually  there  was a high flooding expected  value (p).  Table  4.4 shows the 

Receiver Operator  Characteristic (ROC)  table  for the  feed-forward  neural  network  

labelled  I, with 6 input,  10 hidden  and 1 output units  (6-10-1).  The table indicates a 

sensitivity of 33.7%, and an accuracy of 54.6% 

 

TABLE 4.4:  ROC table of the mean values for the feed-forward neural network labelled 

I (6-10-1) 

 

                 

 

Table 4.5 shows the ROC table for the experimental results of the Elman neural 

network labelled  M, with  6 input,  12 hidden,  12 context  and  1 output units  (6-12-

12-1).  The table i nd ica t es  a  sensitivity o f  46.6% and an accuracy o f  69%.   This 

neural n e t wo rk  model (with 10 hidden and 10 context units) is more suitable for 
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flood prediction than the feed-forward model. 

 

 

TABLE 4.5: ROC table of the mean values for the Elman neural network labelled M (6-12-12-1) 

 

 

The findings presented in Chapter 5 show that the performance of the networks is 

influenced by different threshold categories  and also by varying the number of hidden 

node in the hidden layers.  Certain o f  these architectures yielded the best performance 

of the ones explored during this study. The results are illustrated in tabular forms for 

analysis and discussion in Chapter5.  
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Chapter 5 

 

Analysis and Discussion 

 

Summary 

 

This chapter p r e s e n t s  the analyses of the results obtained  f o r  flood prediction, as 

reported in Chapter 4. We present and discuss responses to the research problem, 

research objectives and research questions. 

 

5.1  Hypotheses of the Study 

 

The following sub-objectives were given in Chapter 1: 

 

1. Pre-process historical weather  data into a form that is suitable for training neural 

networks. 

 

2. Show that artificial neural networks can be used as a valid effective approach to 

predict floods from meteorological data. 

 

3. Determine the architecture of the neural network that will yield the best predictive 

performance for precipitation. 

 

These sub-objectives were achieved as described.   This  section  presents  the  

motivation for the methodology  that was followed and  the  deductions  inferred  from 

results  of the experiments conducted  during this study. 

 

5.1.1  Methodology 

 

A total  of 14 neural network models were implemented  in order to study  the use of 

daily rainfall  data  as predictive  variable  for floods in the  selected  region.   Neural 

networks were trained, verified and tested on data for the period 1995 to 2009. The 

aim of these training s imulat ions  was to determine the neural network architecture 
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that would yield the best flood predictive performance.    Each  type  of neural  network  

was studied  for different hidden  layer dimensions, and  a minimum  of five neural  

networks  were trained to obtain  preliminary  results  for each architecture and  for 

each hidden  layer size.  This approach was successful and an appropriate architecture 

was identified. 

 

5.1.2  Pre-processing and Post-processing 

 

Given the  Msundusi  region‟s historical  rainfall  patterns, it  was expected  that the  

data would  contain  a great  proportion  of zero rainfall  values compared  to non-zero  

values. Stated differently, the non-zero rainfall values were sparsely distributed in the 

data.  This condition caused neural networks to lapse into learning a zero output 

mapping since the trained network would then correctly predict t he  majority of 

outputs.  To obviate this situation, consecutive instances of  zero rainfall were 

substituted by a single zero value. This approach is reasonable since flooding cannot 

occur if there is no preceding rainfall. 

 

A number of scaling methods were considered in preparing the data for training and 

testing.  Since the neural  network  employed a sigmoidal activation function,  the 

output of the  network  would  be constrained to  the  unscaled  range  of [0, . . . , 1].  In 

order to compare this output with desired values, it was thus necessary to scale the target 

values to the same range.  The sigmoid function range is also asymptotic along the  

range  [0 . . .  1], and  hence  the  rainfall  data  was scaled to within  a range  of [0.1 . . .  

0.9] to prevent the neural network weights from having to increase in magnitude to 

excessively large positive or negative  values. 

 

The scaled output was further c a t e g o r i s e d  us ing two classification schemes.  The  

first scheme  employed  a single threshold  value,  th,  to  separate  the  output range  

into  two categories,  namely  a  low probability of flooding  and  a  high  probability 

of flooding. Thus  for 0.1 < th  <  0.9, an output value  less than  th  indicates  a low 

likelihood, and a value greater  than  or equal to th  indicates  a high likelihood of 

flooding.  The second categorisation approach introduced two thresholds like th, which 

separated the output into low, medium and high probabilities of flood.  Several values 

were tried for th.  The findings of these experiments are summarised under 5.2. 
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5.2  Findings 

 

The performance results of the 14 ANN models are presented in tabular form.  These 

results show the forecast accuracy of the 14 models for evaluation purposes.  The 

measures used to  evaluate  performance  included  the  mean  percentage  accuracy  and  

correlation  coefficient. 

 

The  m ean  per cen t age  accu rac y i s  co mputed  b y [ Numb er  o f  corr ec t l y  

pred ic t ed  ou tpu t /T o ta l  number  o f  ou tpu t s*100 ] .  The  av erage  o f  e ach  

ne twork  simulation output has been calculated and the results presented in this section. 

The correlation coefficient rxy between the variables x and y, along with the merging 

means and variances of X and Y, determines this linear relationship: 

 

yx

iin

ixy
ssn

yyxx
r

1

))((
1                          (5.1) 

where x and  y are  the  mean  values for x and  y, respectively,  and  sx   and  sy   are 

the standard deviations  of x and y respectively for n value pairs.  The correlation  

coefficient used  was  obtained   by  using  the  scatter plot
12    for comparing  the  

observed  data  and simulation results. 

 

5.2.1  Feed-forward neural network performance 

 

The performance results for feed-forward neural network models labelled A-G are 

shown in Table 5.1.  The categories of the target o u t p u t  were separated by different 

threshold values, which are presented i n  Table 5.1 .   The  first  column  contains  the  

label (A-G) of the  network  architecture which  comprised  of six input  units,  one 

output unit  and different hidden  nodes.   Network architectures were created as  

follows:  A= 6:2:1 , B=6:4:1, C= 6 : 6 : 1 , D= 6 : 8 : 1 , E= 6:10:1, and F= 6:12:1.   

Columns two to five contain the mean percentage accuracy obtained using different 

thresholds. Column six contains correlation coefficient (r) for the observed and actual 

results. 

 

                                                           
12

 A scatter plot is a type of mathematical diagram using Cartesian coordinates to display values for two 

variables of a set of data. 
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Feed-forward 

TPR FPR ACC 

0 

0.36 

0.32 

0.5 

0.14 

0.48 

0.35 

0.43 

0.6 

0.3 

0.26 

0.29 

0.19 

0.23 

0.32 

 

The results of the best predictive models using confusion matrix are shown in Table 5.2. 

The results of model M (Elman) in experiment four clearly shows the best predictive 

power among the experiments presented in the table since the accuracy is 49% which 

is better than the rest of the tests. In Table 5.1 notice the p e r f o r m a n c e  statistics 

for the feed-forward models and the mean percentage accuracy for different threshold 

ca tegor ies  

 

                                                      TABLE 5.1:  PERFORMANCE STATISTICS FOR FEED-FORWARD MODELS   
 

 Feed-forward network performance (%) 

Model 0.5 0.75 0.25, 0.5 0.5, 0.75 R 

A 

B  

C  

D  

E  

F  

G 

50.4 

47.8 

44.2 

50.4 

50.6 

48.8 

54.2 

52.2 

52.6 

50.4 

50.0 

54.6 

50.6 

57.2 

41.4 

40.2 

35.4 

44.0 

39.2 

41.2 

40.6 

44.4 

42.0 

40.2 

43.2 

46.0 

41.6 

47.6 

-0.5198 

-0.4397 

-0.5794 

-0.9872 

-0.3136 

-0.5279 

-0.295 

 

 

TABLE 5.2:  COMPARISON O F  THE BEST PREDICTIVE MODELS USING TPR, FPR   

 AND ACC 

 

 

 

 

 

 

 

5.2.2  Elman recurrent network performance 

 

Table 5.3 shows the performance results for models H-N, which are of the Elman 

recurrent network type.  The same procedure of categorizing was also followed, as 

mentioned above.  The first column in this table contains the label of the network 

architecture (H- N). Network architectures were created  as follows: A=  6:2:2:1, B=  

6:4:4:1, C=  6:6:6:1, D= 6:8:8:1, E= 6:10:10:1 and F= 6:12:12:1, with columns two to 

five containing  the mean percentage  accuracy obtained  using thresholds  0.25, 0.5 and 

0.75. Column six contains the correlation coefficient  (r) used to compare the 

observed and network results. 

Elman 

TPR FPR ACC 

0.55 

0.33 

1 

0.43 

0.4 

0.43 

0.35 

0.37 

0.17 

0.31 

0.28 

0.32 

0.32 

0.49 

0.32 
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                                              TABLE 5.3: MEAN PERCENTAGE ACCURACY FOR THRESHOLD C A T E G O R I E S  

Elman  network  performance 

Model 0.5 0.75 0.25; 0.5 0.5; 0.75 R 

H 

I 

J  

K  

L  

M  

N 

52.4 

47.6 

51.6 

53.0 

50.8 

54.6 

55.2 

56.2 

50.6 

56.4 

56.2 

56.6 

58.8 

54.8 

43.4 

38.6 

41.8 

40.8 

37.6 

41.6 

46.4 

47.4 

41.4 

46.6 

44.6 

45.8 

48.0 

48.4 

0.534 

0.5245 

0.3837 

0.4487 

0.5076 

0.5406 

0.3453 

 

5.3  Comparison of Models 

 

The ANN model produced overall results that were satisfactory for forecasting as 

shown in the tables above, but wi th  poor results for  a few models.   These  results  for 

some of the  models  might  have been caused  by the  fact  that the  daily  rainfall  

variable  was sparsely  distributed in  the  data.    Many  researchers  such  as 

Varoonchotikul, Rientjes and  Hsu [Rientjes and de Vos, 2005, Hsu and Sorooshian,  

1995] used a combination of rainfall  intensity,  relative  humidity,  cloudiness  and  

average hourly  rainfall  intensity  in their  studies.   The models were evaluated using the 

following parameters as shown in tables above, correlation coefficient (r) and mean 

percentage accuracy. 

 

The  correlation coefficient is used in statistics to  provide  information  in terms  of the 

strength  of a linear  relationship between  the  simulated  or forecasts  and  the  

observed values.  In this study  the  correlation  coefficient of observed rainfall  data  and  

simulated  results  were calculated for ANN model as shown in tables  above.  When the 

correlation coefficient value is between 1.0 and 0.7, it indicates a strong positive 

correlation; 0.3 and 0.1 indicates weak correlation, and less than 0.1 very little 

correlation at  all.  The same procedure  also applies  to negative  values,  when the  

value is less than  -0.1 indicates  no correlation, -0.3 and  -0.1 moderate  negative  

correlation,  -0.7 and  -1.0 strong  negative correlation. The correlat ion  

c o e f f i c i e n t  obtained   is negative, s o m e  are -0.7 and less  confirming that the 

Elman models are acceptable fo r  flood prediction. 

 



86 

 

5.3.1  Feed-Forward model comparison 

 

Based on models A-G, the model D on average, yielded the best results with a 

correlation coefficient of negative value -0.987. It was also supported by the mean 

percentage accuracy of 50.4%.   The second best model was C, followed by F.  Model 

A yielded a moderate negative correlation coe f f i c i en t  of -0.579, -0.527, -0.519.  The 

weak negative correlation coefficient -0.439, -0.313, -0.295, which indicated that poor 

performance was  obtained b y  model B, followed by E and G respectively.  The  overall 

best  results  in terms  of mean percentage  accuracy  was given by model E for  which 

was used the threshold  value 0.75 assigned  for categories  low and  high flooding.   

Poor  performance  of the  models are seen when using threshold  values between 0.2, .  

, 0.5 and 0.5, . . , 0.75 respectively, assigned to determine  the low, medium  and high 

likelihood of flooding. 

 

5.3.2  Elman model comparison 

 

The best results were seen for model H with positive correlation coefficient value of 

0.534 which was confirmed by the mean percentage accuracy value of 56.2% obtained 

using the threshold value 0.75. The models M, I and L yielded poorest performance 

with negative correlation co e f f i c i en t  values of -0.540, -0.524, -0.507 respectively.  A 

few models K, J and N showed weak correlation w i t h  coefficient of -0.448, -0.383, -

0.345 respectively. A poor performance were obtained f o r  the models using threshold 

v a l u e s  between 0.2 . . .  0.5 and 0.5 . . .  0.75 respectively, assigned to determine t h e  

low, medium and high flooding likelihood. 

5.4  Overall Model Performance 

 

The investigation of this study has tried to establish an approach that would be used for 

flood modelling and early warning using daily rainfall data.   The method of evaluation 

for performance reporting h a s  been the same for all ANN models considered.   When 

comparing the feed-forward and recurrent network models, the best percentage error 

for feed-forward networks (model A) was not as good as the best for recurrent models 

(H). 

 

This is also supported by the correlation co e f f i c i en t  values.   The  effect of both  
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model A and  H  is due to the  number  of hidden  nodes, model H has extra  hidden  

layers and hidden  node than model A. This indicates that the number of hidden nodes 

in model A was insufficient to memorise and learn the pattern of training.  The overall 

performance of model B and I shows more less the same results, although the number of 

hidden nodes for both was increased by two in each hidden layer.  The improvement 

for both models B and I were minor.   There  was  significant  improvement  in Elman  

models, the  mean percentage  accuracy  increased as the  number  of nodes increased  

and  showed improved results  for forecasting. 

 

On average for the feed-forward networks, the threshold ca tegory with threshold   

values of 0.5 and 0.75 produced the best performance.  This is so because it determines 

only the low and high flooding likelihoods unlike the threshold o f   

0.25 . . .  0.5 and 0.5 . . . 0.75,  which determines probabilities of low, medium and high 

flooding. The mean correlation coefficient indicates that the model is acceptable fo r  

prediction. 

 

The objective of this study was to research and develop artificial neural networks that 

can be used as model to predict the onset of floods in a region of Msundusi River 

catchment. Several types of artificial neural network model were studied, including their 

architectures and variations of associated learning rules to determine the neural network 

parameters that provide the best prediction for impending floods.  
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Chapter 6 

 

Conclusion and Extension 

 

6.1 Conclusion 

 

This research  was aimed  at  the  development of a computational intelligence  model 

for improved  prediction  of floods in an area  which is known to be at  risk.  We 

considered the application of artificial neural  networks,  a non-linear  auto-regressive  

machine learning  technique  trained on patterns of preceding  rainfall  values in order  

to  predict  the likelihood of a flood.  The chosen methodology was to evaluate the 

performance of various architectures in order to determine the most appropriate 

predictive model. Our approach differs from reported results in that it is parsimonious, 

for example the number of predictive variables was restricted to what is regarded as 

the most influential one, namely rainfall. 

 

In comparing the preliminary performance  results of the fourteen models, the 

recurrent neural network with more hidden nodes are shown to be the more effective 

neural network architecture for flood prediction.  The  best  mean  prediction  obtained  

was 58.8% for the Elman  network  of two  hidden  layers containing  two  hidden  nodes.  

The  best  accuracy result  of the  simulation  experiments  obtained,   was 49% for the  

Elman  network  of two hidden  layers containing  twelve hidden  nodes. 

 

Overall,  the  results  show that daily  rainfall  data  variable  can  be used  to  predict  

impending  floods.  The results of the preliminary t e s t s  also indicated t h a t  the 

sigmoidal activation function was appropriate for the network architectures 

considered in this study. Publications for neural network flood prediction, employed 

dedicated sensor  networks, involved a number of meteorological parameters or 

considered shorter predictive periods such as a few hours [Mandal 2005, Fan et al., 

2002]. 
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While the  percentage  accuracy  of the  results  reported  in this  work is not  as high  

as those  reported  in the  literature, our  approach  is a reasonable  technique  to  apply  

for flood prediction, if a limited  number  of variables  are available. 

 

6.2 Extensions 

 

This study was  confined to one type of feed-forward and one type of recurrent 

architecture.  Several other neural network architectures, such as Jordan recurrent 

networks, could also be considered.  It is also possible to vary the learning parameters 

such as momentum, and introduce other variations of learning such as simulated 

anneal ing .  More research  can  still  be done in order  to  improve  the  ANN flood 

prediction  model results  by investigating these different topologies and training  

algorithms. Furthermore, other  machine learning  algorithms  for  time  series 

prediction, such as Hidden  Markov Models and  Support  Vector  Machines  also  

warrant  further  study  as flood prediction  techniques. 

 

Since short time intervals of days were considered, seasonality was not a concern.  

However,  it  is possible  to  consider  other  input  and  prediction   time  frames.    More 

input parameters than five or six days may have a significant influence on the 

predictive performance. 

 

While the limitation on the number of input variables was deliberate, it may be useful to 

explore various combinations of the most influential variables.  Other studies indicate 

that hydrological parameters, such as run-off, also influence flooding and it would be 

useful to study the extent to which these parameters play a role in flood prediction.
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