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ABSTRACT 

 

Capability analysis is used in many facets of industrial processes and has been recently 

introduced into business processes. In this paper a process capability index (P1
pl) is 

developed for the average of observations from new or unknown batches in the case of a 

balanced random effects model. Using a Bayesian approach, theoretical and simulation 

results are derived for the index under two different but related prior distributions.  A medical 

tablet manufacturing example illustrates the flexibility and unique features of the Bayesian 

simulation method. 
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1.  INTRODUCTION 

 

Process capability indices have been widely used in the manufacturing industry.  They 

measure the ability of a manufacturing process to produce items that meet certain 

specifications.  A capability index relates the voice of the customer (specification limits) to the 

voice of the process.  A large value of the index indicates that the current process is capable 

of producing items (parts, tablets) that will meet or exceed the customers’ requirements.  

Capability indices are convenient because they reduce complex information about the 

process to a single number and measure relative variability similar to coefficient of variation. 

 

There is a need to understand and interpret process capability indices.  In the literature on 

statistical quality control there have been some attempts to study the inferential aspects of 
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these indices.  Most of the existing work in this area has been devoted to classical frequentist 

large sample theory.   

 

As mentioned by Pearn and Wu (2005) a point estimate of the index is not very useful in 

making reliable decisions.  An interval estimation approach is infact more appropriate and 

widely accepted but the frequency distributions of these estimators are often very complicated 

which means that the calculation of exact confidence intervals will be difficult. 

 

An alternative approach to the problem of making inferences about capability indices is the 

Bayesian approach.  In the Bayesian approach prior knowledge (or relative ignorance) about 

the unknown parameters is formally incorporated into the process of inference by assigning a 

prior distribution to the parameters (Box and Tiao,1973).  The information contained in the 

prior is combined with the likelihood function to obtain the posterior distribution of the 

parameters.  Inferences about the unknown parameters are based on the posterior 

distribution.  If the form of the posterior distribution is complicated, numerical methods or 

Monte Carlo simulation procedures can be used to solve different complex problems such as 

credibility intervals (Bayesian confidence intervals), ranking and selection, multiple 

comparisons and run length for which the frequentist methods are not well developed in the 

case of capability indices. 

 

There appears to be a general acceptance of the idea that process capability indices can be 

used only after it has been established that a process is in “statistical control” (for example by 

the use of control charts).  This is reasonable, if it is simply required that there are no irregular 

changes in quality level.  Kotz and Johnson (1993), Herman (1989) and Wolfinger (1998) 

have drawn attention to the fact that there can be more than one source of variation. 

 

Data arising from multiple sources of variability are very common in practice.  Virtually all 

industrial processes exhibit between-batch, as well as within-batch components of variation.  

In some cases the between-batch (or between subgroup) component is viewed as part of the 

common-cause-system for the process.  It therefore seems worthwhile to develop a process 

capability index in more general settings.  To do so, it is necessary to employ a statistical 

model which adequately handles multiple sources of variability.  The variance component 

model is suitable for this task. 



 3 

 

In this paper we look at a version of the most popular process capability index pkC   for the 

balanced random effects model using a Bayesian approach.  The process performance index 

is denoted by 1
plP   and can be used for averages of observations from new or unknown 

batches. 

 

To illustrate how and when the index will be used, consider a factory which manufactures 

medical tablets in very small batches.  A small batch in this instance is likely to be a weekly or 

monthly intake of tablets for an individual patient.  The interest is in whether the patient gets 

on average the required dosage of the drug from the batch in the specified time, given that 

each patient must get an average dosage of at least 0ℓ .  The question therefore is whether 

the process is capable of producing to this specification. 

 

In the next section definitions, notation and some indices commonly used in process 

capability analysis are reviewed.  In section 3, a Bayesian analysis of the random effects 

model is considered and a lower performance index 1( )plP  is proposed which is based on 

averages of observations from new or unknown batches.  Although there are a few published 

articles dealing with the Bayesian estimation of capability indices, see for example Pearn and 

Wu (2005);  Lin, Pearn and Yang (2005);  Wu and Pearn (2005) and Wu (2007), no one (as 

far as we know) has worked on capability (performance) indices in the case of the random 

effects model.  An application is provided in section 4.  Determination of reasonable non-

informative priors in multi-parameter problems is not easy. Common non-informative priors 

such as Jeffreys’ prior can have features that have an unexpectedly dramatic effect on the 

posterior.  In Section 5 reference and probability matching priors are therefore derived for the 

lower process performance index 1( )plP .In section 6 a weighted Monte Carlo method is 

described to simulate 1( )plP   using the probability matching (reference) prior.  This method is 

especially suitable for computing credibility intervals.  The conclusion is given in section 7. 

 

 

2.  DEFINITIONS AND NOTATIONS 
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Let Y  be some characteristics of interest of a manufactured product.  The engineering or 

design specifications for Y are generally stated in terms of a ‘nominal’ or a ‘target value’, say 

T .  That is, T  is the value of Y  which will satisfy the design engineer’s criteria for the 

optimum performance of the product.  Now manufacturing the product so that Y  exactly 

equals T  is prohibitively expensive, and so it is common practice to specify upper and lower 

‘specifications’ limits, USL and LSL, or simply 1ℓ  and 0ℓ  respectively, and to require that Y  be 

within these limits. 

 

The physical processes that manufacture the part are generally subject to many sources of 

variation, starting from the quality of raw material to the aging and wear-out of the 

manufacturing equipment.  Consequently, Y  is a random quantity (or a random variable), 

whose distribution if often assumed to be Gaussian with mean, say µ , and a variance, say 

2σ .  In manufacturing parlance, the variance is referred to as the natural tolerance of Y .  

When working with the process capability indices it is common practice to assume that both µ  

and 2σ  do not change with time;  i.e. the process is stable, or what is known in quality control 

as being in statistical control. 

 

The question which arises is as to whether the design engineer’s compromise in going from 

the ideal T  to the upper and lower specifications limits (the USL and the LSL), is matched by 

the manufacturer’s ability to meet such a compromise vis-á-vis the assumed µ  and 2σ  

mentioned above.  The process capability indices were introduced to address this matter.  

The quantity ( )USL LSL−  is known as the specification interval (or tolerance interval);  it will be 

denoted by 2d , where d  is the half length of the specification interval.  The midpoint of the 

specification interval, which will be denoted by M , is equal to ( ) 2USL LSL+ . 

 

Herman (1989) provided a thought-provoking criticism of the process capability index (PCI) 

concept, based on engineering considerations.  The σ  is intended to represent process 

variability when production is ‘in control’.  But usually variation often has two components - 

from within-lots and among-lots variation.  The σ  in the denominator of for example 
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min ,
3 3pk

USL LSL
C

µ µ
σ σ
− − =  

 
 is intended to refer to within-lot process variation.  This σ  can 

be considerably less than the overall standard deviation - totalσ , say.  The variance component 

model is used when the variation of group means is more than expected when using a simple 

within group variance model.  Process parameters are known to vary slightly, even when the 

process is in statistical control, introducing extra variation 2
2σ .  The definition of pkC  includes 

as special cases those processes for which only one limit exists, by letting LSL→ −∞  or 

USL→ ∞  in which case it reduces to the appropriate standardized measure.  Herman 

suggests that a different index, the ‘process performance index’ (PPI), 

min ,
3 3pk

total total

USL LSL
P

µ µ
σ σ

 − −=  
 

 might ‘have more value to a customer than pkC .  The measures 

pkC  and pkP  again differ only in the estimate of the process standard deviation. 

 

The random effects (variance component) model is suitable for handling multiple sources of 

variability.  In the next sections we will look at the random effects model from a Bayesian 

perspective.  The Bayesian approach is conceptually more appealing than the classical 

approach since, it allows explicit use of prior information, thereby giving new insights in 

problems where classical statistics fail. 

 

By using Monte Carlo simulation, random draws from the posterior distribution of the 

quantities of interest are used to construct the needed inferences.  Histograms of the 

simulations can be constructed.  This is precisely the advantage of the sampling based 

Bayesian approach, where one can create the posterior distributions (in the form of a 

histogram) based on the samples and hence do inference from the posterior distribution 

without going through the exact distribution.  From the distributions of the performance 

indices, we are in a positon to obtain quantiles, credible regions and perform other inferential 

tasks eg. single summary measures of process performance indices.  The methods can be 

generalized to more complicated situations.  This however requires computational resourses.  

The recent increases in the availability of computational resources and the development of 

computational techniques have led to great advances in the application methods to 

complicated problems in various disciplines. 
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3.  THE RANDOM EFFECTS MODEL 

 

The random effects (variance component) model with two variance components is of the 

form: 

 

ij i ijY rµ ε= + +  for 1,2, , 1,2, , .i I and j J= =⋯ ⋯         (3.1) 

 

The random variables ir  and ijε  are called random effects and the model in (3.1) is known as 

the balanced random effects model.  Furthermore it is assumed that 2
1~ (0, )ij Nε σ  and 

2
2~ (0, )ir N σ . 

 

In addition the single fixed effect µ  denotes the overall mean and the random effect ir  

denotes the deviation from this mean, specific to batch i .  ijε  represents the within 

group/batch variation.  ijY  is known and denotes the thj  response value in the thi  batch. 

 

From equation (3.1) (see also Box and Tiao 1973, equation (5.2.7)) it follows  that the 

integrated likelihood function is 

1 2
1 1 2( 1) ..2 2 2 2 2 2 2 1 12 2

1 2 1 1 2 2 2 2 2 2
1 2 1 2 1

1 ( )
( , , ) ( ) ( ) exp

2

v m mIJ Y
L Y J

J J

ν ν νµµ σ σ σ σ σ
σ σ σ σ σ

− − +   − ∝ + − + +  + +    

  (3.2) 

 

where 

 

11, 12, 1 , 21, 2 , 1,[ ]'J J I IJY Y Y Y Y Y Y Y= ⋯ ⋯ ⋯⋯ ⋯  

 

is the 1IJ ×  known vector of observed response values. 

 

2 2 2 2
1 2 12 10, 0,σ σ σ σ> > >  and 2 2 2

12 1 2Jσ σ σ= + . 

The restriction 2 2
12 1σ σ>  is actually part of the prior support given in equation (3.1). 

I  is the number of groups/batches, 

J  is the number of observations within each group, 
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1 2( 1), 1,I J Iν ν= − = −  

 

2
.1 1

1 1

( )
I J

iij
i j

m Y Yν
= =

= −∑∑  is residual sum of squares, 

 

2
..2 2 .

1

( )
I

i
i

m J Y Yν
=

= −∑  is between groups sum of squares, 

 

.

1

1 J

i i j
j

Y Y
J =

= ∑  the thi  batch (group) mean 

 

and 

..

1 1

1 I J

ij
i j

Y Y
IJ = =

= ∑∑  is the overall sample mean. 

 

 

3.1  Posterior Distributions of  and the Variance Components: 

 

The first step in a Bayesian approach is to find a prior distribution that summarizes a priori 

uncertainty about the likely values of the parameters 2 2
1 2, ,µ σ σ . The prior distribution needs to 

be formulated based on prior knowledge.  This is usually a difficult task because such prior 

knowledge may not be available.  In such situations, usually a “non-informative” prior 

distribution is used.  The basic idea behind formulating such a prior distribution is that it 

should be non-informative so that the likelihood (the density 2 2
1 2( , , )p Y µ σ σ , evaluated at the 

observed value of Y ) plays a dominant role in the construction of a posterior density.  Jeffreys 

(1961) formulated such prior distributions based on certain invariance arguments. 

 

The non-informative joint prior for the variance component model as defined by Box and Tiao 

(1973), page 251, viz: 

 

2 2
1 2 2 2 2

1 1 2

1
( , , )

( )
p

J
µ σ σ

σ σ σ
∝

+
          (3.3) 
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The prior may easily be obtained by applying Jeffreys’ rule.  Jeffreys’ rule states that the prior 

distribution for a set of parameters is taken to be proportional to the square root of the 

determinant of the Fisher information matrix.  Equation (3.3) is obtained from the Fisher 

information matrix for 2 2
1 2( , )σ σ , i.e. treating the location parameter µ  separately from the 

variance components.  By combining the prior with the likelihood, the joint posterior 

distribution of 2
1,µ σ  and 2

2σ  can be obtained, 

 

2
..2 2

1 2 2 22 2
1 21 2

1 1 ( )
( , , ) exp

2 ( )( )
2

IJ Y
p Y

JJ

IJ

µµ σ σ
σ σσ σπ

 −
 = −
 ++  

       (3.4) 

 

i.e. 
2 2

2 2 1 2
..1 2

( )
, , ~ ,

J
Y N Y

IJ

σ σµ σ σ  +
 
  . 

 

The joint posterior distribution of the variance components 2 2
1 2,σ σ  is  

1 2
1 1

( 2) ( 2)2 2 2 2 2 1 1 2 22 2
1 2 1 1 2 2 2 2

1 1 2

1
( , ) ( ) ( ) exp

2 ( )

v m m
p Y J

J

ν ν νσ σ σ σ σ
σ σ σ

− + − +    ∝ + − +  +   
    (3.5) 

 

where as mentioned 2 2 2 2
1 2 12 10, 0,σ σ σ σ> > >  and 2 2 2

12 1 2Jσ σ σ= + . 

 

If the restriction 2 2
12 1σ σ>  did not apply, then the posterior distribution for 2

1σ  and 2
12σ  would 

be independent, each proportional to an inverse gamma distribution. The joint posterior 

distribution for 2
1σ  and 2

12σ   would be the product of these two distributions: 

 

1 2
1 1

( 2) ( 2)2 2 2 21 1 2 22 2
1 12 1 122 2

1 12

1 1
( , ) ( ) exp ( ) exp

2 2

vm m
p Y

ν ν νσ σ σ σ
σ σ

− + − +   
∝ − × −   

   
 .    (3.6) 

 

However the restrictions do apply.  Nevertheless, using a two-step rejection sampling 

procedure it is straight forward to generate samples from the joint posterior distribution. 
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(a) Generate values from the two inverse gamma distributions. 

(b) Retain those sets of values that conform to the restricted parameter space 2 2
12 1σ σ> . 

(c) Substitute each pair of simulated values 2 2
1 2( , )σ σ   in equation (3.4) to simulate µ . 

(d) Repeat steps (a), (b) and (c) until ɶℓ  permissible values are obtained.  For our example  

 ɶℓ  was taken as 10 000. 

 

The illustrated Monte Carlo simulation procedure is preferable to Gibbs sampling since it 

generates independent samples from the joint posterior distribution. 

 

3.2  Posterior Distribution of the lower Process Performance Index  (P1
pl ): 

 

Consider a new (future or unknown) batch of J  observations 1, 2,f f fJY Y Y⋯ . 

Each observation is normally distributed with mean µ  and variance 2 2
1 2σ σ+ .  In other words  

 

 

2 2 2 2
1 2 1 2, , ~ ( , ) ( 1,2, )fjY N j Jµ σ σ µ σ σ+ = ⋯         (3.7) 

and 

 

2 2
2 2 1 2

. 1 2, , ~ ( , )f
J

Y N
J

σ σµ σ σ µ +
          (3.8) 

where 

 

.

1

1 J

f f j
j

Y Y
J =

= ∑ , 

 

the arithmetic mean of the new sample.  Equation (3.8) therefore describes the distribution of 

averages from new or unknown batches.   

 

From (3.8) a lower process performance index, 1
plP  can be defined as 

 



 10 

 

1 0
1

2 2 2
1 23

pl

l
P

J

J

µ

σ σ

−=
 +
 
 

           (3.9) 

 

where 

µ =  mean of future observations from a new or unknown batch 

0l = lower specification limit 

J =  batch size. 

 

Using the Bayesian simulation procedure as described in section 3.1 an approximation of the 

exact posterior distribution of 1
plP  can be obtained.  As far as we know a posterior analysis for 

this form of index does not exist. 

 

To illustrate how and when this index (equation (3.9) will be used, consider a factory that 

manufactures medical tablets in very small batches.  A small batch in this instance is likely to 

be a weekly or monthly intake of tablets for an individual patient.  The interest is in whether 

the patient gets on average the required dosage of the drug from the batch in the specified 

time, given that each patient must get an average dosage of at least 0l .  The question 

therefore is whether the process is capable of producing to this specification. 

 

The above mentioned index will be contrasted with the following index: 

 

( )
0

1
2 2 2

1 23
pl

l
P

J

µ

σ σ

−=
+

                    (3.10) 

 

This index follows from equation (3.7) and is not depended on , the subgroup size.  This 

index now asses whether the process is capable of producing each tablet to specification as 

opposed to mean of the batch. 
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4.  AN APPLICATION 

 

The Bayesian simulation procedure will now be applied to the following data set.  The data in 

the Table 4.1 below are amounts of drug per tablet measurements.  The data are assumed to 

arise from a normal distribution with unknown parameters, but it has more structure than a 

simple random sample because it is clustered in fifteen batches and each batch contains ten 

tablets. 

 

Table 4.1  Amount of drug per tablet 

 

Batch Measurements 

1 150.52 150.39 150.31 150.49 150.47 150.67 150.17 150.45 150.42 150.37 

2 150.35 150.47 150.72 150.56 150.53 150.62 150.60 150.52 150.51 150.63 

3 150.48 150.79 150.63 150.46 150.71 150.67 150.70 150.48 150.48 150.58 

4 150.41 150.45 150.40 150.33 150.24 150.39 150.28 150.36 150.27 150.33 

5 150.58 150.54 150.30 150.54 150.50 150.32 150.58 150.46 150.41 150.49 

6 150.49 150.83 150.66 150.63 150.72 150.79 150.64 150.62 150.71 150.73 

7 150.33 150.44 150.48 150.34 150.50 150.42 150.37 150.54 150.39 150.52 

8 150.39 150.52 150.35 150.52 150.47 150.54 150.51 150.37 150.54 150.53 

9 150.64 150.78 150.51 150.69 150.51 150.47 150.60 150.50 150.69 150.72 

10 150.61 150.49 150.60 150.50 150.68 150.56 150.59 150.73 150.62 150.62 

11 150.48 150.25 150.49 150.43 150.40 150.44 150.31 150.36 150.30 150.40 

12 150.35 150.41 150.36 150.39 150.34 150.37 150.51 150.32 150.25 150.32 

13 150.54 150.67 150.57 150.45 150.57 150.48 150.39 150.38 150.67 150.42 

14 150.41 150.54 150.57 150.73 150.47 150.72 150.72 150.49 150.66 150.58 

15 150.60 150.45 150.66 150.72 150.45 150.51 150.69 150.62 150.55 150.45 

 

The lower specification limit is 0 150l = . The data and above limit is selected solely for 

illustrative purposes.  In practice, fixed in advance limits are often determined from medical or 

regulatory considerations.  See for example Wolfinger (1998).  Based on the data, the 

quantities needed for the simulation procedure are 115, 10, ( 1) 135,I J I Jν= = = − =    

..2 1 14, 150.5076,I Yν = − = =  
2 2

. ..1 1 2 2 .
1 1 1

( ) 1.26552, ( ) 1.469816
I J I

iij i
i j i

m Y Y m J Y Yν ν
= = =

= − = = − =∑∑ ∑   
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Ten thousand 2 2
1 2( , , )µ σ σ  values that met the restriction 2 2

12 1σ σ>  were simulated from the 

posteriors (3.6) and (3.4).  In Figures 4.1 and 4.2 histograms of the posterior distributions of 

2
1σ  and 2

2σ  are illustrated.  The histogram of intraclass correlation coefficient 
2

2
2 2

1 2

σρ
σ σ

=
+

 is 

illustrated in Figure 4.3.  The means, medians and 95% credibility (Bayesian confidence) 

intervals are also given. 

 

 

 

 
2
1( )p Yσ  

 

 

 

 

 

 
2
1σ  

Figure 4.1: Posterior Distribution of 2
1σ  (error variance). 

Mean:0.0095, Median:0.0094, 95% Credibility Interval is [0.0075;0.0121]. 

 

As is often the case the posterior distribution of 2
1σ , the within batch variance, is quite 

symmetrical.  The reason for this is the large number of degrees of freedom, 1 135ν =  

associated with it.  The 95% credibility interval is reasonably small.  It has to be remembered 

that the variance 2
1σ  is a squared entity and that the corresponding interval for the standard 

deviation 1σ  is [0.0867; 0.1100], which can easily be interpreted.  The posterior distribution of 

2
2σ  (the between batch variance) on the other hand, is quite skew.  The reason for this is the 

small number of degrees of freedom ( )2 14ν =  associated with it.  
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2
2( )p Yσ  

 

 

 

 

 

 
2
2σ  

Figure 4.2: Posterior Distribution of 2
2σ  (between batch variance). 

Mean:0.0113, Median:0.0100, 95% Credibility Interval is [0.0047;0.0253]. 

 

Although the point estimates of, 2
1σ  and 2

2σ  are quite similar, the 95% credibility interval for 

2
2σ , which is an indication of uncertainty in the true value of 2

2σ  is more than four times as 

large as the corresponding interval for 2
1σ .  The reason for this is, as mentioned, the small 

number of batches included in the experiment.  This is also the reason for the large credibility 

interval for the intraclass correlation coefficient, ρ . 
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( )p Yρ  

 

 

 

 

 

 

 

ρ  

Figure 4.3: Posterior Distribution of ρ  (intraclass correlation coefficient). 

Mean:0.5202, Median:0.5165, 95% Credibility Interval is [0.3194;0.7382]. 

 

In Figures 4.4 and 4.5 the posterior distributions of the process performance indices 

1 0
1

2 2 2
1 23

pl

l
P

J

J

µ

σ σ

−=
 +
 
 

  and 

( )
0

1
2 2 2

1 23
pl

l
P

J

µ

σ σ

−=
+

  are displayed as  histograms. 

The posterior distributions look quite symmetrical.  This is understandable because, 

conditional on the variance components, 1
plP  and plP  are normally distributed. 
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1( )plp P Y  

 

 

 

 

 

 
1
plP  

Figure 4.4: Posterior Distribution of Process Performance Index, 1
plP . 

Mean:1.6183, Median:1.6182, 95% Credibility Interval is [1.0100;2.2699]. 

 

 

 

 

 

( )plp P Y  

 

 

 

 

 

 

plP  

Figure 4.5: Posterior Distribution of Process Performance Index, plP . 

Mean:1.1964, Median:1.2061, 95% Credibility Interval is [0.8663;1.4710]. 
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Despite the widespread use of capability indices in industry and some good review articles 

such as Gunter (1989 a,b,c,d) there is much confusion and misunderstanding regarding their 

interpretation and appropriate use.  According to Kotz and Johnson (1993) the issue does not 

generally lie in the validity of the mathematics of the indices, but in their application by those 

who believe the values are deterministic, rather than random variables.  Once the variability is 

understood and the bias (if any) is known, the use of these indices can be more constructive. 

 

Following Steiner, Bovas and Mackay (1997), the minimum reporting requirements for 

variables data should be a control chart with limits to show the nature of stability and a 

process performance index to compare performance to specifications.  The performance 

index pkP  is preferable to pkC  since it captures all the process variation.  They also mentioned 

that minimum default capability requirements for most characteristics could be given in a 

simple statement such as 1.33pkP > . 

 

From Figures 4.4 and 4.5 it can be seen that the mean of 1
plP  is 1.62 and for plP  it is 1.21.  

Therefore according to Steiner etal (1997) patients will get on average, the required dosage of 

the drug but there is some doubt whether the manufacturing process is capable of producing 

each tablet to specification. 

 

In table 4.2 certain probabilities (relative frequencies) are given.  These probabilities are 

obtained from the Monte Carlo simulation method. 

 

Table 4.2  Probabilities for specific or larger process performance index values 

 

1 10000
( 0) 1.000

10000plP P > = =  
10000

( 0) 1.0000
10000plP P > = =  

1 9770
( 1.00) 0.9770

10000plP P > = =  
8945

( 1.00) 0.8945
10000plP P > = =  

1 8108
( 1.33) 0.8108

10000plP P > = =  
1925

( 1.33) 0.1925
10000plP P > = =  
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Although the average 1
plP  value is 1.62 it is highly probable to get in future,  values smaller 

than 1.33 1( ( 1.33) 0.189)plP P ≤ =  and its not impossible to get 1
plP  values smaller than 1 

1( ( 1.00) 0.023)plP P ≤ = . 

 

Typically a “future” batch of 10J =  tablets is taken repeatedly from the process, and it is of 

interest to assess the distribution of the “run length”, that is the number of such batches, r , 

until the control chart signals for the first time.  (Note that r  here does not include the batch 

when the control chart signals).  Given θ  (where for example 1( 1.00))plP Pθ = ≤   and a stable 

process, the distribution of the run length r  is geometric with parameterθ . 

 

The mean and variance of r  is 
1

( )E r Y
θ

=   and 
2

1
( )Var r Y

θ
θ
−= .  In the case of 

 1( 1.00)plP Pθ = < , the average run length is 1(0.023) 43− =  batches, and for 1( 1.33)plP Pθ = <  the 

average run length is 1(0.189) 5− =  batches.  From Figures 4.4 and 4.5 and Table 4.2 it is 

however clear that although the values of the indices can easily go below 1.33 and in some 

cases even below 1.00, it is highly unlikely that they will become negative.  This means that 

very seldom the amount of drug in a tablet will be less than the lower specification limit of 

0 150l = . 

 

4.1  The Process Performance Index  P1
pk : 

 

In the previous section our interest was in whether a patient gets on average the required 

dosage of a drug from a batch in the specified time.  If the avoidance of an over-dose to a 

patient would be as important as avoiding an under-dose then both problems could be 

assessed simultaneously using the performance index 

 

1 01
1 1

2 2 2 22 2
1 2 1 2

min ,

3 3

pk

ll
P

J J

J J

µµ

σ σ σ σ

 
 
 −−=  
    + +
     
    
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which is a version of the most popular process capability index pkC .  Let the upper 

specification limit be 1 151l = , which means that on average a person should not get more than 

an amount of 151 of the dosage.  In Table 4.3, measures of location and dispersion for the 

posterior distribution of 1
pkP  are given, and in Table 4.4 certain probabilities (relative 

frequencies) are given.  As before these probabilities are obtained from the Bayesian 

simulation method. 

 

Table 4.3  Measures of location and dispersion for the posterior distribution of P1
pk 

Index Mean Variance  Median 95% credibility Interval 

1
pkP  1.533544 0.094221 1.528683 (0.968975;2.159735084) 

 

Table 4.4  Probabilities for specific and larger process performance index values 

 

1 10000
( 0) 1.000

10000pkP P > = =  

1 9661
( 1.00) 0.9661

10000pkP P > = =  

1 7402
( 1.33) 0.7402

10000pkP P > = =  

 

It is obvious that the mean of 1
pkP  will always be smaller than that of 1

plP .  From Table 4.4 the 

same conclusion can be made as before namely that although the value of 1
pkP  can easily go 

below 1.33 and in some cases below 1, it is unlikely that it will become negative.  It therefore 

seems unlikely that patient on average will be under-dosed or over-dosed. 

 

4.2  A Comparison of Process Performance Indices: 

 

In this section the problem of comparing two process performance indices 1
(1)plP  and 1

(2)plP  is 

addressed.  Such a problem occurs when selection between two manufacturers or where 
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assessing the impact of process improvement.  In the case of comparing two manufacturers, 

the objective is to assess the abilities of the manufacturers to meet the medical requirements. 

 

The problem that will be considered is the test for the hypotheses  

 
1 1 1 1

0 (1) (2) (1) (2): :pl pl a pl plH P P vs H P P= ≠   

based on the 100(1 )%
2

α−  two-sided Bayesian confidence (credibility) interval for the 

difference 1 1
12 (1) (2)pl plD P P= −  where 0.05α = . 

Reject 0H  if the lower limit is larger than zero or the upper limit is smaller than zero. 

 

We will consider two manufacturers.  The sample data for manufacturer 1 is given in Table 

4.1 and the summary statistics for a sample of the same size from manufacturer 2 are 

  

1

2
.1 1

1 1

15, 10, ( 1) 135,

( ) 1.1977335,
I J

iij
i j

I J I J

m Y Y

ν

ν
= =

= = = − =

= − =∑∑
 

..2 0

2
..2 2 .

1

1 14, 150.49255, 150,

( ) 1.3969914.
I

i
i

I Y l

m J Y Y

ν

ν
=

= − = = =

= − =∑
 

 

  

 

The mean of the second sample ..( 150.49255)Y =  is somewhat closer to the lower limit 

0( 150)l =  than that of the first sample ..( 150.5076)Y =  but the sum of squares 1 1mν  and 2 2mν  

for the second sample are somewhat smaller. 

 

In Figure 4.6 the posterior distribution of the difference 1 1
12 (1) (2)pl plD P P= −  is illustrated. 
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12( )p D Y  

 

 

 

 

 

12D  

 

Figure 4.6: Posterior Distribution of  the Difference between two Process Performance 

Indices 1 1
12 (1) (2)pl plD P P= − . 

 

Mean:0.016006, Median:0.016007, 95% Credibility Interval is [-0.8681;0.9007]. 

 

From the figure it is clear that zero is included in the 95% credibility interval.   0H  will 

therefore not be rejected.  It seems that there is no real difference between the two 

manufacturers.  If a choice has to be made between the two manufacturers it will be 

manufacturer 1.  The reason for this is that 12( ) 0.016E D Y = which is positive. 

 

The problem of selecting the best manufacturer can also be looked at from a ranking and 

selection perspective.  In the past 30 years, beginning with the fundamental papers of 

Bechhofer (1954) and Gupta (1956), ranking and selection procedures have been developed 

to overcome the inadequacy of testing procedures. 

 

From a Bayesian point of view ranking and selection is quite simple.  To calculate the 

probability that manufacturer 1 is the best or second best, ranks are assigned to each 

simulation of the process performance indices 1
(1)plP  and 1

(2)plP .  The higher 1
(1)plP  value is 

assigned the rank of 1 and the smaller one the rank of 2.  Repeating the simulation ranking 
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procedure 10 000 times it was found that in 51.28% of the cases manufacturer 1 was ranked 

first and in 48.72% of the cases manufacturer 2.  Manufacturer 1 is therefore somewhat better 

than manufacturer 2. 

 

5.  PROBABILITY MATCHING AND REFERENCE PRIORS FOR THE LOWER PROCESS 

PERFORMANCE INDEX  P1
pl  

 

Probability matching and reference priors often lead to procedures with good frequency 

validity while retaining the Bayesian flavour.  The fact that the resulting Bayesian posterior 

intervals of level 1 α−  are also good frequentist confidence intervals at the same level is a 

very desirable situation.  See also Bayarri and Berger (2004) and Sevirini, Mukerjee and 

Ghosh (2002) for general discussion. 

 

5.1  The Probability Matching Prior for the Lower Process Performance Index,  P1
pl : 

 

As mentioned the Bayesian paradigm emerges as attractive in many types of statistical 

problems - especially in capability and performance index problems but the choice of an 

appropriate non-informative prior distribution has been controversial.  Common non-

informative priors in multi-parameter problems, such as Jeffreys’ prior, can have features that 

have an unexpectedly dramatic effect on the posterior.  Recently Datta and Ghosh (1995) 

derived the differential equation that a prior must satisfy if the posterior probability of a one 

sided credibility interval for a parametric function and its frequentist probability agree up to 
10( )n−  where n  is the sample size. Using the method of Datta and Ghosh (1995), the 

following theorem can be proved: 

 

Theorem 5.1 

 

The probability matching prior for the 1
plP  Index in the case of the balanced random effects 

model defined in equation (3.1) is: 

( ) ( )

1

223
2 2 2 2 2 02

2 1 1 1 2 2 2
1 2

( )
( ) ( , , ) 1

2
a a

J l
J

J

µπ θ π µ σ σ σ σ σ
σ σ

−
−−
 −
 = ∝ + +
 + 
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where 2 2
2 1[ , , ] 'θ µ σ σ= . 

 

Proof 

The proof is given in the Appendix. 
2 2

2 1( , , )aπ µ σ σ  is the same as the reference prior (see section 5.2). 

It is proved in Chikobvu and Van der Merwe (2007) that the probability matching prior leads to 

a proper posterior distribution. 

 

5.2  The Reference Prior for the Lower Process Performance Index: 

 

The Jeffreys’ and probability matching priors are but two methods to obtain useful non-

informative priors.  As mentioned, the Jeffreys’ prior is not always suitable for multi-parameter 

problems.  In recognition of this problem Berger and Bernado (1992), proposed the reference 

prior approach to the development of non-informative priors, the key feature of which was a 

possible dependence of the reference prior on specification of parameters of interest and 

nuisance parameters.  As mentioned by Pearn and Wu (2005) the reference prior maximizes 

the difference in information (entropy) about the parameter provided by the prior and 

posterior.  In other words the reference prior is derived in such a way that it provides as little 

information as possible about the parameter.  In this section the reference prior of Berger and 

Bernado (1992) will be derived for the process performance index 1( )plP .  The solution 

depends on the ordering of the parameters and how the parameter vector is partitioned into 

sub-vectors.  In spite of these difficulties, there is growing evidence, mainly through 

examples, that reference priors provide “sensible” answers from a Bayesian point of view and 

more limited evidence that frequentist properties of inference from reference posteriors are 

asymptotically “reasonable”. 

 

As is the case of the Jeffreys’ prior, the reference prior method is derived from the Fisher 

information matrix.  Note that the reference priors depend on the group ordering of the 

parameters.  Berger and Bernado (1992) suggested that multiple groups, ordered in terms of 

inferential importance, are allowed, with the reference prior being determined through a 

succession of analyses for the implied conditional problems.  They particularly recommended 

the reference prior based on having each parameter in its own group, i.e., having each 
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conditional reference prior be one dimensional.  Notations such as { }2 2
2 1, ,µ σ σ  will be used to 

specify the groups and importance of parameters;  { }2 2
2 1, ,µ σ σ  means that there are three 

groups, with  being the most important and 2
1σ  the least important. 

 

We will also examine whether the reference priors satisfy the probability-matching criterion.  

The following theorem can now be stated. 

 

Theorem 5.2 

For the lower process performance index, 1
plP , the reference prior relative to the ordered 

parametrization { }2 2
2 1, ,µ σ σ  is given by: 

 

( ) ( )

1

223
2 2 2 2 2 02

2 1 1 1 2 2 2
1 2

( )
( , , ) 1

2
R

J l
P J

J

µµ σ σ σ σ σ
σ σ

−
−−
 −
 ∝ + +
 + 

. 

 

Proof 

The proof is given in the Appendix. 

 

Corollary 5.1 

The reference prior is the same as the probability matching prior.  It is proved in Chikobvu and 

Van der Merwe (2007) that this is also the reference prior for the group ordering { }2 2
1 2, ,µ σ σ . 

 

6.  THE WEIGHTED MONTE CARLO METHOD - SAMPLING - IMPORTANCE RE-

SAMPLING 

 

In this section a weighted Monte Carlo method is described which will be used for simulation 

from the posterior distribution in the case of the probability matching (reference) prior.  This 

method is especially suitable for computing Bayesian confidence (credibility) intervals.  It does 

not require knowing the closed form of the marginal posterior distribution of 1
plP , only the 

kernel of the posterior distribution of { }2 2
1 2, ,µ σ σ  is needed. 
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As mentioned by Smith and Gelfand (1992), Guttman and Menzefricke (2003), Skare, 

Bølviken and Holden (2003), Kim (2006) and Li (2007) the weighted Monte Carlo (sampling-

importance re-sampling (SIR)) algorithm aims at drawing a random sample from a target 

distribution π  by first drawing a sample from a proposal distribution q , and from this a smaller 

sample is drawn with sample probabilities proportional to the importance ratios qπ .  For the 

algorithm to be efficient, it is important that q  is a good approximation forπ .  This means that 

q  should not have too light tails when compared toπ .  For further details, see Skare et al 

(2003). 

 

In the case of credibility intervals it is not even necessary to draw the smaller sample.  The 

weights (sample probabilities) are however important.  For the Jeffreys’ prior  

 

( ) 12 2 2 2 2
2 1 1 1 2( , , )JP Jµ σ σ σ σ σ

−−∝ + ,       

the joint posterior of the parameters 2 2
1 2, ,µ σ σ  is 

( ) 1 2
1 1 2( 2) ( 3) ..2 2 2 2 2 1 1 2 22 2

1 2 1 1 2 2 2 2 2 2
1 2 1 1 2

1 ( )
, , ( ) ( ) exp )

2 ( ) ( )

v

J

m mIJ Y
P Y J

J J

ν ν νµµ σ σ σ σ σ
σ σ σ σ σ

− + − +   − | ∝ + − + +  + +    

(6.1) 

Equation (6.1) is our proposal distribution q .  Although the Jeffreys’ prior is improper, the 

proposal distribution q  is proper. In the case of the reference (probability matching) prior 

( ) ( )

1

223
2 2 2 2 2 02

2 1 1 1 2 2 2
1 2

( )
( , , ) 1

2
R

J l
P J

J

µµ σ σ σ σ σ
σ σ

−
−−
 −
 ∝ + +
 + 

 ,                                                     (6.2) 

the joint posterior distribution is          

 

( ) 1 2
1 1

( 2) ( 4)2 2 2 2 22 2
1 2 1 1 2

1

22 2
.. .. 1 1 2 2

2 2 2 2 2 2 2
1 2 1 2 1 1 2

, , ( ) ( )

( ) 1 ( )
1 exp ) .

2( ) 2 ( ) ( )
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m mJ Y IJ Y
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    (6.3) 
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Equation (6.3) is the target distribution π .  It is proved in Chikobvu and Van der Merwe (2007) 

that π  is also a proper distribution.  The sample probabilities are therefore proportional to  
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1 2 2 22 2
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 and the normalized weights are 
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ℓ ℓ
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 ( 1,2, , ).= ɶℓ ⋯ ℓ                            (6.4) 

 

Details of the Monte Carlo method are as follows: 

 

Step 1: 

Obtain a Monte Carlo sample 

{ }( ) 2( ) 2( )
1 2( , , ), 1,2, ,µ σ σ =ℓ ℓ ℓ ɶℓ ⋯ ℓ  from the proposal distribution q  and calculate the performance 

index 

 
( )

1( ) 0
1

2( ) 2( ) 2
1 23

pl

l
P

J
J

µ

σ σ

−=
 +
 
 

ℓ

ℓ

ℓ ℓ

  ( 1,2, , ).= ɶℓ ⋯ ℓ  

 

Step 2: 

Sort { }1( ), ( 1,2, , )plP =ℓ ɶℓ ⋯ ℓ  to obtain the ordered values 1(1) 1(2) 1( ).pl pl plP P P≤ ≤ ≤ ɶℓ
⋯  

 

Step 3: 

Each simulated process performance index has an associated weight.  Therefore compute 

the weighted function ( )W
ℓ

 associated with the ℓ th ordered 1( )
plP ℓ  value. 
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Step 4: 

Add the weights up from left to right (from the first on) till you get 
1

( )
1

2
k

W α
=

=∑ ℓ

ℓ

.Write down the 

corresponding ordered 1( )1 k
plP  value and denote it as 1

( 2)plP α .  Add the weights up from right to 

left (from the last back) till you get 
2

( ) 2
k

W α
=

=∑
ɶℓ

ℓ

ℓ

. Write down the corresponding ordered value 

2( )1 k
plP  and denote it as 1

(1 2)plP α− . 

 

Step 5: 

The ( )1 100%α−  Bayesian confidence interval is ( )1 1
( 2) (1 2),pl plP Pα α− . 

 

For the data in Table 4.1 the 95% Bayesian confidence interval in the case of the probability 

matching (reference) prior for 1
plP  is ( )1.030;2.2698. The interval for the Jeffreys’ prior is 

( )1.010;2.2699 (See Figure 4.4). The two intervals are for all practical purposes the same.  

The reason is the relative large sample size. 

 

7.  CONCLUSION 

 

Data arising from multiple sources of variability are very common in practice. Virtually all 

industrial processes exhibit between-batch as well as within-batch components of variation. In 

some cases the between-batch component is viewed as part of the common-cause-system 

for the process. It therefore seems worthwhile to develop a process capability index in more 

general settings. 

 

In this paper we look at a version of the most popular process capability index pkC , for the 

balanced random effects model using a Bayesian approach. The process performance index 

is denoted by 1
plP   and can be used for averages of observations from new or unknown 
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batches. A medical tablet manufacturing example illustrates the flexibility and unique features 

of the Bayesian simulation method for solving different complex problems such as Bayesian 

confidence intervals, ranking and selection, hypothesis testing and run length. 

 

Determination of reasonable non-informative priors in multi-parameter problems is not easy.  

Common non-informative priors such as Jeffreys’ prior can have features that have an 

unexpectedly dramatic effect on the posterior. Therefore reference and probability matching 

priors are derived for the lower process performance index, . Sampling-importance re-

sampling is used to simulate from the posterior distribution in the case of the probability 

matching (reference) prior. 

 

Appendix  

 

Proof of Theorem 5.1 

 

( )π θ  is a probability-matching prior for 2 2
2 1[ , , ] 'θ µ σ σ= , the vector of unknown parameters, if 

the following differential equation is satisfied. 

 

1

{ ( ) ( )} 0
m

α
α α

η θ π θ
θ=

∂ =
∂∑         

where   

1

11

( ) ( )
( ) [ ( ) ( )] ,

( ) ( ) ( )

t
m

t t

F
…

F

θ θη θ η θ η θ
θ θ θ

−

−

∇ ′= = , ,
′∇ ∇

 

 

1

( ) ( ) ( )t

m

t … tθ θ θ
θ θ

 ∂ ∂= , ,∇  ∂ ∂ 
,         

 

( )t θ  is a function of θ . In our case 1( ) plt Pθ = , the process performance index. 

1( )F θ−  is the inverse of ( )F θ , the Fisher information matrix of θ .  
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The probability matching prior ( )π θ , is derived from the inverse of the Fisher information 

matrix. To obtain the Fisher information matrix, the negative of the expected values of the 

second derivatives (with respect to the parameters of the log–likelihood) must be calculated.  

 

The Fisher information matrix is given by 

2 2
1 2
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1 2 1 2
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and its inverse by 
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We are interested in the probability matching prior for ( 1
plP ), the lower process performance 

index. 

 

Let 2 2
2 1[ , , ]θ µ σ σ ′= . The index is  
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As mentioned  
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and 

3( ) 0η θ = . 

For a prior ( )π θ  to be a probability matching prior, the differential equation  
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must be satisfied.  

 

The prior 
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will be a probability matching prior since  
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Proof of Theorem 5.2 

 

We are interested in the Fisher information matrix for ( ),t θ ν  and 2
1σ . This will be obtained in 

two stages. Substituting
2

2
2

1

σν
σ

= , the Fisher information matrix is given by 

2
1

2
2 2

2 1 2 2 2 2 2 2
1 1

2 2 2 2 2 2 2 2
1 1 1

0 0
(1 )

( , , ) 0
2( ) (1 ) 2( ) (1 )

( 1)
0

2( ) (1 ) 2( ) 2( ) (1 )

IJ

J

IJ IJ
F

J J

IJ I J I

J J

σ ν

µ σ σ
σ ν σ ν

σ ν σ σ ν

 
 +
 
 

=  + + 
 − + 

+ + 

 

 

To derive the Fisher information matrix for 2
1, ,µ ν σ , let 
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2
1

2 2 2 2 2
22 1 2 2 2

12 2
1 1

2 2 2
1 1 1

2
1

1 0 0
( , , )

0 .
( , , )

0 0 1

A

µ µ µ
µ ν σ

µ σ σ σ σ σ σ ν
µ ν σ µ ν σ

σ σ σ
µ ν σ

 ∂ ∂ ∂
 ∂ ∂ ∂    ∂ ∂ ∂ ∂  = = =   ∂ ∂ ∂ ∂   

  ∂ ∂ ∂ 
 ∂ ∂ ∂ 

    

                       

 

Now  

2
1

2
2 2 2

1 2 1 2 2
1

2 2 2
1 1

0 0
(1 )

( , , ) ' ( , , ) 0 .
2(1 ) 2( )(1 )

0
2( )(1 ) 2( )

IJ

J

IJ IJ
F A F A

J J

IJ IJ

J

σ ν

µ ν σ µ σ σ
ν σ ν

σ ν σ

 
 +
 
 

= =  + + 
 
 

+ 

 

 

At this second stage the Fisher information matrix for ,µ ν  and ( )t θ  will be derived. 

Therefore 

( ) 0 0
1 1

2 2 22 2
1 2 1 (1 )

3 3

l l
t

J J

J J

µ µθ
σ σ σ ν

− −= =
   + +
   
   

 

1
12 2

1 2
1

2

( )
3 (1 )

( )
J

t
J

σµ ν
θ

∂ = +
∂

,  

1 1 1
22 2 2

1

3
( ) (1 ) ( )

2
J J t

µ σ ν θ
ν

−∂ = +
∂ ,  

1
12 2

1 2
12

1 2

( )3
(1 ) ( )

2
J t

J

σµ ν θ
σ

−
∂ = +

∂
, 

and 
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�

1 1
1 1 1 1 12 22 2

21 12 2 2 2 2
2 11 1

1 2 2

2
1

2 2 2
1 1 1

2
1

( ) ( )3 3
3 (1 ) ( ) (1 ) ( ) (1 ) ( )

( ) 2 2

0 1 0 .
( )

0 0 1

( )

J J J t J t
t

J J
A

t

t

µ µ µ σ σν σ ν θ ν θθ ν σ
ν ν ν
θ ν σ

σ σ σ
θ ν σ

−
−

  ∂ ∂ ∂    + + +
 ∂ ∂ ∂ 
  ∂ ∂ ∂  = = 
 ∂ ∂ ∂ 
  ∂ ∂ ∂   

   ∂ ∂ ∂     

The Fisher Information matrix for ( ),t θ ν  and 2
1σ  is given by 

� �2 2
1 1( ( ), , ) ' ( , , ) .F t A F Aθ ν σ µ ν σ=  

 

� �

11 12 13
2

1 21 22 23

31 32 33

9 9
9 ( ) ( )

22 (1 ) 2( )1
9 92 2 2( ) 1 ( ) 1

9 2 2( )
2 22 (1 ) 2(1 ) 2( )(1 )1

9 92 2( ) 1 ( ) 1
9 2 2( )

2 22( ) 2( )(1 )1 1

' ( , , )

IJ I
I t t

J

IJ t IJ t
IJ

t
J J J

IJ t I t
I

t
J

f f f

A F A f f f

f f f

θ θ
ν σ

θ θ
θ

ν ν σ ν

θ θ
θ

σ σ ν

µ ν σ

+

   + +   
   =

+ + +

 + + 
 

+

 
  = 
 
 

.

( 1)
2 2 2 22( ) 2( )1 1

I J

σ σ

 
 
 
 
 
 
 
 
 
  

  −  +
 
 

 

 

As mentioned a reference prior depends on the group ordering of the parameters and it is 

determined through a succession of analysis for the implied conditional problems. Berger and 

Bernado (1992) particularly recommended the reference prior based on having each 

parameter in its own group, i.e. having each conditional reference prior being one 

dimensional. 

Therefore consider the sub-matrix � 22 23

32 33

F
f f

f f
=
 
 
 

 and its inverse 

 

�

22 2
1

2
2 2

2 2 2
1 1

1

2( )(1 )2(1 ) 2(1 )
9( 1) ( 1)( ) 1
2

2( )(1 ) 2( )

( 1) ( 1)

F

JJ J

IJ J IJ J
IJ t

J

IJ J I J

σ νν ν

θ

σ ν σ

− =

 ++ ++ − − −  + 
  
 + − − − 
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The Reference prior in the 2
1( ( ), , )t θ ν σ parametrisation 

Let �
1

22 23

32 33

1 f f
F

f f

−
− =

 
 
 

 from the section above. 

Now 

[ ] � ( ) 121 2
1 11.2 11 12 13

31

1 18 9 ( ) 2
f

f f f f F
f

h I t θ
−−  

= = − = + 
 

, 

 

2
2 22 23 32

33

92 2 9 2( ) 1 ( ) 12 212 9 22(1 ) ( )
2

1
(1 )

IJ t t

J t J
h f f f J

f

θ θ

ν θ
ν −

   +  +    − 
+  +

  

= − = ∝ +  

and 

 

2 2
3 33 1

9 9 92 2 2( ) 1 ( ) ( )
( 1)2 2 2

2 2 2 2 2 2 2 22( ) 2( ) 2( ) 2( )1 1 1 1
( ) .

I t It I IJ I It IJ
I Jh f

θ θ θ

σ σ σ σ
σ −

     + + + − +     −     + = = ∝= =  

 

 

From the above it follows that 

( )
1 1

22 2
1( ( )) 9 ( ) 2 ,p t h tθ θ

−
∝ = +  

( )
1

12
2( ( )) 1 ,p t h Jν θ ν −∝ = +  

1
2 22

1 3 1( ( ), ) .p t hσ θ ν σ −∝ =  

Therefore the reference prior relative to the ordered parametrisation 2
1( ( ), , )t θ ν σ  is given by  

2 2
1 1( ( ), , ) ( ( )) ( ( ) ( ( ), ),p t p t p t p tθ ν σ θ ν θ σ θ ν=  

( ) ( )
1

12 2 22
1 1( ( ), , ) 9 ( ) 2 1 .p t t Jθ ν σ θ ν σ

− − −= + +  
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The reference prior in the 2 2
2 1( , , )µ σ σ  parametrisation 

As defined 

( ) 0
1

2 2 2
1 23

l
t

J

J

µθ
σ σ

−=
 +
 
 

, 

( )
1

2 2 2
1 21

3

t J

J

θ σ σ
µ

−∂  +=  ∂  
, 

2
2
2

1

σν
σ

=  and
2 2

2 1

1
.

ν
σ σ
∂ =

∂
 

 

The reference prior for the group ordering 2 2
2 1( , , )µ σ σ  is 

( ) ( )
1 1

122 12 2
2 2 2 2 2 20 2 2

2 1 1 1 2 122 2
11 2

( )
( , , ) 1 1 .

32
R

J l J J
p J

J

µ σµ σ σ σ σ σ σ
σσ σ

− −
−− −

   −
 ∝ + + +  +     

Therefore 

( ) ( )
1

22 3
2 2 2 2 20 2

2 1 1 2 12 2
1 2

( )
( , , ) 1

2
R

J l
p J

J

µµ σ σ σ σ σ
σ σ

−
− −

 −
 ∝ + +
 + 

 

which corresponds to the probability matching prior 2 2
2 1( , , )π µ σ σ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 35 

References 

Bayarri, M.J. and Berger, J. (2004). The Interplay between Bayesian and Frequentist Analyis. 

Statist. Sci. 19:58-80. MR2082147. 

 

Bechhofer, R.E. (1954). A Single-sample Multiple Decision Procedure for Ranking Means of 

Normal populations with known Variances. Annals of Mathematical Statistics, 25:16-39. 

 

Berger, J.O. and Bernado, J.M. (1992).  On the Development of Reference Priors in Bayesian 

Statistics IV, Eds. J.M. Bernardo, J.O. Berger, A.P. David and A.F.M. Smith, Oxford University 

Press, 35 - 70. 

 

Box, G.E.P. and Tiao, G.C. (1973).  Bayesian Inference in Statistical Analysis.  Addison - 

Wesley, Reading, MA. 

 

Chikobvu, D. and van der Merwe A.J. (2007).  A process Capability Index for Averages of 

Observations from New Batches in the case of the Balanced Random Effects Model.  

Technical Report, no 378, Department of Mathematical Statistics, University of the Free State. 

 

Datta, G.S. and Gosh, J.K. (1995).  On Priors providing Frequentist Validity for Bayesian 

Inference.  Biometrika, 82:37-45. 

 

Gunter, B.H. (1989a), The Use and Abuse of pkC  Quality Progress, January, 72-73. 

 

Gunter, B.H. (1989b), The Use and Abuse of pkC  Part 2, Quality Progress, March, 108-109. 

 

Gunter, B.H. (1989c), The Use and Abuse of pkC  Part 3, Quality Progress, May, 79-80. 

 

Gunter, B.H. (1989d), The Use and Abuse of pkC  Part 4, Quality Progress, July, 86-87. 

 

Gupta,  S.S. (1956). On a Decision Rule for a Problem in Ranking Means.  PhD thesis, 

Institute of Statistics, University of Norh Carolina, Chapel Hill. 

 



 36 

Guttman, I. and Menzefrieke, U. (2003).  Posterior Distributions for Functions of Variance 

Components.  Sociedad de Estadistica e Investigacio ’n Operativa Test, 12 :115-123. 

 

Herman, J.T. (1989).  Capability Index-Enough for Process Industries?  Transactions of the 

ASQC Quality Congress, Toronto 670-675. 

 

Kim, H. (2006). On Bayesian Estimation of the Product of Poisson Rates with Application to 

Reliability. Communications in Statistics- Simulation and Computation, 35:47-59. 

 

Kotz, S. and Johnson, N.L. (1993), Process Capability Indices, Chapman and Hall, New York. 

 

Li, K. (2007).  Pool Size Selection for the Sampling/Importance Resampling Algorithm.  

Statistica Sinica 17 :895-907. 

 

Lin, G.H., Pearn, W.L. and Yang, Y.S. (2005).  A Bayesian Approach to Obtain a Lower 

Bound for the pmC  Capability Index.  Quality and Reliability Engineering International, 21:655-

668. 

 

Pearn, W.L. and Wu, C.W. (2005).  Process Capability Assessment for Index pkC  based on 

Bayesian Approach.  Metrika, 61:221-234. 

 

Severini, T.A., Mukerjee, R. and Ghosh, M. (2002).  On An Exact Probability Matching 

Property of Right-invariant Priors.  Biometrika 89:952-957.  MR1946524. 

 

Skare, O., Bølviken, E. and Holden, L. (2003).  Improved Sampling-Importance Resampling 
and Reduced Bias Importance Sampling. J. Scand. Statist,. 30:719-737. 
 

Smith, A. and Gelfand, A. (1992).  Bayesian Analysis Statistics without Tears:  A Sampling-

Resampling Perspective.  Amer. Statist., 46(2):84-88. 

 

Steiner S., Abraham  B. and MacKay J. (1997). Understanding Process Capability Indices. 

Institute for Improvement of Quality and Productivity, Department of Statistics and Actuarial 

Science University of Waterloo, Waterloo, Ontario N2L 3G1. 



 37 

 

Wolfinger, R.D. (1998).  Tolerance Intervals for Variance Component Models Using Bayesian 

Simulation.  Journal of Quality Technology, 30:18-32. 

 

Wu, C.W. & Pearn, W.L. (2005).  Capability Testing Based on pmC  with Multiple Samples.  

Quality and Reliability Engineering International, 21:29-42. 

 

Wu, C.W. (2007).  An Alternative Approach to test Process Capability for Unilateral 

Specification with Subsamples.  International Journal of Production Research, 45: 5397-5415. 

 


