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ABSTRACT

Outliers in bioequivalence trials may arise through various mechanisms, requiring

different interpretation and handling of such data points. For example, regulatory au-

thorities might permit exclusion from analysis of outliers caused by product or process

failure, while exclusion of outliers caused by subject-by-treatment interaction generally

is not acceptable.

In standard 2 × 2 crossover studies it is not possible to distinguish between rele-

vant types of outliers based on statistical criteria alone. However, in replicate design

(2-treatment, 4-period) cross-over studies three types of outliers can be distinguished:

(i) subject outliers are usually unproblematic, at least regarding the analysis of bioe-

quivalence, and may require no further action; (ii) subject-by-formulation outliers may

affect the outcome of the bioequivalence test but generally cannot simply be removed

from analysis; (iii) removal of single data point outliers from analysis may be justified

in certain cases.

As a very simple but effective diagnostic tool for the identification and classification

of outliers in replicate design crossover studies we propose to calculate and plot three

types of residual corresponding to the three different types of outliers that can be dis-

tinguished. The residuals are obtained from four mutually orthogonal linear contrasts

of the four data points associated with each subject. If preferred, outlier tests can be

applied to the resulting sets of residuals after suitable standardization.
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1. INTRODUCTION

1.1 Outliers in Bioequivalence Studies

“Unusual values” of pharmacokinetic endpoints, either extremely large or extremely

small observations, are frequently an issue in the analysis and review of bioequivalence

studies. Such extreme values, or outliers, may arise through various mechanisms,

including the following:

1. Product failure (coated tablet broken; single tablet with wrong drug dosage)

2. Adverse event affecting drug absorption (e.g. vomiting, diarrhoea)

3. Laboratory error / data transcription error

4. Unusual reaction of a single subject (or of a subset of subjects) to one of the

formulations (so-called “subject-by-formulation interaction”)

Because of the different regulatory attitude to outliers caused by different mechanisms,

as noted in the next section, it will be useful to distinguish between mechanisms 1 to

3, to which we refer as outliers caused by “product or process failure”, and mechanism

4, to which we refer as outliers caused by “subject-by-formulation interaction”.

The potential consequences of outliers can be two-fold: outliers can bias the point

estimate for the relative bioavailability of the test and reference formulation (either

away from unity, which may cause failure to show bioequivalence; or towards unity,

which may lead to an otherwise unjustified conclusion of bioequivalence); furthermore,

outliers can inflate the standard error of the point estimate of relative bioavailability,

which can lead to failure to show bioequivalence. Thus outliers may cause opposite

results of the test for bioequivalence, depending on whether or not they are included

in the analysis (Chow and Tse, 1990; Chow and Liu, 2000).

1.2 Regulatory Position on Outliers in 2 × 2 Crossover Trials

Like many other aspects of bioequivalence assessment, the statistical analysis of

bioequivalence studies, including aspects of outlier handling, is highly regulated (see
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EMEA, 2001; FDA, 2001 and FDA, 2003). According to regulatory guidance state-

ments [see, for example, FDA (2001), EMEA (2006)] only documented “product or

process failures” are acceptable reasons for removal of outliers from the statistical

analysis of bioequivalence studies. In contrast, an unusual reaction of a subject to the

drug product (“subject-by-formulation interaction”) is not an acceptable reason for the

removal of an outlier. “This subject could be a representative of subjects present in the

general population in low numbers for whom the relative bioavailability is markedly

different than for the majority of the population, and for whom the two products are

not bioequivalent, even though they might be bioequivalent in the majority of the

population” (FDA, 2001).

In standard 2-treatment, 2-period (2×2) crossover trials it is generally not possible,

based on statistical criteria alone, to distinguish outliers caused by product/process fail-

ure from outlier caused by subject-by-formulation interaction. For this reason, removal

of any outliers from the analysis of 2× 2 crossover trials is “generally discouraged” by

regulatory authorities (FDA, 2001) and outliers can only be verified through a re-dosing

study (Braddy et al, 2008). However, in replicate design crossover studies the two types

of outliers can be distinguished. “The retest character of these designs should indicate

whether to delete an outlier or not.” (FDA, 2001). Therefore, when considering the

problem of outliers in bioequivalence studies it seems important to distinguish outliers

potentially caused by “product or process failure” from outliers potentially caused by

“subject-by-formulation interaction”.

1.3 Prior Research and Focus of Present Paper

Various statistical methodologies have been developed for the identification of out-

liers in bioequivalence studies. Most work has focused on outlier detection in the 2× 2

crossover design (Chow and Tse, 1990; Liu and Weng, 1991; Ki et al, 1995; Wang

and Chow, 2003; Ramsay and Elkum, 2005; Liao, 2007). However, in recent years the

use of replicate crossover designs for bioequivalence trials has become more prominent,

in particular in the context of assessment of individual bioequivalence and assessment
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of bioequivalence of highly variable drugs (FDA, 2001; Chow and Liu, 2000 chapters

14–15; Hauschke, Steinijans and Pigeot, 2007 chapter 9). A recent article on outliers

in replicate design crossover trials by Lužar-Stiffler and Stiffler (2005) focuses on the

detection of so-called “subject outliers”.

In this paper we propose simple but effective residual plots for the identification of

the following three types of outliers for the 2-treatment, 2-sequence, 4-period crossover

design: (i) subject outliers, (ii) subject-by-formulation outliers, and (iii) single data

point outliers. Our focus is not on outlier testing. However, the three sets of resid-

uals pertaining to subject-by-formulation outliers and to single data point outliers in

either the test or reference formulation are uncorrelated, and independent under nor-

mality. In principle, Grubb’s outlier test can be applied to those residuals after suitable

standardization.

2. TYPES OF OUTLIERS IN CROSSOVER TRIALS

2.1 Types of Outliers in 2 × 2 Crossover Trials

We consider the following model for the standard 2 × 2 crossover design:

yhij = µ + ζh + shi + πm + τj + ehij (1)

Here yhij is the observation for the j-th formulation (j = R [reference] or j = T

[test]) on the i-th subject (i = 1, . . . , nh) in sequence h = 1, 2; µ the overall mean;

ζh the fixed effect of the h-th sequence; shi the random effect of subject i in sequence

h; πm the m-th period effect (m = 1, 2); τj the j-th formulation effect; and ehij the

random error for formulation j and subject i in sequence h. As usual, the shi and ehij

are assumed mutually independent with mean zero and variances var(shi) = σ2

B and

var(ehij) = σ2

W . Typically, yhij would represent a measurement of the (log-transformed)

pharmacokinetic endpoint of interest, such as log(AUC) or log(Cmax).

In terms of Model (1), we can distinguish two types of outliers:
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1. Subject outlier / between-subject outlier: For subject hi, both observations, yhiT and

yhiR, are extreme. (The outlier could be modelled as a mean shift in the subject effect

shi.) However, regarding the conventional mixed model analysis of average bioequiv-

alence with complete data, a subject outlier has no consequences since a mean shift

in shi has no effect on either the point or interval estimates of relative bioavailability.

Thus, regarding only the analysis of bioequivalence, subject outliers could be ignored

(of course, it may be interesting for reasons other than the mere analysis of bioequiv-

alence to identify subject outliers, for example, in the identification of slow versus fast

metabolizers of a drug.)

2. Single data point outlier / within-subject outlier: For subject hi, either yhiT or yhiR,

or both (but in opposite directions), is extreme; specifically, for subject hi the within-

subject difference yhiT − yhiR is extreme. A single data point outlier could be modelled

as a mean shift in either eiT or eiR. Single data point outliers can be problematic

in that they can severely affect the results of the bioequivalence test, as pointed out

above.

In summary, in standard 2 × 2 crossover trials, the (between) subject outlier gener-

ally is unproblematic (regarding strictly the test for bioequivalence). However, the

potentially problematic within-subject outlier could be caused by any of the mecha-

nisms outlined above: “product or process failure”, and, crucially, also by “subject-

by-formulation interaction”, since both types of outliers can manifest as single data

point (within-subject) outlier. Therefore, in 2× 2 crossover trials it is usually not pos-

sible to distinguish outliers caused by product/process failure from outliers caused by

subject-by-formulation interaction, based on statistical criteria alone. Consequently, as

pointed out above, regulatory authorities do generally not accept removal of outliers

from the statistical analysis of 2× 2 crossover trials based solely on statistical criteria.
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2.2 Types of Outliers in Replicate Design Crossover Trials

In the following we consider the 2-treatment, 2-sequence, 4-period replicate crossover

design recommended by the relevant FDA guidance document (FDA, 2001). This de-

sign has the two sequences R T R T and T R T R; however, the methods outlined

below can easily be adapted to a replicate design with the sequences R T T R and

T R R T.

We consider the following model:

yhijk = µ + ζh + shi + uhij + πm + τj + eijk (2)

Here yhijk is the observation for the k-th replicate (k = 1, 2) of the j-th formulation

(j = R,T) on the i-th subject (i = 1, . . . , nh) in sequence h = 1, 2; µ the overall mean;

ζh the fixed effect of the h-th sequence; shi the random effect of subject i in sequence

h; uhij the (i, j)-th random subject-by-formulation effect in sequence h; πm the m-th

period effect (m = 1, . . . , 4); τj the j-th formulation effect; and ehijk the random error

for replicate k, formulation j and subject i in sequence h.

The random terms shi, uhij and ehijk are assumed mutually independent with mean

zero and the following variances: var(shi) = σ2

S; var(uhiT ) = σ2

ST and var(uhiR) = σ2

SR

such that σ2

BT = σ2

S + σ2

ST , σ2

BR = σ2

S + σ2

SR are the between-subject variances and

σ2

D = σ2

ST + σ2

SR is the subject-by-formulation interaction variance component; finally

var(ehiTk) = σ2

WT and var(ehiRk) = σ2

WR are the within-subject variances. The notation

σ2

BT , σ2

BR, σ2

WT , σ2

WR and σ2

D for the between- and within-subject variances is consistent

with the FDA (2001) guidance document.

In terms of Model (2) three types of outliers can be distinguished:

1. Subject outlier / between-subject outlier: For subject hi, all 4 observations yhiT 1,

yhiT 2, yhiR1, yhiR2 are extreme. (The outlier could be modelled as a mean shift in the

subject effect shi.) Again, regarding the conventional mixed model analysis of average

bioequivalence with complete data, a subject outlier has no consequences since a mean

shift in shi may inflate the estimate of between-subject variance, but does not affect
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the point or interval estimate of relative bioavailability.

2. Subject-by-formulation outlier / within-subject but between-replicate outlier: For

subject hi, the replicates yhiT 1 and yhiT 2, jointly, are different from the replicates yhiR1

and yhiR2; in other words, for subject hi the within-subject, between replicate difference

([yhiT 1 + yhiT 2] − [yhiR1 + yhiR2]) is extreme. A subject-by-formulation outlier could be

modelled as a mean shift in either uhiT or uhiR. Subject-by-formulation outliers can be

problematic since they can severely affect the results of the bioequivalence test.

3. Single data point outlier / within-subject, within-replicate outlier: For subject hi,

one of the four observations yhiT 1, yhiT 2, yhiR1, or yhiR2 is extreme; that is, either one

of the within-subject, within-replicate differences (yhiT 1 − yhiT 2) or (yhiR1 − yhiR2) is

extreme. A single data point outlier could be modelled as a mean shift in either ehiT 1,

ehiT 2, ehiR1 or ehiR2. Single data point outliers can be problematic since they can

severely affect the results of the bioequivalence test.

3. RESIDUALS

As a simple diagnostic tool for the identification and classification of outliers (into

the above three types) in replicate design crossover studies we propose to calculate

and plot four sets of residuals, of three types corresponding to the three different types

of outliers that can be distinguished. The residuals are obtained as four (mutually

orthogonal) linear contrasts of the four data points associated with each subject.

Initially, we form the following four contrasts of the four observations for each

subject (i = 1, . . . , nh; h = 1, 2):

chi1 = yhi·· = (yhiT 1 + yhiT 2 + yhiR1 + yhiR2)/4

chi2 = yhiT · − yhiR· = (yhiT 1 + yhiT 2)/2 − (yhiR1 + yhiR2)/2

chi3 = (yhiT 1 − yhiT 2)/
√

2

chi4 = (yhiR1 − yhiR2)/
√

2
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For each subject, the four contrasts are, respectively

• chi1: the average of the four observations; extreme values of chi1 would indicate

a subject outlier.

• chi2: the difference of the treatment averages (over the two replicates) for subject

hi; extreme values of chi2 would indicate a subject-by-formulation outlier.

• chi3: the difference between the test formulation replicates; extreme values of chi3

would indicate a data point outlier among the test formulation data.

• chi4: the difference between the reference formulation replicates; extreme values

of chi4 would indicate a data point outlier among the reference formulation data.

We note that the four contrasts cghi can be written as the following linear trans-

formation of the four observations yhijk of each subject; note that the rows of the

transformation matrix are orthogonal (the correlation structure of the resulting con-

trasts is discussed below):

chi =





















chi1

chi2

chi3

chi4





















=





















+2−2 +2−2 +2−2 +2−2

+2−1 +2−1 −2−1 −2−1

+2−
1

2 −2−
1

2 0 0

0 0 +2−
1

2 −2−
1

2









































yhiT 1

yhiT 2

yhiR1

yhiR2





















In terms of model (2), the variances of the four contrasts are

var(chi1) = σ2

S/2 + (σ2

BT + σ2

BR)/4 + (σ2

WT + σ2

WR)/8

var(chi2) = σ2

D + (σ2

WT + σ2

WR)/2

var(chi3) = σ2

WT

var(chi4) = σ2

WR
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Remarks:

1. If σ2

D = 0 (absence of formulation-by-subject interaction variance component)

and σ2

WT = σ2

WR = σ2

W (the within-test and within-reference variances are equal),

then

var(chi2) = var(chi3) = var(chi4) = σ2

W

that is, the contrasts chi2, chi3 and chi4 all have the same variance.

2. The contrasts chi3 are independent of the contrasts chi4, because, under model (2),

the random effects shi and uhij cancel out when the within-formulation contrasts

are formed, and the error terms ehiTk are assumed independent of ehiRk.

3. The contrasts chi3 and chi4 are uncorrelated with the contrasts chi1 and chi2,

because the difference ehiT 1 − ehiT 2 is uncorrelated with the sum ehiT 1 + ehiT 2;

similarly ehiT 1 − ehiT 2 is uncorrelated with ehiT 1 + ehiT 2. Furthermore, under

normality, the contrasts chi3 and chi4 are independent of the contrasts chi1 and

chi2.

4. If, as in Remark 1, σ2

D = 0 and σ2

WT = σ2

WR = σ2

W , then the contrasts chi1 and

chi2 are uncorrelated, and independent under normality.

The expected values of the four contrasts can be written as

E(cghi) = γgh, g = 1, . . . , 4; h = 1, 2

where the expected values γgh can be written in terms of the parameters of model (2)

as follows:

γ1h = µ + (τT + τR)/2 + (π1 + π2 + π3 + π4)/4 + ζh, for h = 1, 2

γ2h =











(τT − τR) + (π1 + π3)/2 − (π2 + π4)/2, for h = 1

(τT − τR) + (π2 + π4)/2 − (π1 + π3)/2, for h = 2

γ3h =











(π1 − π3)/
√

2, for h = 1

(π2 − π4)/
√

2, for h = 2

10



γ4h =











(π2 − π4)/
√

2, for h = 1

(π1 − π3)/
√

2, for h = 2

Thus each contrast follows a simple one-way (two-sample) layout with sample size n1

and n2, respectively, corresponding to the two design sequences. Residuals, there-

fore, can be defined by subtracting from the above contrasts the respective sequence

averages:

rShi
= chi1 − ch·1 = yhi·· − yh···

rSFhi
= chi2 − ch·2 = (yhiT · − yhiR·) − (yh·T · − yh·R·)

rDThi
= chi3 − ch·3 = [(yhiT 1 − yhiT 2) − (yh·T 1 − yh·T 2)] /

√
2

rDRhi
= chi4 − ch·4 = [(yhiR1 − yhiR2) − (yh·R1 − yh·R2)] /

√
2

Studentized residuals sShi
, sSFhi

, sDThi
, and sDRhi

are obtained by dividing the above

(unstudentized) residuals by their standard error, for example,

sShi
=

rShi
√

(1 − 1/nh)
∑

i,h r2

Shi
/(n1 + n2 − 2)

and similarly for sSFhi
, sDThi

, and sDRhi
.

4. RESIDUAL PLOTS

4.1 Uses of Unstudentized Residuals

A visual comparison of the variability of the residuals rDThi
with the variability of

the residuals rDRhi
will indicate the relative magnitude of the within-subject variances

σ2

WT and σ2

WR; specifically, such a visual check will indicate whether any difference

between the estimates of σ2

WT and σ2

WR might be due to single data point outliers.

Furthermore, a visual comparison of the variability of the residuals rSFhi
with the

variability of rDThi
and of rDRhi

will indicate the potential presence of subject-by-

formulation interaction (if rSFhi
appears more variable than either rDThi

and of rDRhi
)
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– see Remark 1 above. The plot of rSFhi
could also indicate whether any notable

subject-by-formulation variance component might to due to subject-by-formulation

outliers.

4.2 Uses of Studentized Residuals

For outlier detection, we suggest to plot the four sets of studentized residuals against

the subject number, and to inspect the residuals in the following order:

1. Plot sDThi
and sDRhi

: Identify possible data point outliers among either the test

or reference formulation replicates.

2. Plot sSFhi
: Identify possible subject-by-formulation outliers.

3. Plot sDThi
: Identify possible subject outliers.

Note: When an outlier is detected among the residuals sDThi
or sDRhi

for a given

subject hi, one will refer back to the data, namely to the pattern of the four observations

for the subject, to determine which of the two replicates is responsible for the outlier.

In Section 5 we provide an example of this process.

4.3 Potential Contamination

We note the potential effects of contamination: Genuine data point outliers may

create “false” subject-by-formulation outliers, since an extreme value of a single data

point will not only cause the relevant residual sDThi
or sDRhi

to be extreme, but may

also cause the residual sSFhi
to be extreme. Furthermore, genuine (and false) subject-

by-formulation outliers may create “false” subject outliers, through a similar process.

Therefore, we recommend to inspect the above plots successively in the order given.

“First occurrence” of an extreme value will identify outlier type. That is, if a single

data point outlier is identified in a plot of sDThi
or sDRhi

, then any extreme values of

sSFhi
or sShi

in the same subject are probably accounted for by the data point outlier.

Similarly, if a (genuine) subject-by-formulation-outlier is identified in a plot of sSFhi
,
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then an extreme value of sShi
in the same subject is probably accounted for by the

subject-by-formulation-outlier.

4.4 Outlier Tests

As noted above, each of the four sets of residuals, rShi
, rSFhi

, rDThi
and rDRhi

follows a two-sample layout where the groups in question are determined by the design

sequence. Therefore, extreme values in each of the four sets of residuals can be tested

using outlier tests appropriate for the two-sample problem.

In the context of analysis of bioequivalence, the subject-by-formulation and data

point outliers are of primary interest. The corresponding sets of residuals, namely

rDThi
and rDRhi

, are mutually independent whatever the distributions of the random

terms in model (2); furthermore, both rDThi
and rDRhi

are independent of rSFhi
under

normality. Outlier tests, therefore, could be based on the studentized residuals. If

period and sequence effects are ignored, outlier tests for the one-sample problem, such

as Grubb’s test, can directly be applied to the three sets of residuals. If one wants

an overall test for the maximum residual across the three sets, the distribution of the

maximum residual in three independent samples needs to be determined.

5. EXAMPLE

We consider data of 31 subjects from a bioequivalence trial with a 2-treatment, 2-

sequence, 4-period replicate crossover design. The replicate design was used for the trial

because of the high pharmacokinetic variability of the drug. We present residual plots

for the (log-transformed) pharmacokinetic variable AUC∞, and statistical assessment

of bioequivalence for the variables AUC∞ and Cmax.

5.1 Residual Plots

A plot of the studentized residuals sDThi
(Figure 1) reveals nothing untoward, all

residuals lying within a range of approximately −2.5 to +2.5 (the critical value for

Grubb’s test for a single sample of size n = 31 is 2.94; the dotted lines in Figures 1
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– 4 indicate the critical value). However, the plot of the studentized residuals sDRhi

(Figure 2) reveals a dramatic outlier for subject 7, with sDR7
= 4.48. In order to find

out which of the two reference formulation replicates for subject 7 is responsible for the

outlier, we refer to the data: the four data points for AUC∞ are as follows (ng·h/mL):

Test 1: 495.4; Test 2: 488.0; Reference 1: 581.4; Reference 2: 121.1. Clearly, the

second replicate for the reference formulation is the single data point outlier.

A plot of the subject-by-formulation residuals sSFhi
(Figure 3) shows that the resid-

ual for subject 7 is the largest, apparently caused by contamination by the single data

point outlier. However, all residuals, including that for subject 7, lie within the range

of approximately −2.5 to +2.5.

Finally, a plot of the subject residuals sShi
(Figure 4) reveals a distinct outlier for

subject 31, with sS31
= 3.27.

The plots of the unstudentized residuals rDThi
and rDRhi

(Figures 5 and 6) suggest

that the within-subject variability of the reference formulation is actually somewhat

smaller than that of the test formulation, although the dramatic single data point

outlier for the reference formulation is expected to inflate the estimate of σ2

WR when

the outlier is included in the analysis.

The plot of the rSFhi
residuals (Figure 7) suggests moderate excess variability over

the within-subject residuals, particularly over the reference formulation. Therefore,

one would expect a moderately large estimate of the subject-by-formulation variance

component. There is no indication that the subject-by-formulation variance is caused

by a single data point (or by a small number).

We note that plots of the residuals for Cmax (not shown) and inspection of the data

for subject 7 reveal the same picture as for AUC∞, although the subject residual for

subject 31 is not as extreme for Cmax as it is for AUC∞.

5.2 Assessment of Bioequivalence and Sensitivity Analysis

Table 1 presents the results of the statistical analysis of the data for AUC∞ and

Cmax, both including and excluding the single data point outlier for subject 7. We fitted
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the conventional mixed analysis of variance model (FDA, 2001). Note that the analysis

excluding the single data point for subject 7, period 4 (R2 replicate) is equivalent to

an analysis including all data but fitting a dummy variable representing a mean shift

in the corresponding data point.

Clearly, the single data point outlier greatly inflated the estimate of the within-

subject variability of the reference formulation of both AUC∞ and Cmax: when all

data are analysed, the within-subject coefficient of variation for the reference is larger

than for the test formulation, while the relationship is reversed when the single data

point outlier is removed from analysis. We note that, for this example, removing the

single data point outlier did not decrease the estimate of the subject-by-formulation

interaction variance component.

Despite its size, the single data point outlier in subject 7 had no dramatic effect on

the result of the bioequivalence test for the variable AUC∞: whether or not the outlier

is excluded from the analysis, the 90% confidence interval (CI) for the test/reference

mean ratio of AUC∞ is comfortably within the conventional bioequivalence range of

[0.8, 1.25]. However, the situation is somewhat different for Cmax: the analysis including

the outlier very nearly fails to demonstrate bioequivalence, with an upper limit of the

90% CI of 1.248.

We also analysed the variable AUC∞ adjusting for the potential subject outlier in

subject 31, by fitting a dummy variable representing a mean shift in the corresponding

subject effect. This procedure has of course no effect on either the point or interval

estimate for the test/reference mean ratio, nor on the estimates of the within-subject or

subject-by-formulation variance components (the slight difference in the latter is due to

rounding error). However, the estimates of the between-subject variance components

are greatly reduced when the subject outlier is removed (dummy variable fitted).

6. DISCUSSION

Outliers may only be removed from analysis of bioequivalence trials if they are
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caused by process or product failures; when outliers are potentially caused by subject-

by-formulation interaction they may not be removed from analysis. Without external

documentation, in 2 × 2 crossover trials is not possible to distinguish outliers caused

by process or product failures from outliers caused by subject-by-formulation, solely

through statistical criteria.

The proposed residuals for the 2-treatment, 2-sequence, 4-period replicate crossover

design can be used to identify and classify three types of outliers: (i) subject outliers,

(ii) subject-by-formulation outliers, and (iii) single data point outliers in either the test

or reference formulation. We recommend that those residuals are routinely calculated

and plotted as a very simple and quick diagnostic check of bioequivalence data.

A necessary condition for removal of data from analysis would be the identifica-

tion of an outlier as a single data point outlier, rather than a subject-by-formulation

outlier. Furthermore, depending on the presumed mechanism causing the outlier, the

outlier would have to be present in both AUC and Cmax data. For example, if there

is documentation that the outlier might be caused by vomiting shortly after drug ad-

ministration, clearly both AUC and Cmax would have to extremely low (indeed, the

complete concentration-time profile would have to be low).

Finally, removal of data points from primary analysis should always be supported

by a sensitivity analysis; thus analysis results would usually have to be presented for

analyses both including and excluding the suspect data points.

REFERENCES

Braddy, A.C., Patel, D., Jackson, A.J., Davit, B., Conner, D. (2008). Statistical out-

liers: the significance and impact of re-dosing studies to establish bioequivalence.

http:/www.aapsj.org/abstracts/AM 2008/AAPS2008-001564.PDF

Chow, S. C., Tse, S. K. (1990). Outlier detection in bioavailability/bioequivalence

studies. Statistics in Medicine 9:549-558.

Chow, S. C., Liu, J. P. (2000). Design and Analysis of Bioavailability and Bioequiva-

16



lence Studies. Second Edition. New York: Marcel Dekker, Inc.

European Agency for the Evaluation of Medicinal Products (EMEA) (2001). The In-

vestigation of Bioavailability and Bioequivalence. Note for Guidance. Committee

for Proprietary Medicinal Products (CPMP), London.

European Agency for the Evaluation of Medicinal Products (EMEA) (2006). Questions

and Answers on the Bioavailability and Bioequivalence Guideline.

EMEA/CHMP/EWP/40326/2006, London.

Food and Drug Administration (FDA) (2001). Statistical Approaches to Establishing

Bioequivalence. Guidance for Industry. Center for Drug Evaluation and Research

(CDER), Rockville, Maryland.

Food and Drug Administration (FDA) (2003). Bioavailability and Bioequivalence

Studies for Orally Administered Drug Products General Considerations. Guid-

ance for Industry. Center for Drug Evaluation and Research (CDER), Rockville,

Maryland.

Hauschke, D., Steinijans, V., Pigeot, I. (2007). Bioequivalence Studies in Drug Devel-

opment. Methods and Applications. Chichester: Wiley.

Ki, F. Y. C., Liu, J. P., Wang, W., Chow, S. C. (1995). The impact of outlying subjects

on decision of bioequivalence. Journal of Biopharmaceutical Statistics 5:71-94.

Liao, J. J. Z. (2007). A new approach for outliers in a bioavailability/bioequivalence

study. Journal of Biopharmaceutical Statistics 17:393–405.
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Table 1. Mixed Model ANOVA of Replicate Design Crossover Trial

Analysis Outlier PE 90% CI CVWT CVWR CVD CVBT CVBR

Variable removed (%) (%) (%) (%) (%)

AUC∞ No 1.024 (0.954, 1.100) 16.2 25.5 10.2 64.6 57.7

Yes1 1.000 (0.938, 1.067) 16.8 14.2 14.4 64.5 61.9

Yes2 1.024 (0.954, 1.100) 16.2 25.5 10.3 50.1 45.3

Cmax No 1.124 (1.011, 1.248) 31.1 32.8 14.7 57.3 52.9

Yes1 1.092 (0.989, 1.206) 30.7 21.0 20.0 57.4 59.8

1 Data point for subject 7, period 4 (R2 replicate) removed
2 Dummy variable for mean shift in subject effect (subject 37) fitted

PE: point estimate for test/reference ratio of geometric means; CI: confidence interval;

CV: coefficient of variation; CV (%) = 100 ·
√

exp (σ2)− 1), where σ
2 is the relevant variance

component on the log-scale
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Figure 1: Studentized sDT Residual 

 

Figure 2: Studentized sDR Residual 

 



Figure 3: Studentized sSF Residual 

 

Figure 4: Studentized sS Residual 

 



Figure 5: Unstudentized rDT Residual 

 

Figure 6: Unstudentized rDR Residual 

 



Figure 7: Unstudentized rSF Residual 

 


