
1 
 

Modelling Risk on Losses due to Water Spillage for Hydro Power Generation. 

A Verster and DJ de Waal 

Department Mathematical Statistics and Actuarial Science 

University of the Free State 

Bloemfontein 

 

ABSTRACT 

Generation of Hydro Power, at two of the major reservoirs in South Africa, experiences major 

losses due to spillage. Spillage due to unpredicted heavy rainfall in the catchment area occurs 

when the water levels in the reservoirs are high and the management of the water through the 

turbines are not efficient enough to prevent spillage.  In this paper the annual losses that occurred 

at one of the reservoirs, taking into account the years without losses, were modelled to be able to 

predict future losses given that the management of the water stays the same.  Due to the 

occurrence of extreme inflows, an extreme value distribution with inflated zeros was fitted to 

calculate the risks. 

KEYWORDS: GBG; water spillage; losses; inflated zeros; extreme values; predictive 

distribution 

 

1. INTRODUCTION 

 

The Gariep Dam is the largest reservoir in South Africa and lies in the upper Orange River. At 

full supply it stores 5943 million cubic meters of water. ESKOM, the main supplier of electricity 

in South Africa, has a hydro power station at the dam wall consisting of four turbines, each 

turbine can let through 162 cubic meters per second. If all 4 turbines are operating, the total 

release of water through the turbines is 648 3 /m s .  Spillage over the wall will occur if the dam 

is 100% full with all 4 turbines running and the inflow into the dam exceeds 648 3 /m s .  Part of 

managing the water is to make sure that there is storage capacity, especially in the rain season, 

and to lower the level of the water in the dam through power generation. There are however 

restrictions for ESKOM on generating too much power, for example:  The Department of Water 

Affairs and Forestry set up a control curve above which ESKOM can use as much water for 

power generation as they like, but if the water level reaches the curve they are only allowed to let 

water through that is needed for irrigation purposes downstream.   
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The total loss observed at Gariep due to spillage during 1971 to 2006 is 1.7693x1010  million 

cubic meters and in terms of South African Rand it was calculated as R76, 950, 708. This is a 

major loss and the question on the risk ESKOM takes in the next 100 years, under the same 

rules, is a valid question. It is however important to note that out of the 36 years, 23 appeared 

without losses.  Figure 1 shows the spillage during this period. 

 

 

Figure 1: Spillage at Gariep Dam during 1971-2006 

 

It is clear that two data points seem to be quite extreme; therefore we need to look into a Pareto 

type of distribution to fit these losses. Since we have all the data we will not consider Peaks Over 

Threshold models, such as the Generalized Pareto (See Beirlant et al, 2004). A first choice 

among the various distributions is the Generalized Burr-Gamma (GBG) distribution (Berlant et 

al, 2002). This distribution is fairly flexible since it has 4 parameters. The way we will proceed is 

to fit the GBG taking into account the inflated zeros and estimate future tail quantiles and 

probabilities.  We would like to follow the route of the predictive density through the Bayesian 

approach, but due to heavy numerical integration with respect to the four parameters, we rather 

use the plug in method as also discussed in Beirlant‟s book (See for example Beirlant et al, 2004, 

page 156).  For interest sake we did follow the predictive route under the Exponential 

distribution fit (See Beirlant et al, 2004, pages 438-442) for purposes of comparison knowing 

that the Exponential distribution will not be appropriate for this data. 
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2. PREDICTIVE DISTRIBUTION UNDER AN EXPONENTIAL FIT WITH INFLATED 

ZEROS  

 

Let X ~ EXP(λ) with density f(x) = (1/λ)exp(-x/λ), x > 0, then x = 0 is not possible. To 

accommodate zeros, referred to as inflated zeros, the model is defined as  

 

              

                     f(x) =                                x = 0                                                                        (1) 

                                 (1 )exp( / )x   , x > 0. 

 

Let  1 2, ,.., nx x x  denote a random sample of n observations from this distribution and let rx  

denotes the mean of the r positive observations. Assume that the joint prior for   and   is given 

by 
1

( , )  


 . The joint posterior becomes the product of a Beta(  | n-r+1,r+1) and an inverse 

gamma, IG(
1

| ,
r

r
rx

 ).  The predictive density of a future Z is given by  
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The last expression is the density of a GPD(1/r,     ). From this the tail quantile, at a tail 

probability of  p, is given by  

 

   

                                                         .                                                                                       (3) 

 

 

Suppose we need to predict the maximum annual loss during the next 100 years.  From (2)   

E( |data) =  0.6316 given n = 36 and r = 13, therefore the probability that no losses will occur in 

the next 100 years is 0.6316.  The probability that losses will occur in the next 100 years is 

0.3684.   Therefore we predict 37 years ahead during which losses will occur. Let p = 37/101 (we 

take 100+1 in the denominator to prevent an infinite number in the calculation) in (3), then z =  

rx
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5.675x 910  million cubic meter. This is the equivalent of an annual risk of R24.68 million. If we 

compare this with the maximum annual spillage observed, namely 5.7889x 910  million cubic 

meter (or R25.182 million), then our prediction seems to be too low. This is due to the fact that 

the Exponential does not give a good fit to the data. The QQ-plot between the observed and 

predicted quantiles (according to (3)) in figure 2 clearly shows that the two extreme values are 

not accommodated. We will therefore consider the fit of a more flexible distribution, like the 

GBG. 

     

 
 

Figure 2:  QQ-plot between predicted and observed qauntiles on an Exponential fit 

 

3. THE GENERALIZED BURR-GAMMA (GBG) DISTRIBUTION 

 

The generalized Burr-Gamma class of distributions includes many of the well known extreme 

value of distributions, such as the Gumbel, Weibull, Burr, Generalized Extreme Value and 

generalized Pareto distributions to name a few.  The GBG distribution contains four parameters, 

, , ,k    , where   is known as the extreme value index.  𝜇 is called a location parameter 

although it is the mean of 𝑌 =  −log⁡(𝑋), where 𝑋 is GBG distributed, only if 𝜉 = 0.  Similarly 

𝜎 is called the standard deviation of 𝑌 only if 𝜉 = 0.  Since 𝜉 = 0 implies that the distribution 

belongs to the Gumbel class with no extremes, it means that if extremes do exist and is deleted, 𝜇 

and 𝜎 can be estimated from the rest of the data.  The mean and standard deviation of the GBG 

are shown to be complex expressions of all four parameters.  We will make use of the idea to 

delete extremes exceeding a threshold to estimate 𝜇 and 𝜎 as moment estimates and then proceed 

to estimate the two shape parameters 𝑘 and 𝜉 in Section 3.3.  The GBG distribution models all 
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the data, also the data in the tail and is given as follows by Beirlant et al. 2002.  A random 

variable X is GBG( , , ,k    ) distributed when the distribution function is given by (Berlant et 

al, 2002) 

 
 

 
1

0

1
( ) ( )

x

u kF x P X x e u du
k


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               (4) 
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for 
 

1 + 𝜉𝑣 𝑥 > 1. 

 

   logk k
k




 


 and    ' k k
k

 





 represent the digamma and trigamma functions 

respectively.   

The parameter space is defined as  , 0, 0,k              . 

It is shown by Beirlant et al. 2002, p. 115 that  ~ ,1GAMV k .  They also show that for 0  , 

𝑉~𝐺𝐴𝑀(𝑘, 1) and 𝑋 is generalized Gamma distributed with distribution function 

 

 𝐹 𝑥 =
1

Γ(𝑘)
 𝑒−𝑢𝑢𝑘−1𝑑𝑢
𝜐(𝑥)

0
.                                                                                          (5) 

 

3.1 PROPERTIES OF THE GBG DISTRIBUTION 

 

For 𝑉𝜉~𝐺𝐴𝑀(𝑘, 1) and 𝑌 = −𝑙𝑜𝑔𝑋, the approximated expected value and variance of 𝑌 can be 

derived by using the delta method (Rice, 1995) as 
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 𝐸 𝑌 ≈ 𝜇 −
𝜎

 𝜓 ′(𝑘)
  𝑙𝑜𝑔  

exp ⁡(𝜉𝑘 )−1

𝜉
 +

1

2
𝑘  

−𝜉2exp ⁡(𝜉𝑘)

 exp ⁡(𝜉𝑘)−1 2
  − 𝜓(𝑘) = 𝜇𝑌         (6) 

 

and 

 

 𝑉𝑎𝑟 𝑌 ≈

𝜎2

𝜓 ′(𝑘)
𝑘𝜉2exp ⁡(2𝜉𝑘)

 𝑒𝑥𝑝  𝜉𝑘 −1 2 = 𝜎𝑌
2              (7) 

 

(Beirlant et al. 2002). 

 

For 𝑋 = exp⁡(−Y) where 𝑔 𝑌 = exp⁡(−𝑌) the delta method can again be applied and the 

approximations for the expected value and variance of 𝑋 can be derived as follows: 

 

 𝐸 𝑋 ≈ 𝑔 𝜇𝑌 +
1

2
𝜎𝑌

2𝑔′′ 𝜇𝑌  

         ≈ 𝑒𝑥𝑝  
𝜎

 𝜓 ′(𝑘)
  𝑙𝑜𝑔  

exp  𝜉𝑘 −1

𝜉
 +

1

2
𝑘  

−𝜉2exp ⁡(𝜉𝑘)

 exp  𝜉𝑘 −1 2  − 𝜓(𝑘) − 𝜇          (8) 

 

and 

 

  𝑉𝑎𝑟 𝑋 ≈ 𝜎𝑌
2 𝑔′(𝜇𝑌) 2 

 ≈

𝜎2
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 exp  𝜉𝑘 −1 2  −𝑒𝑥𝑝  
𝜎
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𝜉
 +

1

2
𝑘  

−𝜉2 exp  𝜉𝑘 

 exp  𝜉𝑘 −1 2  − 𝜓 𝑘  − 𝜇  

2

 

                  (9) 

 

3.2 INVESTIGATING THE APPROXIMATIONS 

 

To investigate the appropriateness of the approximations for 𝐸(𝑋) and 𝐸(𝑌) in (6) and (7), data 

sets were simulated from a GBG distribution.  After simulating a data set the approximated mean 

and variance are compared to the true mean and variance of 𝑌.  This is illustrated in the 
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following figures.  The true mean and variance is indicated by the solid line and the 

approximated mean and variance is indicated by „*‟.  For the simulations 𝜇 = 0 and 𝜎 = 1 are 

assumed to be fixed.  Figure 3 indicates that for 3 ≤ 𝑘 ≤ 6 and 0 ≤ 𝜉 ≤ 3 the approximated 

mean are close to the true mean of 𝑌.  

 

Figure 3 True mean of 𝑌 (-) vs. the approximated mean of 𝑌 (*) where the values of 𝜉 

range from 0.3 (first graph at the top) to 3 (last graph at the bottom) 

 

Figure 4 indicates that for 3 ≤ 𝑘 ≤ 6 and 0 ≤ 𝜉 ≤ 3 the approximated variance are close to the 

true variance of 𝑌.  
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Figure 4 True variance of 𝑌 (-) vs. the approximated variance of 𝑌 (*) where the value of 𝜉 

range from 0.3 (last graph at the bottom) to 3 (first graph at the top) 

 

3.3 ESTIMATION OF THE GBG PARAMETERS 

 

This section discusses the estimation of the four GBG parameters.  First it is shown through 

simulation studies that the parameters 𝜇 and 𝜎 can be estimated fairly accurately through the 

method of moments when only considering the data below a threshold.  The method of moments 

are given by the following equations 

1

ˆ /
tn

j t

j

y n


                           (10) 

and 
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where 𝑦𝑗 , 𝑗 = 1,… , 𝑛𝑡  denotes the 𝑛𝑡  observed 𝑦 values below the threshold 𝑡.  
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The threshold is chosen by making use of the Generalized Pareto quantile plot.  The Generalized 

Pareto quantile plot is shown in Beirlant et al. 2004.  By making use of this method a threshold is 

chosen where the QQ-plot starts to follow a straight line.  This is illustrated in the following 

simulation.  

 

𝑛 = 500 values 𝑥1, … , 𝑥𝑛  were simulated from a GBG with the following set of parameters, 

[𝜇 = 0, 𝜎 = 1, 𝑘 = 3, 𝜉 = 0.2].  Figure 5 shows the simulated data values of 𝑋.  Let 𝑦𝑗 =

−𝑙𝑜𝑔𝑥𝑗 , 𝑗 = 1,… , 𝑛, the mean and variance of 𝑌 is calculated as 𝜇 = −0.5350  and  𝜎 = 0.8545 

respectively. 

 

Figure 5 Simulated value of 𝑋. 

 

From Figure 5 it is evident that extreme values occur in the data set.  A threshold is now selected 

by using the Generalized Pareto quantile plot shown in Figure 6.   
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Figure 6 The Generalized Pareto QQ-plot on X, where 𝑖 =  1, … , 𝑛. 

 

From Figure 6 it seems that the quantlie plot tends to become a straight line when the log of the 

data exceeds 2.  Therefore the threshold is 𝑡 = exp 2 = 7.3891.  Figure 7 shows the simulated 

𝑋 values below the threshold.   The mean and the variance of 𝑌 is now calculated for the data 

below the threshold as follows: 𝜇 = −0.1809  and 𝜎 = 1.1143. 
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Figure 7 Simulated value of 𝑋 below the threshold 7.3891 

 

The estimates of  𝜇 and 𝜎 are closer to the true 𝜇 and 𝜎 when only the data below the threshold is 

considered. 

 

The Kolmogorov Smirnov measure, 𝐾𝑆 = max⁡|𝐹𝑛 − 𝐹| (Conover, 1980) is used to estimate 

values for 𝑘 and 𝜉 where 𝐹𝑛  denotes the empirical cdf and 𝐹 the fitted cdf.  Since it is known that 

𝑉~𝐺𝐴𝑀(𝑘, 1) the Kolmogorov Smirnov measure calculates the maximum absolute difference 

between the empirical Gamma function and the cumulative Gamma function for different values 

of 𝑘 and 𝜉.  With the Kollmogorov Smirnov measure one can see how well the model fits the 

data.  The minimum value of the different maximum Kolmogorov Smirnov measure values will 

indicate the best fit.  This is illustrated by continuing with the simulation study.  For different 

values of  1.8 < 𝑘 < 5 and 0 < 𝜉 < 1.6 the Kolmogorov Smirnov measure is calculated.  The 

estimates of 𝑘 and 𝜉 are the values of 𝑘 and 𝜉 that gives the minimum Kolmogorov Smirnov 

measure value.  The estimated parameter values are shown in Table 1 together with the minimum 

Kolmogorov Smirnov (KS) measure value.  Table 1 also includes the estimated parameter values 

when the threshold is chosen as the 75
th

 percentile.   

 

 

 

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8

Number of observations

V
a
lu

e
s
 o

f 
o
b
s
e
rv

a
ti
o
n
s



12 
 

Table 1 Estimated vs true parameter values. 

 True 

parameter 

value 

Estimated parameter value for t = 

7.3891 (Generalized Pareto quantile 

plot) 

Estimated parameter value 

for t = 75
th

 percentile (t = 

3.9944) 

𝝁 0 -0.1809 0.0354 

𝝈 1 1.1143 1.0271 

𝒌 3 2.7 3.7 

𝝃 0.2 0.2 0.2 

KS  0.0162 0.0165 

 

From Table 1 it is clear that the estimated parameter values for both thresholds are close to the 

true parameter values.  

Figure 8 shows the QQ-plots for the estimated parameters in Table 1.  The QQ-plot gives an 

indication of the goodness of fit of the GBG to the simulated data.  If the QQ-plot follows more 

or less a straight line it indicates a good fit.   

 

Figure 8 QQ-plots for 𝑡 = 7.3891 and 𝑡 = 3.9944 respectively 

 

From Figure 8 it can be seen that the GBG is a good fit to the data for both thresholds.  

 

4. PREDICTION OF LOSSES THROUGH THE GBG 

 

The Generalized Pareto quantile plot is shown in Figure 9.  It seems fairly obvious to delete the 

largest two losses to fit the GBG and to estimate 𝜇 and 𝜎.  The threshold is chosen at 𝑡 =
exp 22.445 = 5594 × 106.  A GBG distribution is fitted to the data, where 𝜇 and 𝜎 are 

estimated from the values below the threshold, 𝑘 and 𝜉 are estimated where the Kolmogorov 
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Smirnov measure for goodness of fit, reaches a minimum for different values of 𝑘 and 𝜉.  The 

estimated parameter values are shown in Table 2 and the QQ-plot is shown in Figure 10.   

 

 

 

Figure 9 The Generalized Pareto QQ-plot on the positive spillage values 

 

Table 2 Estimated parameter values 

𝝁 𝜎 𝑘 𝝃 

-19.3732 1.4375 5.2 0.1 

 

Figure 10 shows a QQ-plot of the GBG fit.  The QQ-plot gives an indication of the goodness of 

fit of the GBG to the simulated data.   
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Figure 10 QQ-plot for the estimated parameter values 

 

The value for KS is given by KS = 0.087 which is highly significant and confirms the fit of the 

GBG.  

The maximum loss that can be expected during the next 100 years, can now be estimated from 

the tail quantile function 

 

 𝑈 𝑝 = exp⁡ −𝜇 +
𝜎 𝜓 𝑘  

 𝜓 ′  𝑘  
  𝑒𝑥𝑝   𝜉 Γk 

−1 𝑝 − 1 /𝜉   

𝜎 

 𝜓 ′ (𝑘 )
                                      (12) 

 

by letting 𝑝 =
𝑛+2

𝑟+1

37

101
 where 𝑛 = 36 and 𝑟 = 13.  Γk

−1(𝑝) denotes the  1 − 𝑝  th
 quantile for a 

gamma(𝑘, 1) distribution.  This gives an estimate of 6.3948 × 109 million m
3
 loss which is 

equivalent to a risk of R 28.7 million.  Comparing this with risks calculated in Section 2 we note 

a substantial increase.  The estimate of 𝜃 (probability of no spillage in a year) is taken here 

similar to the estimation in Section 2.   
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5 CONCLUSION 

 

We belief that the GBG is the appropriate model to fit to the dataset.  This work includes the 

calculation of inflated zeros.  Instead of using the predictive density of the GBG to calculate 

future losses, we considered the “plug in” method; this is due to numerical and analytical 

difficulty of calculating the predictive density. Further research can be done in this area.  When 

compared to the Exponential distribution the estimates of the GBG seems acceptable.  Unless the 

management of the water is changed the risk of future losses due to spillage at the Gariep Dam is 

large. To be able to manage the water better, a prediction of the rainfall in the catchment area 

will be necessary. The catchment area is mountainous and lies in Lesotho, known as the Country 

in the Sky, with almost none rainfall gauges. The soil moisture also plays an important role in 

predicting the stream flow. This forms part of a long term research plan and is under 

investigation. An interesting aspect of this research is the prediction of the Southern Oscillation 

Index (SOI) which has been discussed in the literature (see for example Salisbury & Wimbush, 

2002) as a challenging problem. 
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