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D.J. (Daan) de Waal 

 

Daan de Waal attended school in the town of Boshoff in the Free State.  His intention had 

always been to take up farming on the family farm in the district after leaving school, that 

is, until a teacher advised him to study for a degree in agriculture at the newly established 

Faculty of Agriculture at the University of the Orange Free State.  It was then decided that 

Daan would study for the four-year BSc Agric degree , hopefully to equip him better for a 

successful farming career.  Arriving at the university at the beginning of 1959 Daan had no 

idea which subjects to enrol for.  On learning that his best subject at school was 

mathematics, the then dean of the faculty, Prof. R. Saunders, enrolled him with Biometry 

and Statistics as majors.  Prof. Saunders was a biometrician himself and had written a 

textbook, “Experimental Design”, with Prof. A.A. Rayner of the University of Natal, 

Pietermaritzburg.  So now Daan was enrolled for a degree in agriculture, but with majors 

he had never heard of. 

     However, after four years of study he was hooked and decided to continue with an 

honours degree and finally with an MSc Agric in Biometry/Statistics, which he obtained 

with distinction in 1964.  During his post graduate studies at the Faculty of Agriculture, 

Daan also lectured Biometry II and Biometry III, among others to Hennie Groeneveld who 

later became Professor in Biometry and Statistics at the University of Pretoria.  By now the 

idea of a farming career had gone out of the window and in 1965 Daan was appointed as 

lecturer in the Department of Statistics of the UOFS, where Prof. Andries Reitsma was 

head with Koos Oosthuizen as senior lecturer.  During this time statistics was the new 

buzzword in mathematical sciences and statistics departments were created and growing at 

universities all over the country. 

     Daan developed an interest in multivariate analysis, largely influenced by the 1958 

textbook of T.W. Anderson, which was considered the definitive work on that subject at 

the time.  He wanted to continue with his PhD studies in that field and was advised by 

Prof. Dries Reitsma to contact Prof. Cas Troskie at UCT.  Cas was the newly appointed 

head of the Statistics Department at UCT and had obtained his PhD in multivariate analysis 

under Prof. H.S. Steyn at UNISA a few years earlier.  Daan was Cas’s first PhD student, 

and so in 1966 began a lifelong friendship and academic association between them.  Daan 

completed his PhD thesis on Non-Central Multivariate Beta distributions in 1968 and was 

then immediately offered a Senior Lectureship at UCT, which he accepted.  Another 

important milestone in 1968 was Daan’s marriage to Verena Vermaak. After a year and a 

half in the Cape he returned to Bloemfontein when, at the age of 29, he was offered a chair 
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in the Department of Mathematical Statistics at the UOFS.  When he was appointed as 

professor in 1970, Daan was already the author of 6 publications, two of them published in 

the Annals of Mathematical Statistics.  He was also the supervisor of two Ph.D students, 

Daan Nel and Nico Crowther.   

     At the instigation of Prof. Norman Johnson, Daan visited during 1974-75 the University 

of North Carolina at Chapel Hill, where he gave a course in multivariate analysis.  

Thereafter the family, which by that time had grown to five, travelled to Stanford, 

California in an old Pontiac, a journey that took eleven days.  Daan spent three months at 

Stanford where he met and had discussions with people like Ingram Olkin, Ted Anderson, 

Charles Stein, Brad Efron and Carl Morris.  There he also met and started a lifelong 

friendship with Jim Zidek from the University of British Columbia.  It is difficult to say 

where Daan’s interest in Bayesian statistics started but it could have been during this time 

when the Stein estimator was causing a stir in the statistical community.  He was interested 

in the Stein estimator and from there it was a natural step to empirical Bayes and then 

Bayesian thinking.  During the 1980’s Daan turned into a pure Bayesian, a viewpoint that 

was strengthened over the years through repeated visits by well known Bayesians such as 

Dennis Lindley, Jim Berger, Seymour Geisser, Jose Bernardo, Arnold Zellner and Jim 

Press. 

     After the untimely death of Prof. Dries Reitsma, Daan became head of department in 

1977, a post he has now held for 32 years.  Under his leadership the Department of 

Mathematical Statistics at the University of the Free State has gone from strength to 

strength.  It now has a permanent teaching staff of 15 full time and 6 part-time lecturers, 

with four professors, and teaches more than 2 000 students each semester.  Daan’s passion 

for research and his ability to motivate people has instilled a culture of research in the staff 

and at any one time there are about 4 or 5 PhD students in the department.  To date, twenty 

students have completed their doctorates under Daan’s supervision, the first being Daan 

Nel in 1972, who recently retired as  a Professor at the University of Stellenbosch.  Five of 

Daan’s PhD students have served as Presidents of the South African Statistical 

Association.  Daan has published about 65 papers in statistical journals and in 1985 he was 

awarded the Havenga prize for mathematics by the S.A. Academy of Arts and Sciences.  

He has also three times received the ESKOM Excellence Award for work done on water 

inflow into the Gariep Dam and in 2004 he received the University of the Free State 

Excellence Award.  

     Apart from statistics, the other great passion in Daan’s life is sailing.  During a summer 

vacation in Mossel Bay in 1979 he was lying on the beach sunburned and bored. Watching 
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a man sailing a dinghy on the river he told Verena “That man is enjoying his holiday more 

than I am enjoying mine”.  So in 1979 he bought a dinghy which he sailed on the dams 

around Bloemfontein.  Soon the family (now of size six) complained that the boat was too 

small and he bought a 26ft Elvstöm.  Daan kept the boat on the Gariep Dam and in time he 

served as commodore of the Gariep Dam Yacht Club.  In 1984, to his pride and joy, Daan 

graduated to a 38ft Fahr called Dahverene, an acronym formed from the names of all the 

members of the family.  Daan enjoys nothing better than sailing over a weekend to a 

deserted island in the dam, with the family or some friends having a braai and spending the 

night on the water.  However the laptop usually comes along, for when the wind is still 

there may be time for some statistical calculations.  Daan’s enthusiasm for boats and 

sailing is shared by his family, although we don’t know how much choice Verena had 

about acquiring the enthusiasm!  Recently both Daan’s daughters were crewing for a 

luxury chartered cruiser out of Fort Lauderdale in the U.S, and each of his two sons has a 

sailing boat, although more modest than the flagship of the family. 

     Apart from his teaching and doctoral students Daan has been leading a SANPAD 

research group (South Africa – Netherlands research programme) on new models in 

Survival Analysis related to AIDS, in collaboration with staff from Delft Technical 

University and the University of Fort Hare.  He has also been an active team member of a 

South African – Belgium research group on Extreme Value Theory where his knowledge 

of Multivariate Analysis and Bayesian Theory has led to new models in this field, such as 

the Multivariate Generalized Burr-Gamma Distribution.  The Extreme Value Theory also 

finds important application in Daan’s ongoing ESKOM project on inflows into the Gariep 

Dam. 

 

     Daan planned to retire in 2006 at the age of 65 as head of the Department of 

Mathematical Statistics and Actuarial Science, but the Dean of the Faculty of Natural and 

Agricultural Sciences, Prof. Herman van Schalkwyk, had such a high opinion of his 

teaching and research abilities that he appointed him for another three years on a contract 

basis.  At the end of 2006 Daan received a grant of 1.8 million Rand from Eskom for 

research over a period of three years on water inflows into the Gariep Dam, Risk 

Management and Extreme Value Theory.  So at present Daan is busier than ever. 

     Despite all his research activities and committee commitments, Daan has an intense 

interest in all other research being done in the department.  He always has time to discuss 

research (or personal) problems and to suggest new ideas.  He supports his staff in their 

endeavours but then lets them get on with these without interfering. 
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A short list of Daan’s achievements is the following: 

Personal information: 

Daniël Jacobus de Waal was born in Boshof during 1941.  Daan is married and has four 

children. 

Qualifications: 

1958:  Matriculated from the Rooidak Hoërskool, Boshof. 

1962:  BSc (Agric), UOFS (Mathematical Statistics & Biometry). 

1963:  BSc (Agric) Hons, UOFS (Biometry & Statistics). 

1964:  MSc (Agric), UOFS. 

1968:  PhD (Mathematical Statistics), UCT. 

 

Experience: 

1964:  Part-time lecturer in Biometry, UOFS. 

1965 – 1968:  Lecturer in Statistics, UOFS. 

1969 – 1970:  Senior lecturer in Mathematical Statistics, UCT. 

1971 – 2006:  Professor in Mathematical Statistics, UOFS. 

1977 – 2006:  Head of Department of Mathematical Statistics, UOFS. 

2000 – 2002:  Vice Dean, Natural Sciences, UOFS. 

2002:  Acting Dean, Natural and Agricultural Sciences, UOFS. 

2007 – 2009:  Head of Department of Mathematical Statistics, UFS (Contract appointment) 

 

Other appointments and cooperation: 

UFS Council member (1988 – 2006) 

SA-Flemish Cooperation project as a team member (2000 – 2006). 

SA-Netherlands cooperation project (SANPAD) as project leader (2000 – 2004). 

ESKOM project leader (1997 – 2009) 

SA Statistics Council member (2007 – 2009) 

 

Awards: 

1985:  Havenga award for Mathematics of the SA Academy of Arts and Sciences. 

1993:  FRD evaluation “B”. 

1998 & 2001 & 2002:  Eskom Excellence award. 

2004:  University of the Free State Excellence award. 
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Publications: 

65 publications in international statistical journals and 130 technical reports. 

 

Membership of Societies: 

Member, Fellow and past President of SASA. 

Elected member of the ISI. 

Member, SA Academy for Arts and Science. 

Member Council for Natural Scientists. 

 

Piet Groenewald and Abrie van der Merwe 
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Daan de Waal: A Personal Message 

 

It is a great privilege to communicate this message in recognition of the major contribution 

that Daan has made to the wellbeing and development of the subject of Statistics. I am 

specifically referring to the impact of his work and effort in South Africa. 

     As early as 1962,  Daan and  I were two of eight students who shared Bungalow 2 of 

the Reitz Bungalows at the University of the Free State. At this point Daan was in his 

fourth year of study and I was in my first year of study. These were wonderful and 

memorable years and we even devoted some time to academic issues. I still remember very 

well how Daan spent time with us as junior students to understand mathematics and 

statistics.  

     Towards the end of the sixties Daan was my promoter for the DSc degree at the 

University of the Free State, which I completed in 1972. This again was a wonderful 

experience doing research with Daan.   

     The topic that I have chosen for my paper stems directly from my thesis and the 

research I did with Daan. It is based on conditional distributions in a multivariate normal 

framework which appears in the thesis. I think Daan will remember it and hope that he still 

enjoys it. Unfortunately it does not contain any Bayesian ideas. 

 

Daar bestaan vir my geen twyfel nie dat Daan sal voortgaan om so 'n positiewe invloed op 

sy kollegas en studente te h ê . Ek is ook daarvan oortuig dat hy sal voortgaan met sy 

navorsing en sal voortgaan om so 'n voortreflike leier in die Suid-Afrikaanse statistiese 

gemeenskap te wees. Ons is baie dankbaar daarvoor  

 

 

Nico Crowther 
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Daan  
 

 I remember early 1993 and I am sitting in my office in St. Petersburg. Then the secretary 

of the director of my Institute comes with a fax from South Africa (!?) with invitation to 

visit UOVS for 6 months.  It was signed: Prof. DE WAAL. This is how I saw this name for 

the first time. At that stage Daan was involved in a project on safety and reliability of a 

nuclear power station and that is how my name has attracted his attention. There was also 

BLOEMFONTEIN in the message and I remembered the name of the city from my 

childhood (the Businar’s novel : Pieter Maritz the young boor from Transvaal) This 

seemed to be quite exciting at that stage and appeared to be the main adventure of my life..  

Anyway, in a few months he was already meeting me at the airport and my nearly 6 

months experience in South Africa started, and the collaboration and the friendship with 

Daan for all these years to come which is very important for me in my professional and 

personal life.  

     Then Daan and Verena visited us in St. Petersburg and there was a story about this visit.  

Those who know Daan, are aware that he is a story-teller; nice and witty stories; 

sometimes real sometimes from his mind, but always funny. This probably goes from a 

boor tradition of story-telling in small towns (as described by Herman Charles Bosman of 

whom I am an admirer due to my wife). And the story about him was that owing to some 

probably statistical reason he decided at first that August has 30 days and had informed me 

that they were coming on the last day of this month. Later it came to his knowledge, I 

assume, that August is indeed longer on one day. But the initial ‘last day setting’ was not 

replaced by the new updated information. You can imagine our anxiety (we phoned to 

airlines, train stations, etc) when they did not show up on the 30
th

 and eventually had 

arrived only the next day in accordance with the prior estimate. 

     Daan is a multitalented person: a brilliant statistician; a proud husband, father and 

grandfather; a passionate yachtsman. He enjoys life in all diversity and this is also a talent.  

No doubt, it is not so easy to be a head of the department for such a long period of time. I 

witnessed the last 10 years as a staff member and must admit that his calm, reasonable 

manner of dealing with different (sometimes sensitive) matters is really remarkable. 

       I visited once our colleague in the US and when Daan’s name was mentioned in our 

conversation, he said: a man with a big heart. And this, I believe, is very true. 

 

Maxim Finkelstein 
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About Daan 
 

I know Daan from our student years at the UOFS, but my first academic cooperation with 

him was in 1968 when he was lecturer in Statistics at the UOFS, while I was lecturer in 

Mathematics teaching Linear Algebra. He was working on his PhD in Multivariate 

Analysis at UCT under Cas Troskie and our mutual interest in matrices brought us into 

contact. The research he was doing on multivariate distribution theory was very interesting 

and when he completed his PhD, I enquired to enroll for a PhD with him as advisor when 

he was at UCT. During 1969 till 1971 I worked with him and could visit him on two 

occasions. His enthusiasm and his remarkable intuition for unsolved problems impressed 

me ever since. 

     During 1971 he was appointed as professor at UOFS and I changed my enrollment to 

UOFS for the rest of the study which was completed in 1972. By then I was committed to 

statistics and multivariate analysis and decided to become a real statistician. After two 

years at the Statistics Department at Stellenbosch University I returned to UOFS in 1975. 

This was the beginning of a very happy and rewarding academic relationship with him and 

other colleagues in the Department of Mathematical Statistics UOFS for the next 24 years. 

After the untimely death of Prof. Andries Reitsma in 1976, Daan was appointed as head of 

the Department of Mathematical Statistics and I succeeded Prof Reitsma. This was a great 

honour, particularly to be working with Daan. His style of leadership always impressed me 

by the trust and support he had in his colleagues and personnel. His support and assistance 

with research and organizational matters regarding the department and courses to be 

presented was easy going, cooperative and never demanding.  He gave his staff ample 

opportunities to develop by attending conferences abroad and he assisted in many ways 

with this. We had the freedom to investigate different kinds of problems. 

     His enthusiasm for statistics and research was crowned with success with many PhD 

students completing, many publications and the Havenga prize for Mathematics of the SA 

Academy for Arts and Science awarded to him. Visitors from all disciplines in statistics 

visited the department at the UOFS and we were privileged to communicate and interact 

with them. Later he became interested in Bayesian Statistics and the analysis of rare events 

and made great contributions in these fields too.  

     I wish him a happy retirement with good health and the time to reflect and maybe 

pursue some of the grottos in Statistics where we enthusiastically just shoveled at the 

entrances. May there be many more surprises waiting! 

 

Daan Nel 
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Daan as I know him 

 

My first meeting with Daan de Waal was at the 1970 conference of the South African 

Statistical Association, held on the old campus of the (then) RAU. I was in the first year of 

my doctoral study and gave a talk on my research on quadratic forms in i.i.d. random 

variables and its role in goodness-of-fit. This being my first talk at a conference, I was 

rather nervous and when someone in the audience asked a very polite question whether my 

results were related to the well-known results on quadratic forms in normal variables (of 

which I knew nothing), the only reply I could give was a very abrupt “No!”. That person 

happened to be Daan as I realised afterwards. 

Since that first meeting with Daan, I have come to know him well and have had the 

pleasure of serving as external examiner to the Department over many years. I have come 

to admire him for the way he built their Department in Bloemfontein. Over the many years 

that he played a leading role, the Department produced a steady stream of research output 

and PhD students. Daan’s own research developed over a number of areas, multivariate 

analysis, Bayes analysis and extreme value theory. He was instrumental in having a large 

number of well known academics visit their Department, with of course a spill-over benefit 

to other departments in South Africa. 

There is of course the other side of Daan to enjoy, his sense of humour and his passion for 

sailing. What a joy to watch the sun set over the Gariep from the stern of his yacht. 

Daan has had a long and fruitful career as academic, over the years a role model to many 

young statisticians. For that I thank him and wish him many more healthy and productive 

years. 

 

Tertius de Wet 
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Prof. de Waal as my promotor 

 

Ek glo die langste pad wat ‘n mens kan loop is ‘n gang tussen twee kantoordeure, die 

afstand tussen jou deur en jou promotor se deur.   

Eers is hierdie pad ‘n donker pad, ‘n onseker pad, ‘n pad wat jy halfpad loop en dan 

omdraai, terug na jou eie kantoor om seker te maak of jy nie self die problem kan oplos 

nie.  Dit is ‘n pad waarlangs jy 100 keer ‘n vraag oordink net vir ingeval  jy dom gaan 

klink, of prof se tyd gaan mors. 

Later verander hierdie donker pad in ‘n helder pad met ‘n lig aan die einde van die tonnel. 

Met ‘n kantoordeur wat vriendelik nooi om te klop en ‘n kantoor waar jy welkom voel, 

waar jy tuis voel. Dit is hier waar jou probleme en vrae beantwoord word, waar die 

onsekerheid begin minder word, waar die flou vlammetjie van “ek kan navorsing doen” al 

helderder begin brand.  

Ten einde laaste verander hierdie pad in ‘n bekende pad, ‘n pad wat jou voete toe-oë kan 

loop, wat al uitgetrap is van al die besoeke.  Dit is dan wanneer die langste pad ‘n kortpad 

word, ‘n pad van hoop vir dinge wat nog vermag kan word, omdat jy weet aan die einde 

van die pad is iemand wat jy kan vertrou.  

Dit was vir my ‘n ongeloofike voorreg om prof. de Waal as promotor te kon hê, ‘n ekspert 

in statistiek en veral ekstremewaardes. Om saam met iemand te werk wat soveel kennis het 

om te deel was voorwaar ‘n ervaring.  As promotor was prof. de Waal baie ondersteunend 

en positief oor my navorsing.  Hy was altyd beskikbaar, maak nie saak hoe besige hy was 

nie, altyd maar geduldig om weer ‘n keer vir my te verduidelik.  Vir my is prof de Waal 

verseker ‘n mentor waarna ek met die grootste respek kan opkyk. Ek hoop dat ek as 

studieleier in sy voetspore kan volg.   

Dankie prof vir al die tyd en energie wat prof bereid is om af te staan aan prof se studente.   
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Prof. de Waal as my promoter 

 

I believe that the longest path one can walk is a corridor between two office doors, the 

distance between your door and your promoter’s door.  

First this path is a dark path, an uncertain path, a path that you walk halfway and then turn 

back to your own office to make sure whether you can’t solve the problem yourself.  It is a 

path along which you rethink a question a 100 times afraid that you might sound stupid or 

waste prof’s time.  

Later this dark path turns into a clear path with a light at the end of the tunnel.  An office 

door that friendly invites you to knock, an office where you are welcome and where you 

feel at home. It is here where your problems and questions are answered, where the 

uncertainty begins to fade, where the faint flame of “I can do research” starts to burn 

brighter.    

At last this path turns into a familiar path, a worn out path from all the visits which your 

feet can walk eyes-closed.  This is then that the longest path becomes a short path, a path 

of hope for things that can still be achieved, because you know at the end of the path there 

is someone you can trust.   

It was a great privilege to have Prof. de Waal as my promoter, an expert in statistics and 

especially extreme values. To work with someone that has so much knowledge to share is 

indeed an experience.  As my promoter Prof. de Waal was very supportive and positive 

about my research. He was always available and answered my questions patiently, even 

though he was busy. To me Prof. de Waal is definitely a mentor I can look up to with great 

respect. I hope that I will be able to follow in his footsteps as a study leader.     

Thank you professor for all the time and energy you are willing to give your students.  

 

Andrehette Verster 
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Control Chart for the Sample Variance Based on Its Predictive Distribution 

 

by 

 

A.J. van der Merwe and D. Chikobvu 
 

 

ABSTRACT 

 

This paper proposes a control chart for the sample variance.  A Bayesian approach is used to 

incorporate parameter uncertainty based on the predictive distribution of the sample variance.  

When the sample size is small the rejection limit for the proposed control chart tends to be 

wide, so that both the mean and standard deviation of the run length are large.  Therefore, not 

knowing the value of the population variance, ��, has a considerable effect on the rejection 

region and thus the run length. 

 

Keywords:  Bayesian procedure, Control chart, Sample variance, Predictive distribution, Run 

length. 

 

 

1. INTRODUCTION 

 

Statistical process control (SPC) techniques help to improve product quality by reducing the 

variability of a process.  Such techniques allow one to monitor processes through control charts 

(CCs). 

 

In a process, two classes of sources of variation are typically thought to exist: sources of 

variation that cannot be economically identified and removed (chance or common causes) and 

sources of variation that can (special or assignable causes).  Control charts play an important 

role among SPC techniques, and are used to detect changes in a process and identify source(s) 

of variation with assignable causes, and thereby reduce or eliminate variability.  A CC is a 

graphical display of the values of a quality characteristic over time.  The chart typically 

contains control limits (CLs) derived from statistical considerations.  These limits are set so 

that the quality characteristic is expected to fall between them with high probability if the 

process is stable (in-control state).  If an observation falls outside the CLs, then it is suspected 

that some special causes of variation other than the common ones have acted in the process 

(Deming 1986). 

 

There is a large literature on SPCs and, in particular, on CCs.  Woodall and Montgomery 

(1999) and Woodall (2000) gave an overview of research issues and ideas related to this field.  

They pointed out that the issue of parameter estimation has received only relatively modest 

attention in the area of CCs. 

 

The focus of the present paper is the formal incorporation of parameter uncertainty in the 

construction of control charts for the sample variance.  As mentioned by Human, Chakraborti 

and Smit (2009) the variance chart is particularly important since an estimate of the variance is 

required for setting up a control chart for the mean.  Thus the variance of the process must be 

monitored and controlled before (or even simultaneously with) attempting to monitor the mean.  

Similarly to Menzefricke (2002, 2007) a Bayesian approach will be used to incorporate 

parameter uncertainty by using the predictive distribution to construct the control chart and to 
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obtain the control chart limits.  The literature on construction of control charts using Bayesian 

methods seems to be relatively sparse.  For example, Woodward and Naylor (1993) developed 

a Bayesian method for controlling processes for the production of small numbers of items. 

Arnold (1990) developed an economic �-chart for the joint control of the means of 

independent quality characteristics, and Bayarri and Garcia-Donato (2005) used a Bayesian 

sequential procedure to establish control limits for �-control charts. 

 

As is now well accepted in the literature, SPC is implemented in two phases in practice, 

referred to as Phase I and Phase II, respectively (see for example Woodall (2000)).  Phase I is 

also called the retrospective phase and leads to the construction of the control chart limits.  The 

construction of accurate control limits in Phase I is critical for the monitoring of the process in 

Phase II.  Similarly to Menzefricke (2000 and 2007) our analysis is largely concerned with 

Phase I.  Here it is assumed that a random sample is available from a stable process whose 

stability is to be monitored.  As mentioned by Bayarri and Garcia-Donato (2005), the natural 

distribution for establishing a control limit at a future time � is the predictive (marginal) 

distribution of the statistic (sample variance in our case) at time �.  Therefore, using a Bayesian 

approach, the predictive distribution of the sample variance will be derived to obtain the 

control chart limits.  Assuming that the process remains stable the predictive distribution is 

used to derive the distribution, mean and standard deviation of the run length. 

 

An outline of the paper is as follows:  In Section 2 the predictive distribution of the sample 

variance is derived and in Section 3 the distribution, mean and standard deviation of the run 

length for a specific example are simulated.  In Section 4 we evaluate of the control chart and 

the conclusion is given in Section 5 

. 

 

2. PREDICTIVE DISTRIBUTION OF A FUTURE SAMPLE VARIANCE  

 

Assume that a random sample of � independent rational subgroups, each of size � > 1, is 

available and known to have come from a stable process.  Furthermore, assume that the sample 

is from a normal distribution with unknown mean 
 and unknown variance ��.  The data are 

represented as  ��
~�����
, ���  where ��
 is the � �ℎ  observation from the � �ℎ subgroup, 

� = 1, 2, … , � and � = 1, 2, … , �.  Since both 
 and �� are unknown and no prior information 

is available, the conventional noninformative default prior (Jeffreys’ independence prior) 

 

      ��
, ��� ∝ ���    (2.1) 

 

will be specified for those parameters. 

 

Combining the prior with the likelihood it follows (see, for example, Zellner 1971) that the 

conditional posterior distribution of 
 is normal, namely 

 

      
 ���, �~�  �. . , "#
$%&'    (2.2) 

 

In the case of the variance component, ��, the posterior distribution is given by  

 

  (  �� ��'& =  )̃
�&

+
#, -

. /
#&  -

"#&
+
#�,0�� 1� +# 23

4#            �� > 0 .   (2.3) 
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which is an Inverse Gamma distribution with 6 = ��� − 1� and 8̃ = ��� − 1�9:�. 

 

Furthermore, 

 

�;. . = 1
�� < < ��
   , 9:� = 1

�
$


=-

%

�=-
< 8�� ,

%

�=-
 

 

9�� = <>��
 − �;�.?�  , �;�. = 1
� < ��


$


=-

$


=-
 

 

and � = @�--  �-� … �-A   ��-   ��� … ��$ … �%-  �%� … �%$BC
. 

 

As mentioned above, in Phase I it is assumed that a random sample is available from a stable 

process whose stability is to be monitored.  A predictive distribution derived from a Bayesian 

approach can be used to obtain the control chart limits.  Since the focus is on predictive 

distributions, we envision a future sample of � independent observations from a normal 

distribution, and denote the future sample variance by 9D�. 

 

  For a given �� it follows that 
�$�-�)E#

"# ~F$�-�  which means that 

 

�>8D�|�� '? = H+
#>"#?I+

#J

K J
#&�+

#J >8D�?
+
#H�-1�+

# J2E#
4#      8D� > 0 where L = � − 1    (2.4) 

 

The unconditional predictive density of 9D� is given by 

 

�  8D� ��'& = M �>8D�|�� '?(���|�'����
N

O
 

 

= H+
#J�)̃�+

#/K /P+
# &

K J
#&K /

#& >8D�?
+
#H�->L8D� + 8̃?

+
#�H0,�     8D� > 0      (2.5) 

 

From (2.5) it is clear that 

 

9D� ��~9:�RH,, = 9:�R$�-, ��� − 1�'        (2.6) 

 

where 

 

R$�-, ��� − 1� denotes a R-distribution with � − 1 and ��� − 1� degrees of freedom. 

 

The predictive distribution for 9D� in (2.6) can be used to obtain the control chart limits.  The 

resulting rejection region of size S is defined as 
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S = T �  8D� ��'& �8D�U�V� . 

 

Assuming that the process remains stable, this predictive distribution can also be used to derive 

the distribution of the “run length”.  Typically, a “future” sample of size � is taken repeatedly 

from the process, and one wants to determine the distribution of the “run length”, that is the 

number of such samples, W, until the control chart signals for the first time.  (Note that W here 

does not include the sample when the control chart signals).  Given �� and a stable process, the 

distribution of the run length  W is geometric with parameter X���� = T �>8D�|�� '?�8D�U�V� , 

where �>8D�|�� '? is given in (2.4).  For given ��, the future samples are independent of each 

other.  The value of �� is of course unknown and the uncertainty is described by its posterior 

distribution in (2.3), denoted by (���|�'�. 

 

The predictive distribution of the “run length” or the “average run length” can therefore easily 

be simulated.  The first two moments of W can also be obtained by numerical integration, 

namely 

 

Y�W|�'� = T -
Z�"#� (  �� ��'& ���  and  Y�W�|�'� = T ��Z>"#?

Z�"#� (  �� ��'& ���. 

 

 

3. EXAMPLE 

 

Table 3.1 displays � = 20 rational subgroups, each of size � = 5, simulated from a normal 

distribution;  for our current purpose the mean and the variance of the normal distribution from 

which the samples were simulated are not mentioned because we assume that both these 

parameters are unknown.  Also shown in Table 3.1 are the sample variances, 9��, for 

� = 1,2, … ,20.  These data will be used to construct a Shewhart-type Phase I upper control 

chart for the variance, and also to calculate the run length for a future sample of size � taken 

repeatedly from the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1:  Data for constructing Shewhart-type Phase I upper control chart for the variance 

 

Sample number / 

Time �\� 

]\^ ]\_ ]\` ]\a ]\b c\_ 

1 23.0 27.8 21.5 24.3 18.9 10.93 
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2 14.2 25.9 27.3 17.9 19.1 30.77 

3 24.7 16.6 22.8 26.9 21.5 15.03 

4 23.6 20.8 28.4 18.6 24.5 13.95 

5 14.1 20.9 18.2 19.0 28.7 28.85 

6 23.0 13.4 29.4 28.4 11.6 68.83 

7 19.5 14.9 23.3 12.1 11.2 26.20 

8 16.8 25.5 19.2 19.7 23.6 12.39 

9 15.1 18.1 22.3 18.4 23.0 10.64 

10 17.5 16.0 19.1 26.8 23.1 19.42 

11 26.2 24.3 22.0 21.4 25.9 4.82 

12 15.9 23.2 17.8 16.6 13.8 12.41 

13 14.8 17.0 19.1 13.1 15.0 5.32 

14 13.8 18.3 25.0 18.2 18.5 16.03 

15 28.2 23.2 16.6 18.8 18.7 21.53 

16 12.9 20.0 32.2 16.4 26.1 59.47 

17 22.0 11.9 21.5 21.1 17.9 17.80 

18 21.1 19.4 16.3 21.8 14.3 10.23 

19 16.2 21.4 25.5 14.2 28.0 34.67 

20 12.5 17.2 17.9 14.4 16.5 4.92 

 

9:� = 1
� < 9�� = 1

20 �10.93 + 30.77 + ⋯ + 4.92� = 21.21
$

�=-
 

 

For S = 0.01, � = 5, � = 20 and by using the predictive distribution defined in equation 

(2.6) the upper control limit is given by 9:�R$�-, ��� − 1��S� = 21.21�3.56� = 75.51.  

Inspection of Table 3.1 shows that all sample variances are smaller than the upper control limit 

of 75.51. 

 

Given �� and a stable process the distribution of the run length W is geometric with parameter  

 

X���� = T �>8D�|�� '?�8D�U�V� , where �>8D�|�� '? is defined in (2.4) and  

 

j�S� = >8:�R$�-,%�$�-��S�  ;   ∞? = �75.51 ;  ∞�. 

 

Therefore, for given ��, 

 

(>8D� > 8:�R$�-,%�$�-��S�? = m  "#nAI+#
$�- > 8:� R$�-,%�$�-��S�&   (from (2.4)) 

 

= m o%�$�-�)p#
nq�AI+�#     nAI+#

$�- > 8:� R$�-,%�$�-��S�r = m  F$�-� > -
% F%�$�-�� R$�-;%�$�-��S�& (from (2.3)) 

 

= X>F%�$�-�� ?  (for given F%�$�-�� �        (2.7) 

 

By simulating ℓ values from a chi-square distribution with ��� − 1� = 80 degrees of freedom 

and calculating (2.7), the distribution, mean and variance of the run length W can easily be 

obtained.  For our example we used ℓ = 10000. 
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In Figure 3.1 the distribution of the run length W is illustrated in the form of a histogram, and in 

Figure 3.2 the distribution of the average run length X�->F%�$�-�� ? is given.  The means and 

standard deviations are also presented. 

 

 
Figure 3.1 Distribution of the run length  

u  v �]'& = _wb. xx and yz{  v �]'& = w|b. |a 
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Figure 3.2:  Distribution of the average run length }�^~����^�_ � 

Y�}�^>~����^�_ ? = _w�. ^_ and cz{ >}�^�~����^�_ ? = aa�. _` 

 

The figures suggest that the means of the two distributions are the same but the standard 

deviations differ.  This is not surprising since X>F%�$�-�� ? is used as a parameter to simulate W.  

The standard deviation of W is therefore larger than that of  X�-F%�$�-�� �. 

 

 

4.  EVALUATION OF THE CONTROL CHART 

 

In this section we will numerically illustrate the effect of different degrees of parameter 

uncertainty on various aspects of the control chart.  The rejection region will consist of large 

values for the sample variance.  From equation (2.7) it is clear that without loss of generality it 

can be assumed that 9:� = 1.  For S = 0.01 Table 4.1 lists the mean run length and the standard 

deviation of the run length for � = 5 and selected values of �.  Note that ��� − 1� is the 

posterior sample size and it thus measures the degree of parameter uncertainty regarding the 

sample variance.  A large value of � suggests relatively little parameter uncertainty.  When � 

is small the rejection limit for the proposed control chart tend to be wide, hence both the mean 

and standard deviation of the run length are large.  When � → ∞, there is no parameter 

uncertainty and the expected run length is 1 1
0.01

100
α

= = .  It is clear that not knowing �� has a 

very considerable effect on the rejection region and thus the run length. 

 

Table 4.1  Expected run length and standard deviation for � = b and selected values of � 
 

 Selected values 

of � 
u  v �]'& cz{  v �]'&  
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 10 1169.9 17275.99  

 11 842.78 8979.70  

 12 662.46 5323.44  

 13 546.12 3478.22  

 14 466.03 2449.51  

 15 407.45 1824.06  

 16 365.54 1431.47  

 17 332.09 1158.88  

 18 306.68 973.91  

 19 285.25 833.24  

 20 268.76 730.73  

 

 

5.  CONCLUSION 

 

In this note Bayesian methods are used to incorporate parameter uncertainty into the 

construction of a control chart for the sample variance based on its predictive distribution.  A 

large sample size (large �) suggests relatively little parameter uncertainty.  When � is small 

the rejection limit for the proposed control chart tends to be wide, hence both the man and 

standard deviation of the run length are large.  It is therefore clear that not knowing �� has a 

very considerable effect on the rejection region and thus the run length. 

 

REFERENCES 
 

Arnold, B.F. 1990.  An Economic �-Chart to the Joint Control of the Means of Independent 

Quality Characteristic.  Zeitschrift für Operations Research, 34, 59-74. 

 

Bayarri, M.J. and Garcia-Donato, G. 2005.  A Bayesian Sequential Look at �-Control Charts.  

Technometrics 47(2): 142 – 151. 

 

Deming, W. 1986.  Out of the crisis.  Cambridge, M.A. MIT Center for Advanced Engineering 

Study. 

 

Human, S.W., Chakraborti, S., Smit, C.F. Control Charts for Variation in Phase 1 

Applications.  Submitted to Computational Statistics and Data Analysis. 

 

Menzefricke, U. 2002.  On the Evaluation of Control Chart Limits based on Predictive 

Distributions.  Communications in Statistics – Theory and Methods, 31 (8):  1423-1440. 

 

Menzefricke, U. 2007.  Control Charts for the Generalized Variance based on its Predictive 

Distribution.  Communications in Statistics – Theory and Methods, 36:  1031-1038. 

 

Woodall, W.H.;  Montgomery, D.C. 1999.  Research Issues and Ideas in Statistical Process 

Control.  Journal of Quality Technology, 31(4), 376-386. 

 

Woodall, W.H. 2000.  Controversies and Contradictions in Statistical Process Control.  

Journal of Quality Technology 32:  341-350. 

 



9 

 

Woodward, P.W.;  Naylor, J.C. 1993.  An Application of Bayesian Methods in SPC.  The 

Statistician, 42, 461-469. 

 



ON TERMINATING POISSON PROCESSES 

IN SOME SHOCK MODELS 

 

Maxim Finkelstein 

Department of Mathematical Statistics 

University of the Free State, Bloemfontein,  

and 

Francois Marais 

CSC, Cape Town, South Africa 

 

 

ABSTRACT. A system subject to a point process of shocks is considered. Shocks 

occur in accordance with the homogeneous Poisson process. Different criteria of sys-

tem failure (termination) are discussed and the corresponding probabilities of failure 

(accident) free performance are derived. The described analytical approach is based 

on deriving integral equations for each setting and solving these equations via the 

Laplace transform. Some approximations are analyzed and further generalizations and 

applications are discussed. 
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1. INTRODUCTION 

 

     Consider first, a general point process ,...2,1,0,,0};{ 10 =>= + nTTTT nnn , where nT  

is time to the n th arrival of an event with the corresponding cumulative distribution 

function (Cdf) )()( tF n . Let G  be a geometric variable with parameter θ  (indepen-

dent of 0}{ ≥nnT ) and denote by T  a random variable  with the following Cdf: 

∑
∞

=

−=
1

)(1 )(),(
k

kk
tFtF θθθ ,                                           (1) 

where θθ −= 1 . 

     A natural reliability interpretation of model (1) is via the stochastic point process 

of shocks. Let T  be a random time to failure (termination) of a system subject to a 

point process of shocks [1]. We interpret the term “shock” in a very broad sense as 

some instantaneous, potentially harmful event. Assume for simplicity that a shock is 

the only cause of failure. It means that a system is ‘absolutely reliable’ in the absence 

of shocks.  Assume also that each shock independently of the previous history leads to 

a system failure with probability θ  and is survived with probability θθ −= 1 . This 

procedure defines the terminating point process, whereas the corresponding survival 

probability of our system (reliability) in  ),0( t  is  ),(1),( θθ tFtP −≡ . 

     Obtaining probability ),( θtP  is an important problem in various reliability and 

safety assessment applications. As described, the shock can have an interpretation of a 

‘killing’ event. Alternatively, a shock process can have a meaning of a process of de-

mands for service, whereas the survival probability is the probability that all demands 

are serviced. Another interpretation is when a repairable system described by the al-

ternating renewal process should be just available at each instance of demand. In this 
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case the survival probability has a meaning of multiple availability [2], which is a ge-

neralization of the conventional availability. 

     It is clear that a general relationship (1) does not allow for explicit results that can 

be used in practice and therefore, assumptions on the form of the point process should 

be made. Two specific point processes are mostly used in reliability applications, i.e., 

the Poisson process and the renewal process. This paper is devoted to the case of the 

Poisson process of shocks. Some results for the terminating renewal processes can be 

found, e.g., in reference [3]. Also see the discussion in Section 5. 

     Consider the Poisson process of shocks with rate λ . In this case the survival prob-

ability can be easily explicitly obtained [4]:  

( )
∑

∞

−==≥
0 !

}exp{)(),(]Pr[
k

t
ttPtT

k

k λ
λθθ  

}exp{ tλθ−= .                                                        (2)                                                

It follows from equation (2) that the corresponding failure rate, which describes the 

lifetime of our system T , is given by a simple and meaningful relationship: 

λθλ =)(t .                                                                 (3) 

Thus, the rate of the underlying Poisson process λ  is decreased by the factor 1≤θ . 

Equation (3) describes an operation of thinning of the Poisson process for this specific 

case [5]. 

     The main methodological aim of this paper is to show how the method of integral 

equations can be effectively applied to obtaining probability ),( θtP  in various set-

tings. In order to illustrate this claim in the simplest way, let us derive (2) using the 

corresponding integral equation and the subsequent Laplace transform. It is easy to 

see that the following equation with respect to ),( θtP  holds: 

dxxtPeetP

t

xt ),(),(
0

θθλθ λλ −+= ∫
−− .                               (4) 

Indeed, the first term on the right hand side is the probability that there are no shocks 

in ),0[ t  and the integrand defines the probability that the first shock has occurred in 

),[ dxxx + , was survived and then the system has survived in ),[ tx . Due to the prop-

erties of the homogeneous Poisson process, the probability of the latter event is 

),( θxtP − . 

      Applying the Laplace transform to both sides of equation (4) results in 

λθ
θθ

λ

θλ

λ
θ

+
=⇒

+
+

+
=

s
sPsP

ss
sP

1
),(

~
),(

~1
),(

~
,                     (5) 

where ),(
~

θsP  denotes the Laplace transform of ),( θtP . The corresponding inversion, 

as in (2), results in }exp{ tλθ− .  

     Note that this solution is due to the fact that the Laplace transform can be nicely 

obtained for the case of the (homogeneous) Poisson process. For the nonhomogeneous 

Poisson process (NHPP) with rate )(tλ , similar to (2), direct summation gives 
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∑ ∫
∫

∫
∞









−=















−=
0 0

0

0

)(exp
!

)(

)(exp)(),(

t

k
t

t

k duu
k

duu

duutP λθ

λ

λθθ . 

Generalization of integral equation (4) to the case of NHHP is not so straightforward 

but in principle can be performed (see Section 5). However, it is difficult to apply the 

‘explicit’ Laplace transform in this case. Therefore, our models will be considered 

only for homogeneous Poisson processes of shocks. 

     We will discuss three models for obtaining survival probability in different set-

tings. Other settings and generalizations can be studied as well. The main analytical 

tool allowing for explicit solutions in all considered situations is the method of 

integral equations and the subsequent application of the Laplace transform. Section 2 

is devoted to the case when probability of termination depends on the quality of the 

repairable system’s performance at the time of a shock arrival. This is a natural as-

sumption, as resistance to a shock often depends on the state of a system. Section 3 

deals with additional source of termination of the process when the shocks are too 

close and a system has not enough time to recover after the previous shock. In Section 

4, two different types of shocks are considered. Two consecutive shocks of the first 

kind can kill a system, but if there is a shock of another kind between them, the sys-

tem survives. 

 

2. POBABILITY OF TERMINATION DEPENDS ON A SYSTEM’S STATE  

Consider a repairable system with instantaneous, perfect repair that starts functioning 

at 0=t . Let its lifetime be described by the Cdf )(tF , which is a governing distribu-

tion for the corresponding renewal process with the renewal density function to be 

denoted by )(th . Assume that the quality of performance of our system is character-

ized by some deterministic for simplicity function of performance )(tQ  to be called 

the quality function [6]. The considered approach can be generalized to the case of a 

random )(tQ . It is often a decreasing function of time, and this assumption is quite 

natural for degrading systems. In applications, the function )(tQ  can describe some 

key parameter of a system, e.g., the decreasing in time accuracy of the information 

measuring system or effectiveness (productivity) of some production process. As re-

pair is perfect, the quality function is also restored to its initial value )0(Q . It is clear 

that the quality function of our system at time t  is now random and equal to )(YQ , 

where Y  is a random time since the last (before t ) repair. 

     The system is subject to the Poisson process of shocks with rate λ . As previously, 

each shock can terminate the performance of the repairable system and we are inter-

ested in obtaining the survival probability ),( θtP . Note that the repaired failure of the 

system does not terminate the process and only a shock can result in termination. As-

sume that the probability of termination depends on the system’s quality at the time of 

a shock, which is a reasonable assumption, i.e., the larger the value of quality, the 

smaller the probability of termination. Let the first shock arrive before the first failure 

of the system. Denote by ))((* tQθ the corresponding probability of termination in 

this case. Now we are able to obtain )(tθ -the probability of termination of the operat-

ing system by the first shock at time instant t  (and not necessarily before the first fail-
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ure of the system). Using the standard ‘renewal-type reasoning’ [7], the following re-

lationship for )(tθ can be derived: 

∫ −−+=
t

dxxtQxtFxhtFtQt
0

))((*)()()())((*)( θθθ ,                       (6) 

where )(1)( tFtF −≡ . Indeed, the first term on the right-hand side of equation (6) 

gives the probability of termination during the first cycle of the renewal process, 

whereas dxxtFxh )()( −  defines the probability that the last failure of the system be-

fore t  had occurred in ),[ dxxx +  and therefore, the corresponding probability of ter-

mination at t  is equal to ))((* xtQ −θ . 

     Thus, the probability of termination under the first shock )(tθ , which is now time-

dependent, has been derived. Assume that the survival of a shock also means an in-

stantaneous perfect repair of the system (the ‘repaired shock’ is survived, the ‘non-

repaired’ results in the termination). Therefore, the instants of survived shocks can be 

also considered as the renewal points for the system. Having this in mind, we can now 

proceed with obtaining the survival probability ),( θtP . Using the similar reasoning as 

when deriving equation (4) 

dxxtPxeetP

t

xt ),()(),(
0

θθλθ λλ −+= ∫
−− ,                                 (7) 

where )(1)( xx θθ −≡ . 

     Applying the Laplace transform to equation (7), similar to (5): 

.
))(

~
1)((

1
),(

~

),(
~

)(
~1

),(
~

λθλλ
θ

θλθλ
λ

θ

+−+
=⇒

++
+

=

ss
sP

sPs
s

sP

                                    (8) 

Given the functions )(tF  and ))((* tQθ , equations (6) and (8) can be solved numeri-

cally, but we can still proceed with the Laplace transforms under an additional as-

sumption that the underlying distribution is exponential, i.e., }exp{1)( httF −−= . In 

this case hxh =)(  and the Laplace transform of equation (6) results in 









++=

s

h
hss 1)(*

~
)(

~
θθ ,                                            (9) 

where dxxQes
sx ))((*)(*

~

0
θθ ∫

∞
−=  denotes the Laplace transform of the function 

))((* tQθ . Substituting (9) into (8) and taking into account that )(
~

)/1()(
~

sss θθ −=  

))((*

1
),(

~

λλλθ
θ

+++++
=

hshss
sP .                           (10) 

It is easy to see that when θθθ == ))((*)( tQt and 0=h , equation (10) reduces to the 

simplest case (5). 
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     To proceed further with inversion, we must make some assumptions on the form of 

the function ))((* tQθ . Let 0},exp{1))((* ≥−−= ααθ ttQ , which is a reasonable 

assumption (as probability of termination increases as )(tQ  decreases with t ) allow-

ing for a simple Laplace transform. Then  

αλαλ

αλ
θ

++++

+++
=

)(
),(

~
2 hss

hs
sP                               (11) 

and the inversion gives 

}exp{}exp{),( 2

21

2
1

21

1 ts
ss

s
ts

ss

s
tP

−

++
−

−

++
=

αλαλ
θ ,            (12) 

where  

2

4)()( 2

2,1

λααλαλ −++±++−
=

hh
s . 

     An important specific case is when the system is absolutely reliable ( )0=h  but is 

characterized by the quality function )(tQ . Then λααλ ≠−=−= ;, 21 ss  and  

}exp{}exp{),( tttP λ
αλ

α
α

αλ

λ
θ −

−
−−

−
= .                      (13) 

If, for instance, 1))((* =tQθ , which means that ∞→α , then, as expected, 

}exp{),( ttP λθ −=  (the probability that there are no shocks in ),0[ t . On the contrary, 

if 0=α , which means that 0))((* =tQθ , the survival probability is equal to 1. An-

other marginal cases are defined by the value of the rate λ . If 0=λ , then again, as 

expected, 1),( =θtP . On the other hand, it follows from (13) that as ∞→t , 

}exp{),( ttP αθ −→ ,                                         (14) 

which can be confusing at first sight, as one would expect that as the rate of a shock 

process tends to infinity, the  probability of survival in  ),0[ t  should tend to 0 , but 

this is not the case as the function },exp{1))((* ttQ αθ −−= is close to 0  for small t  

and each survived shock is the renewal point for our system. Therefore, as the number 

of shocks increases, due to the properties of exponential function, relationship (14) 

holds. 

3. TERMINATION WITH RECOVERY TIME     

In the previous sections, the only source of termination was an immediate effect of a 

shock. Consider now another setting that can be often encountered in practical relia-

bility and safety assessments problems. Let, similar to Section 1, each shock from the 

Poisson process with rate λ  terminate the process with probability θ  and be survived 

with probability θθ −= 1 . Assume now that termination can also occur when con-

secutive shocks are ‘too close’, which means that the system did not recover from the 

consequences of a previous shock. Therefore, the time for recovering should be taken 

into account. It is natural to assume that it is a random variable τ  with the Cdf )(tR  

(different values of damage need different time of recovering and this fact is de-

scribed by )(tR ). Thus, if the shock occurs while the system still did not recover from 
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the previous one, it terminates the process. It is the simplest criterion of termination of 

this kind. Other criterions can be also considered. As previously, we want to derive 

),,( RtP θ -the probability of survival in ),0[ t .  

      First, assume that a shock had occurred at 0=t  and has been survived. Denote the 

probability of survival under this condition by ),,(* RtP θ . Similar to (4) and (7), the 

corresponding supplementary integral equation is  

dxRxtPxReeRtP

t

xt ),,(*)(),,(*
0

θθλθ λλ −+= ∫
−− ,                         (14) 

where the multiplier )(xR  in the integrand is the probability that the recovery time 

after the first shock at 0=t (and before the next one at )xt =  is sufficient. 

     Applying the Laplace transform to both sides of (14) results in the following rela-

tionship for the Laplace transform of  ),,(* RtP θ : 

))(
~

1)((

1
),,(*

~

λθλλ
θ

+−+
=

sRs
RsP ,                                                   (15) 

where )(
~

sR  is the Laplace transform of th Cdf )(tR . 

     Using probability ),,(* RtP θ  we can derive now the following integral equation 

with respect to ),,( RtP θ : 

dxRxtPeeRtP

t

xt ),,(*),,(
0

θθλθ λλ −+= ∫
−−

                                            (16) 

Indeed, as previously, the first term on the right hand side of this equation is the prob-

ability of shocks absence in ),0[ t , dxe
xθλ λ−  is the probability that the first shock has 

occurred (and was survived) in ),[ dxxx + . Finally,  ),,(* RxtP θ−  is the probability 

that the system survives in ),[ tx . 

      We can obtain ),,( RtP θ , applying the Laplace transform to both sides of (16), i.e, 

),,(*
~1

),,(
~

RsP
ss

RsP θ
λ

θλ

λ
θ

+
+

+
= , 

where ),,(*
~

RsP θ  is defined by (15). This gives the general solution of the problem 

under the stated assumptions in terms of Laplace transforms. In order to be able to 

invert ),,(
~

RsP θ , assume that the Cdf )(tR  is exponential, i.e., 

0},exp{1)( >−−= γγttR . Performing simple algebraic transformations: 

γλθλλγ

θλγλ
θ

++++

−++
=

22 )2(

2
),,(

~

ss

s
RsP .                                           (17) 

Inversion of (17) gives 

}exp{
2

}exp{
2

),,( 2

21

2
1

21

1 ts
ss

s
ts

ss

s
RtP

−

−++
−

−

−++
=

θλλγθλλγ
θ ,        (18) 
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where  

2

)(4)2()2( 22

2,1

γλθλλγλγ +−+±+−
=s . 

     Equation (18) gives an exact solution for ),,( RtP θ . In applications it is convenient 

to use simple approximate formulas. Consider the following assumption: 

∫
∞

−≡>>
0

))(1(
1

dxxRτ
λ

,                                       (19) 

where τ  denotes the mean time of recovery. 

     Relationship (19) means that the mean inter-arrival time in the shock process is 

much larger than the mean time of recovery, and this is often the case in practice. In 

the study of repairable systems, the similar case is usually called the fast repair condi-

tion. Using this assumption, similar to (3), the equivalent rate of termination for our 

process for 0→τλ , 1>>tλ  can be written as  

))1(1()( oBt += λλ ,                                                                       (20) 

where B  is the probability of termination for the occurred shock due to two causes, 

i.e., the termination immediately after the shock and the termination when the next 

shock occurs before the recovery is completed. Therefore, for sufficiently large t  

( τ>>t ) the integration in the following integral can be performed to ∞  and the ap-

proximate value of B  is   

∫
∞

− −−+=
0

))(1()1( dxxReB
xλλθθ , 

Assuming, as previously, 0},exp{1)( >−−= γγttR  gives 

γλ

θγλ

+

+
=B . 

Finally, the fast repair approximation for the survival probability is  









+

+
−≈ tRtP

γλ

θγλ
θ exp),,( .                                         (21) 

It can be easily seen that when ∞→γ  (instant recovery), relationship (21) reduces to 

equation (2). Note that approximate relation (20) is derived for all shocks except the 

first one (for which θ=B ), but the condition 1>>tλ  (large expected number of 

shocks in ),0[ t ) ensures that the error in (21) due to this cause is sufficiently small. 

The accuracy of the fast repair approximation (21) with respect to the time of recov-

ery can be analyzed similar to reference [2]. 

 

4. TWO TYPES OF SHOCKS 

 

Assume now that there are two types of shocks. As in the previous section, potentially 

harmful shocks (to be called red shocks) result in termination of the process when 

they are ‘too close’, i.e., when the time between two consecutive red shocks is smaller 
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then a recovery time with the Cdf )(tR . Therefore, in this case a system does not have 

enough time to recover from the consequences of the previous red shock. Assume for 

simplicity that the probability of immediate termination on red shock’s occurrence is 

equal to 0 ( 0=θ ). The model can be easily generalized to this case as well. On the 

other hand, our system is subject to the process of ‘good’ (blue) shocks. If the blue 

shock follows the red shock, termination cannot happen no matter how soon the next 

red shock will occur. Therefore, the blue shock can be considered as a kind of addi-

tional recovery action. 

     Denote by λ  and β  the rates of the independent Poisson processes of red and blue 

shocks respectively. First, assume that the first red shock has already occurred at 

0=t . An integral equation for the probability of survival in ),0[ t , ),,(* RtP β  for 

this case is as follows: 

                dydxRyxtPeeeeRtP

t xt

yxxt ),,(*),,(*
0 0

βλββ λλβλ −−+= ∫ ∫
−

−−−−  

dxRxtPxRee

t

xx ),,(*)(
0

βλ λβ −+ ∫
−− ,                              (22) 

where  

• The first term on the right hand side is the probability that there are no other red 

shocks in ),0[ t ; 

• dxee xx λββ −−  is the probability that a blue shock occurs in ),[ dxxx + and no red 

shocks occur in ),0( x ; 

• dye yλλ −  is the probability that the second red shock occurs in ),[ dyyxyx +++ ; 

• ),,(* RyxtP β−−  is the probability that the system survives in ),[ tyx +  given 

the red shock has occurred at time yx + ; 

• dxee
xx λβ λ −−  is the probability that there is one red shock (the second) in ),0( t  and 

no blue shocks in this interval of time; 

• )(xR  is the probability that the recovery time x  is sufficient and therefore the 

second red shock does not terminate the process; 

• ),,(* RxtP β−  is the probability that the system survives in ),[ tx  given the red 

shock has occurred at time x . 

 

Using ),,(* RtP β  that can be obtained from equation (22) we can now construct an 

integral equation with respect to ),,( RtP β -the probability of survival without assum-

ing occurrence of the red shock at 0=t . Similar to (16) 

dxRxtPeeRtP

t

xt ),,(*),,(
0

βλβ λλ −+= ∫
−− .                     (23) 

Applying the Laplace transform to equation (22) results in  

)(
~

))(())((
),,(*

~

λβλλβλβλλλβ

λβ
β

+++++−−+++

++
=

sRssss

s
RsP .      (24) 

Applying the Laplace transform to equation (23): 
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),,(*
~1

),,(
~

RsP
ss

RsP β
λ

λ

λ
β

+
+

+
= .                             (25) 

This equation gives a general solution of the problem under the stated assumptions in 

terms of Laplace transforms. In order to be able to invert ),,(
~

RsP β , as in the pre-

vious section, assume that the Cdf )(tR  is exponential: 0},exp{1)( >−−= γγttR . 

Performing simple algebraic transformations 

22 )2(

2
),,(

~

λλβγ

λβγ
β

++++

+++
=

ss

s
RsP .                             (26) 

Inversion of (26) gives 

}exp{
2

}exp{
2

),,( 2

21

2
1

21

1 ts
ss

s
ts

ss

s
RtP

−

+++
−

−

+++
=

λβγλβγ
β ,             (27) 

where  

2

)(4)()2( 2

2,1

βγλβγβλγ +++±++−
=s . 

When γ =0, there is no recovery time and the process is terminated when two consec-

utive red shocks occur. In this case equation (27) reduces to relationship obtained in 

reference [8].  

     Equation (27) gives an exact solution for ),,( RtP θ . Similar to Section 3, it can be 

simplified under certain assumptions. Assume that the fast repair condition (19) holds. 

The first red shock cannot terminate the process. The probability that the subsequent 

shock can result in termination is    

∫ ∫
−

−−− −=
t xt

yyx
dydxyReeeB

0 0

))(1(βλλ λλ .                                     (28) 

For the exponentially distributed time of recovery: 

tt
eeB

)(
2

))((

γβλλ

γβγβλ

λ

γβ

λ

γβλ

λ ++−−

+++
+

+
−

++
=  

For sufficiently large t , λβλλ ++≈ /B  and this approximate value can be used for 

subsequent shocks as well. Therefore, relationship 









++
−≈ tRtP

γβλ

λ
θ

2

exp),,( . 

is the fast repair approximation in this case. 

5. DISCUSSION 

The method of integral equations, which is applied to deriving the survival probability 

for different shock models is an effective tool for obtaining probabilities of interest in 
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situations where the object under consideration has renewal points. As the considered 

process of shocks is the homogeneous Poisson process, each shock (under some addi-

tional assumptions) constitutes these renewal points. When a shock process is NHPP, 

there are no renewal points, but the integral equations can be usually also derived. For 

illustration, consider the corresponding generalization of equation (4). Denote by 

),,( θxxtP −  the survival probability in txtx <),,[  for the ‘remaining shock process’ 

that started at 0=t  and was not terminated by the first shock at time x . Note that this 

probability depends now not only on tx −  as in the homogeneous case but on x  as 

well. Equation (4) is modified now to 

dxxtPduuxduutP

t xt

),()(exp)()(exp),(
0 00

θθλλλθ −








−+








−= ∫ ∫∫  

It can be easily seen by substitution that  

txduuxxtP

t

x

,0,)(exp),,( ≤








−=− ∫λθθ  

is the solution of this equation. 

     One can formally write integral equations for other models considered in this paper 

and the NHPP process of shocks, but their solutions should be obtained numerically 

as the explicit inversions of the corresponding Laplace transforms are not possible. 

     If shocks are described by the renewal process with the governing distribution 

)(tF  and the corresponding probability density function )(tf , the method of integral 

equations can be also obviously applied as in this case we also have ‘pure renewal 

points’. For instance, the simplest equation (4) turns in this case into  

dxxtPxftFtP

t

),()()(1(),(
0

θθθ −+−= ∫ . 

Applying the Laplace transform gives 

))(
~

1(

)(
~

1
),(

~

sfs

sf
sP

θ
θ

−

−
= , 

which is formally a solution to our problem in terms of the Laplace transform. Note 

that for given )(tF  it can be inverted usually only numerically. This is similar to the 

reasoning used for describing the Laplace transforms for standard renewal equations 

in the renewal theory [9]. 

     Another generalization of (4) (and subsequent models) is to the case when )(tθ  is 

a time-dependent probability. It is well-known that the probability of survival for the 

NHPP of shocks in this case is given by the following relationship: 









−= ∫
t

duuuttP
0

)()(exp))(,( λθθ , 

which is an analogue of the Brown-Proschan model in the theory of imperfect (mi-

nimal) repair [10].  
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Investigating approximations and parameter estimation of the Multivariate Generalized 

Burr-Gamma 

A Verster and DJ de Waal 

Department Mathematical Statistics and Actuarial Science 
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ABSTRACT 

 

The MGBG is considered for modelling multivariate data especially containing extreme values.  

This article is an extension and comparison to an earlier article by Beirlant et al. (2000). 

Special attention is given to the approximations of the expected value and covariance of the 

MGBG and to the estimation of parameters. The Kolmogorov-Smirnov is considered for 

estimating some of the parameters.  

 

KEYWORDS: MGBG, Extreme Values, Estimation, Approximation, Kolmogorov- 

Smirnov, QQ-plot. 

 

1. INTRODUCTION 

 

The multivariate Generalized Burr-Gamma (MGBG) distribution (Beirlant et al., 2000) 

generalizes the Burr-Gamma distribution (Beirlant et al., 2002) to a multivariate distribution 

which is fairly flexible to fit to multivariate data containing extremes on all or some of the 

variables.  In this paper an alternative approach to Beirlant et al. (2000) is taken to estimate the 

parameters of the MGBG.  In Section 2 properties of the MGBG are given and in Section 3 

asymptotic formulae are derived for  and .  These results are tested for a few 

simulated data sets in Section 4.  In Section 5 we discuss our alternative approach to estimate 

the parameters and then the procedure is applied to a simulated data set in Section 6.  Section 7 

shows the difference in the estimated parameter values between the approach in Beirlant et al. 

(2000) and our approach. 

 

2. THE MULTIVARIATE GENERALIZED BURR-GAMMA DISTRIBUTION 

 



2 

 

The Multivariate Generalized Burr-Gamma distribution (MGBG) is an extension of the 

univariate generalized Burr-Gamma family of distributions and it allows the modelling of 

multivariate data that includes extreme values. 

A random vector ( )1 ,...
p

X X X
′=  is MGBG( , , ,k µ ξ∑ ) distributed if the joint density function 

is given by the following equation: 

 

( )
( )

( )( ) ( ) ( )( ) ( ) ( )

( )

11

1
12

1

'1
( ) exp 1 , 1 0

| |

, ( )

i

i i

i

p
ki

i i i i i

i i i

p

i

i

k
f x x x x x x

k x

k v x

ξ ξ

ξ

ψ
ν ν ξν ν ξν

−−

=

=

= − + + >
Γ

∑

= Γ

∏

∏

 

       

              

(1) 

where 

  

 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1

2
( )

1

1
log 1 GAM ,1 ,  independent for 1,...,  

exp ' ,

,..., ',  log ,

log  and ' . 

i i i i

i

i i i i

p i i

i i i i

i i

V V k i p

V k k Y

Y Y Y Y X

k k k k
k k

ξ ξ
ξ

ψ ψ µ

ψ ψ ψ

−

= + =

 
= − ∑ − 

 

= = −

∂ ∂
= Γ =

∂ ∂

∼

 

 

( ) ( )' and i ik kψ ψ  represent the digamma and trigamma functions respectively.  For 

dimension p, ( )

1

2
i

−

∑  is the i
th

 row of the symmetric square root matrix 
1−∑ , where ∑ is a 

symmetric positive definite p p×  matrix.  ( )1
,...,

p
k k k=  denotes a positive vector of shape 

parameters, ( )1
,...,

p
µ µ µ=  denotes a vector of location parameters and ( )1

,...,
p

ξ ξ ξ=  denotes 

a vector of extreme value indices.  The parameter space is defined as 

{ }0, , 0, 1,...,i i ik i pµ ξΩ = > −∞ < < ∞ ∑ > −∞ < < ∞ =,  (Beirlant et al. 2000, p. 113). 

Remark: If  for , then  and . The implication of 

the remark is that  and  can be estimated from the data by deleting the extreme observations 

exceeding certain thresholds . This implies that  and  are not the mean and 

covariance of . The first question that we address is; what is  and ? 
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3. APPROXIMATIONS FOR ,  AND  

 

The approximated expected value of X is  

 

( ) ( ) ( )21
exp exp

2i i ii Y Y YE X µ σ µ≈ − + −
     

        

(2) 

where ( ) ( ) ( )

( )

( )

11

1 1

1 12 2

log

. .

. .

. .

log

iY i ii i

p p

kV

E Y D E D

V k

ψ ψ

ψ

µ µ

ψ

− −

  
  
  
  = = −∑ + ∑ +
  
  
  

    

 

, ( ) ( ) ( )( )1 2, ,...,
p

D k k kψ ψ ψ ψ′ ′ ′= diag and
2

iYσ  is the i
th

 diagonal element of  

( ) ( )
1 1

1 12 2, ' log , log 'Cov Y Y D Cov V V Dψ ψ
− −= ∑ ∑ .  

This approximation is proven in Appendix A.1. 

 

The approximated variance of X is  

 

( )

( )

( )

1 1

2

1

1

1

1 12 2

1
log

.

exp .
1

.

1
log

j j

j j

p p

V

kj

i i i i i k

V

p

p

e
k

Var X k D D e
e

e
k

ξ

ξ

ξ

ξ

ψ ψ ξ

ξ

ψ
ξ

ξ
µ

ψ
ξ

− −

    −
  −       
   
       
     ≈ ∑ − ∑        −       
    −   −     

    

1

.                

(3)

 

This approximation is proven in Appendix A.2. 
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The approximated covariance between  and  is  

 

              
(4) 

 

where  and  

is a diagonal matrix with  on the diagonal.   

 

This approximation is proven in Appendix A.3. 

 

From (2), (3) and (4) it is clear that ,  and  are complicated functions of 

the parameters.  To estimate them we propose the estimation of the parameters and substitute 

the estimates in these functions. In the next section we will investigate these estimations 

through simulations.  

 

4. INVESTIGATING THE APPROXIMATIONS 
 

To investigate the appropriateness of the approximations for  and  in (2) and (3), 

three dimensional data sets were simulated from a MGBG distribution.  After simulating a data 

set of size  the approximated mean and variance are compared to the estimated mean 

and variance of .  This is illustrated in the following figures.  In Figures 1 and 2 the estimated 

mean and variance is indicated by the solid line and the approximated mean and variance is 

indicated by ‘*’ for each variable.  For the simulations  and 

 are assumed.  Figures 1 and 2 indicates that for  and 

 the approximated mean and variance of  are rather close to the estimated mean 

and variance of  for each dimension. 

Figure 1 Estimated  (indicated by - ) and the approximated  (indicated by *) 

for the three different dimensions plotted against k.   

 

(a) Variable 1 



5 

 

1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

k

E
(x

)

 

 

(b) Variable 2 

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

E
(x

)

 

 

 

(c) Variable 3 
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Figure 2 Estimated  (indicated by - ) vs. the approximated  (indicated by 

*) for the three dimensions.  

 

(a) Variable 1 
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(b) Variable 2 



7 

 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

k

V
a
r(

x
)

 

 

(c) Variable 3 
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Similar simulations can be done where the estimated  is compared to the approximated 

 (Given in the Appendix).  The estimated mean and variance is indicated by the solid line 

and the approximated mean and variance is indicated by ‘*’.  Figures 3 and 4 show the 

comparison for  and . From the figures it can be seen that the 

approximated mean and variance of  are close to the estimated mean and variance of  for 

each dimension. 

Figure 3 Estimated  (indicated by - ) vs. the approximated  (indicated by *) for 

the three dimensions plotted against k.  
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(b) Variable 2 
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(c) Variable 3 
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Figure 4 Estimated  (indicated by - ) vs. the approximated  (indicated by 

*) for the three dimensions.  
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(b) Variable 2 
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(c) Variable 3 
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For  and  the approximated mean and variance of  are close to the estimated 

mean and variance of . As k increases the estimated mean and variance becomes more 

volatile.   

 

 

5. ESTIMATION OF PARAMETERS  AND   THROUGH THE KS MEASURE 
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This section discusses the estimation of the four MGBG parameters.  The approach for 

estimating the parameters  and  are the same as in the article of Beirlant et al.  and  are 

estimated by first “trimming” the data, thus ignoring the extreme values, and then using the  

method of moments to estimate  and  from the data below a threshold.  The method of 

moments are given by the following equations 

 

( )1

1

ˆ ,..., '/
tn

j pj t

j

y y nµ
=

=∑                

(5) 

and 

 ( ) ( )
1

ˆ ˆ ˆ= ,..., ' , ..., ' / , 1,..., ; 1,...,
tn

ij pj ij pj t t

j

y y y y n i p j nµµ
=

 
Σ − = = 

 
∑

                                      

(6) 

where  denotes the number of observations below the threshold . Thresholds are chosen 

for each dimension by obtaining the 75
th

 upper quartiles as shown in Beirlant et al. (2000). 

The Kolmogorov-Smirnov measure,  (Conover, 1980) is then used to 

estimate values for  and  where  denotes the empirical cdf and  the fitted cdf.  Since it 

is known that  the Kolmogorov-Smirnov measure calculates the maximum 

absolute difference between the empirical Gamma function and the cumulative Gamma 

function for different values of  and .  With the KS measure one can see how well the 

model fits the data.  The minimum value of the different maximum KS measure values will 

indicate the best fit.   

 

6. SIMULATED DATA SETS 

 

This section illustrates the estimation process as discussed in Section 5.   values 

 were simulated from a MGBG with the following set of parameters, 

.  Figure 5 

shows the simulated data values of .  Let 

.  
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Figure 5 Simulated value of , * indicates variable 1, ∆ indicates variable 2 and ο 

indicates variable 3. 
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From Figure 5 it is evident that extreme values occur in the data set.  The thresholds are now 

determined by obtaining the 75
th

 upper quartile in every dimension.  

Figure 6 shows the simulated  values below the thresholds.   The mean and the variance of  

is now calculated for the data below the threshold as follows:  

and . 

 

 

 

 

 

 

 

Figure 6 Simulated value of  below the thresholds, * indicates variable 1, ∆ indicates 

variable 2 and ο indicates variable 3. 

. 
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For different values of   and  the KS measure is calculated.  The 

estimates of  and  are the values of  and  that gives the minimum KS measure value.  

The estimated parameter values are shown in Table 1 together with the minimum KS measure 

value.  Table 1 also includes the estimated parameter values when the threshold is chosen as 

the 75
th

 percentile.   

 

Table 1 Estimated vs true parameter values. 

 True parameter value Estimated parameter values for t = 75
th

 

quartiles  

   

 

  

   

   
 

The minimum KS values for each dimension are , these values are all 

significant at the 5% level.  

From Table 1 it is clear that the estimated parameter values are relatively close to the true 

parameter values.  

Figure 7 shows the QQ-plots for each dimension for the estimated parameters in Table 1.  A 

QQ-plot gives an indication of the goodness of fit of the MGBG to the simulated data.  If the 

QQ-plot follows more or less a straight line it indicates a good fit, as is the case in Figure 7.   
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Figure 7 QQ-plots for each dimension, dimension 1 is indicated by the straight line, 

dimension 2 by the dashed line and dimension 3 by the dots. 
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7. APPLICATIONS TO REAL DATA 

 

In this section a real data set, the maximum monthly wind speed from March 1993 to 

December 1998, recorded in three stations in the Cape Town area, namely Cape Town harbour 

(HB), Cape Town airport (AP) and Robben Island (RI), are modelled with the MGBG. The 

same data set was considered previously by Beirlant et al. (2000) and the results are compared 

with our results. The data is given in the Appendix A4. Let  denote the 

wind speed in knots.  The same thresholds were used as in the article by Beirlant et al. (2000), t 

= (60, 55, 45).  When considering only the data below the threshold  and  were estimated as 

  and  

 

which is the same as the results in Beirlant et al. (2000). 

 

 and  were estimated simultaneously by using the Kolmogorov-Smirnov approach for 

different values of  and  and the following estimates were obtained 
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  and . 

 

The estimates of  and  differs considerable from the estimates in Beirlant et al. (2000) 

where  and .  QQ-plots with our parameters 

and the parameters of Beirlant et al. (2000) are shown in Figure 8 for the different dimensions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 QQ-plots for each dimension, (*-) represents the QQ-plots with our parameters 

and the (- -) represents the QQ-plots with the parameters of Beirlant et al. 

(2000) and the solid line represents the 45
o
 line. 

 

(a) Dimension 1 
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(b) Dimension 2 
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(c) Dimension 3 
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The line the closest to the 45
o
 line will indicate the best fit. Although very similar, our model 

seems to be closer to the 45
o
 line in figures (a) and (c).  A further test for goodness of fit is the 

correlation coefficient rQ between the empirical quantiles and the theoretical quantiles. The 

closer rQ is to 1 the better the fit (Beirlant et al. 2004, p.9). The rQ values are calculated as 

follows: 

 

Table 2 Calculated rQ values. 

 Our model Model of Beilant et al. 

(2000) 

Dimension 1 0.9895 0.9811 

Dimension 2 0.9746 0.9856 

Dimension 3 0.9797 0.9614 

 

The correlation coefficients are high in both cases, although it is slightly higher in with our 

model for dimensions 1 and 2. 

  

 

8. CONCLUSION 
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The approach considered here for estimating the parameters of the MGBG seems to be 

appropriate and easier than previously reported.  It seems to be a slight improvement on the 

estimation approach considered in Beirlant et el. (2000). Further research can be done in 

perhaps considering a thoroughly Bayesian approach for estimating all four parameters 

simultaneously.  

 

APPENDIX 

A.1: 

The expected value of , 1,...,
i

X i p= , where ( ) ( )
1

log 1 ,1~GAM
i i i i

i

V V kξ ξ
ξ

= +  is given by the 

approximation 

 

( ) ( ) ( )21
exp exp

2i i ii Y Y YE X µ σ µ≈ − + − .          

(a.1) 

 

Proof: 

From (a.1) 
1i i

V
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i

e
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−
= , therefore ( )

1
log log

i i
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e
E E V
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  −
=       

   
. 

To obtain the ( )log
i

E V    the delta method given by Rice (1995, p. 149) is used.  This method 

involves the expansion of the Taylor series to the second order to improve the approximation.  

Therefore ( )( ) ( ) ( )21
log

2i i i
i V V VE V g g

ξ ξ ξ
µ σ µ′′≈ + , 

 

where 

 

 
i

V i
k

ξ
µ = , 
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i
V ik

ξ
σ = , 
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i

Vg
ξ

µ =  
1

log

i V
i

i

e ξ
ξ µ

ξ
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 
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Therefore  
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(a.2) 

 

The delta method also indicates that ( ) ( )( )
2

2log
i i

i V V
Var V g

ξ ξ
σ µ′≈ , therefore 
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(a.3) 

 

From (2) ( )logi iY X= − ,  therefore ( ) ( )expi i iX g Y Y= = − , where  
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(a.4) 

and 

 

( ) ( ) ( )( )1 2, ,..., .diag pD k k kψ ψ ψ ψ′ ′ ′=          

(a.5) 

 

Again the delta method is used to obtain an approximation for ( )iE X  (Rice 1995, p. 149).  

Thus, when following the delta method, the following is obtained: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

21
,

2

exp exp .

i i ii Y Y Y

i i i i

E X g g

g Y Y g Y Y

µ σ µ′′≈ +

′ ′′= − − = − and 

          

(a.6) 

 

Therefore  

 

( ) ( ) ( )21
exp exp

2i i ii Y Y YE X µ σ µ≈ − + −           

(a.7) 
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2

iYσ  is the i
th 

diagonal element of  

 

( ) ( )
1 1

1 12 2, ' log , log 'Cov Y Y D Cov V V Dψ ψ
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(a.10) 

Because 
i

Vξ  and 
'i

Vξ  are independent, iV  and  ' , 'iV i i≠  are also independent and therefore 

 is a diagonal matrix with  on the diagonal, where 

( )log
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i i ki

e
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Therefore ( )iE X  is equal to  
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A.2: 
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Proof:  
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When applying the delta method 
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Now it follows that: 
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A.3: 

The covariance of , 1,...,iX i p=  where ( ) ( )
1

log 1 ,1~GAM
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where   and    

For   the   
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Because 
i

Vξ  and 
'i

Vξ  are independent,  is a diagonal matrix with  in 

the diagonal. 

#  

 

A4: 

Maximum monthly wind speed data measured at Cape Town Harbour, Cape Town Airport and 

Robben Island, from March 1993 to December 1998. 

 

Harbour  Airport Robben Island 

121 45 35 

49 56 37 

39 41 27 

41 45 35 

56 60 39 

56 47 37 

39 49 41 

49 43 37 

53 47 39 

53 49 43 

51 47 39 

51 47 39 

47 43 39 

60 45 37 

45 45 37 

89 70 53 

49 54 39 

43 45 43 

41 45 33 

43 39 31 

43 45 33 

47 47 37 

56 51 37 

49 43 35 

62 41 35 

51 47 64 

136 51 33 

70 56 45 
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89 51 33 

58 45 41 

41 45 31 

54 54 45 

45 47 37 

54 53 41 

54 49 39 

49 51 31 

53 47 35 

49 47 31 

37 45 29 

51 64 41 

47 49 33 

97 49 41 

47 53 37 

56 47 41 

53 51 41 

51 53 37 

53 49 37 

58 51 39 

54 45 37 

47 39 41 

49 47 31 

58 70 45 

37 43 33 

72 51 41 

53 45 45 

45 45 37 

43 49 37 

56 54 41 

54 51 39 

54 49 39 

49 45 33 

47 37 29 

51 47 39 

43 41 29 

43 47 39 

45 47 35 

51 47 33 

49 41 37 

53 43 39 

54 43 39 
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Abstract 

In this paper we discuss the semi-parametric estimation of measures of inequality, in 

particular, the Gini measure. This estimation procedure is specifically applicable in 

the case of heavy tailed distributions. Such distributions often occur in real data sets 

e.g. in income data which usually have a heavy right tail. The estimation is illustrated 

by application to the South African Income and Expenditure data of 2005. 

 

1. Introduction. 

Measures of inequality, also called measures of concentration or diversity, are very 

popular in economics and especially in measuring the inequality in income or wealth 

within a population and between populations. However, they have applications in 

many branches of science, e.g. in ecology (Magurran, 1991), linguistics (Herdan, 

1966), sociology (Allison, 1978), demography (White, 1986) and information science 

(Rousseau, 1993). 

Over the years a large number of measures have been proposed, with the Gini index 

perhaps the most well-known one. Having reliable inequality measures available is an 

important first step. A next step is to estimate the values of these measures using 

samples from the appropriate populations and, in particular, to estimate the variability 

of these estimators and more generally, to obtain confidence intervals for the 

measures. Since inequality is inherently dependent on the tails of a population, 

estimators of inequality are typically sensitive to data from these tails. We note in this 

regard that all the well-known inequality measures have unbounded influence 

functions. It is well-known that income distributions often exhibit a long tail to the 

right, making estimators of inequality particularly sensitive to large values. It is thus 

important to study the behaviour of estimators based on data from heavy tailed 

distributions. Many of the traditional estimators are sensitive to such extreme data 

points (see e.g. Cowell and Flachaire, 2007) and remedial action needs to be taken. 

This remedial action can be either a trimming of the extreme data or a modification of 

the estimator to make it more robust to extreme observations. 

Cowell and Flachaire (2007) (see also Cowell and Victoria-Feser, 2008) have 

proposed a so-called semi-parametric approach to modify estimators under heavy 

tailed distributions. This method estimates the left part of the distribution, where the 

bulk of the distribution resides, using the usual nonparametric empirical distribution 

function and the right (upper) part of the distribution using a parametric extreme value 

distribution, e.g. a Pareto distribution. The resulting estimator is therefore partly 

nonparametric and partly parametric, hence semi-parametric. Results from extreme 

value theory are then used to obtain a more reliable distribution estimator. This new 

estimator of the distribution forms the basis for more robust estimators of the 

measures of inequality. Since these new estimators are expected to have a limiting 

                                                           
1
 This paper is based on joint work with Tchilabalo Kpanzou and Ariane Neethling, both from Stellenbosch  

University. 
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normal distribution, approximate confidence intervals can be obtained using standard 

normal theory. 

In this (preliminary) report we build on these ideas and focus, in particular, on the 

Gini index for illustrative purposes. It is shown how results from extreme value theory 

can be used to find an appropriate parametric distribution to use, also leading to a 

choice of the number of observations to use in fitting this parametric distribution. The 

results are applied to a well-known South African income data set, the IES 2005. 

The layout of the paper is as follows. In the next section a number of measures of 

inequality are discussed, in Section 3 the approach to semi-parametric estimation of 

the Gini index is discussed and in Section 4 the results are applied to the IES 2005 

data set. A number of further aspects being investigated are discussed in the closing 

section.  

 

2. Measures of Inequality. 

A large number of measures of inequality have been proposed in the literature. We 

discuss the two most important ones, viz. the generalized entropy (class of) measures, 

which includes the Theil and mean logarithmic deviation, and the Gini measure. In 

addition, we discuss a more recent proposal, the quintile share ratio. Our focus for this 

paper will be on the Gini inequality measure. 

Let Y denote the random variable of interest and suppose Y is positive valued and has 

a distribution function F . 

 

2.1 Generalized Entropy Measures 

The generalized entropy (GE) measure is defined by (see e.g. Cowell and 

Flachaire, 2007) 

( ) ( ) ( ) ( ) ( )
1 1

0

1 1 1 1 ,
y

E
I dF y α

α
α υ

µ µ
α α α α

∞
− − = − − = − −        ∫       

where 

( ) ( )
0 0

,  and ydF y y dF y R
αµ υ α

∞ ∞

= = ∈∫ ∫ . 

It follows quite easily that the influence function of 
E

I
α is given by 

( ) ( )
[ ]11

; EIF z I z zα

α α υ

α µ
υ µ+−

 = − − −  . 

Clearly the influence function is unbounded when z → ∞ . 

Two special cases of the GE measure are the Theil measure, when 1α = , i.e. 
1 logEI υ

µ
µ= − , 

where now ( )
0

logy ydF yυ
∞

= ∫ , 

and the mean logarithmic deviation, when 0α = , i.e. 

( ) ( )0

0

log log
y

E
I dF y

µ
µ υ

∞

= = −∫ , 

where now ( )
0

log ydF yυ
∞

= ∫ . 

2.2 Gini Index 

The Gini index is the most widely used measure of inequality. There are a number 

of different ways of defining it, the most well-known the following. 
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Let  

( ) ( ){ }; inf :Q q F y F y q≡ ≥  

denote the quantile function of F , 

( ) ( ) ( )
( );

0 0

; ;

Q q Fq

C q F Q u F du ydF y≡ =∫ ∫ , 

 

the cumulative quantile function and 

( )
0

ydF yµ
∞

= ∫ , 

 

as before.  

The Gini index is then given by 

 

( ) ( )
1

1

0

1 2 ; 1 2
G

I C u F du R Fµ −
≡ − ≡ −∫ , 

with 

( ) ( )
1

1

0

;R F C u F duµ −
= ∫ . 

 

Remark. The Gini index is closely related to the Lorenz curve. The latter is 

defined as 

( ) ( );
;

C q F
L q F

µ
≡ . 

Thus 

( )
1

0

1 2 ;
G

I L u F du= − ∫ , 

i.e. one minus twice the area under the Lorenz curve. Furthermore 

 

( ) ( )( )
1 1 1

0 0 0

2 ; 2 ;GI udu L u F du u L u F du
   

= − = −   
   
∫ ∫ ∫ . 

 

This shows that the Gini index is twice the area between the 45 degree line and the 

Lorenz curve. 

 

The influence function of the Gini index is easily seen to be 

( ) ( ) ( )( ) ( ) ( )( )( ); 2 ; 1z
GIF z I R F C F z F R F F z

µ
 = − + − −  , 

which tends to infinity at the rate of z when z → ∞ . 

 

A number of alternative definitions of the Gini index are as follows. 

(i) 1
1 22

| |
G

I E Y Y
µ

= − , 

where 1 2 and Y Y are independent random variables each having distribution 

F . 

(ii) The expression in (i) can also be written as  
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( ) ( )
1 1

1
2

0 0

| ; ; |
G

I Q u F Q v F dudv
µ

= −∫ ∫ . 

(iii) ( )( )
2

1

0

1 1
G

I F y dy
µ

∞

= − −∫ . 

Note that this can also be written as 

( )( ) ( ) ( )( )
2 11

0 0

1 1 1
G

I F y dy F y F y dy
µ

µ
∞ ∞

−= − − = −∫ ∫ . 

Remark. Note that the Gini index lies between zero and one, with zero indicating 

perfect equality and one indicating perfect inequality. 

 

2.3 Quintile Share Ratio Measure 

This measure is defined as the ratio of the 0.8
th

 quantile to the 0.2
th

 quantile, i.e. 

( ) ( )0.8; / 0.2;QSR Q F Q F= . 

Remark. This measure forms part of the so-called Laeken indicators, the 

European indicators on poverty and social exclusion. We only mention this 

measure and will not discuss it further.  

  

3. Semi-parametric estimation for the Gini index. 

Consider now the Gini index as given in (iii) in the previous section: 

( ) ( )( )1

0

1
G

I F y F y dyµ
∞

−= −∫ . 

Given a sample 1,..., n
Y Y  of size n  on Y , the usual nonparametric estimator for 

G
I  is 

given by 

� ( ) ( )( )
1

0

1
NP

G n n n
I F y F y dyµ

∞
−

= −∫ɵ , 

where 

( ) ( )1

1

n

n i

i

F y n I Y y
−

=

= ≤∑  

is the empirical distribution function and 

� 1

1

n

n i

i

n Yµ −

=

= ∑  

is the sample average. 

In many cases the distribution function F has a heavy right tail, with relatively fewer 

observations in the tail part of the distribution. In such a situation it may not be wise 

to use the empirical distribution function to estimate F over its whole range. A better 

choice might be to use 
n

F  to estimate F over the bulk of the data, but to use a 

parametric estimator in the tail part of F . This was the approach suggested by Cowell 

and Flachaire (2007) (see also Cowell and Victoria-Feser, 2008). Since it is assumed 

that F has a heavy right tail, extreme value theory can be used. In this section such an 

approach will be followed. 

Now, define a semi-parametric distribution function by 

� ( )
( )

( ) ( )( ) ( )

0

0

,

1 ,

F y y y
F y

F y F y F y y yθ

≤
= 

+ − >
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for a given 0y , where Fθ is derived from some parametric distribution (e.g. Pareto or 

generalized Pareto). The distribution function F  can be thought of as the unknown 

underlying distribution function that will be estimated (in the bulk of the data) by the 

empirical distribution function. 

Taking 0y  as an upper quantile of F , say ( )0 1 ;y Q Fα= − , leads to 

� ( )
( ) ( )

( )( ) ( )

, 1 ;

1 1 , 1 ; .

F y y Q F
F y

F y y Q Fθ

α

α α

≤ −
= 

− − > −
 

The semi-parametric Gini index is given by 

 � � ( ) � ( )( )
1

0

1
SPG

I F y F y dyµ
∞

−

= −∫ . 

We now give a simplified expression for 
SPG

I that will be used in deriving an 

estimator for it. 

First, note that 

� � ( )( )

( )( )
( )

( )( )
( )

0

1 ;

0 1 ;

1

1 1

Q F

Q F

F y dy

F y dy F y dy

α

θ

α

µ

α

∞

− ∞

−

= −

= − + −

∫

∫ ∫
 

and 

� � ( ) � ( )( )

� ( ) ( )( )
( )

( )( ) ( )( )
( )

1

0

1 ;
1

0 1 ;

1

1 1 1 1 .

SPG

Q F

Q F

I F y F y dy

F y F y d y F y F y dy

α

θ θ

α

µ

µ α α

∞
−

− ∞
−

−

= −

 
 = − + − − −  

  

∫

∫ ∫

  

On the interval ( )( )0, 1 ;Q Fα−  we estimate F by the empirical distribution function 

.
n

F  

Now, denote the order statistics of the sample by 1, 2, ,...
n n n n

Y Y Y< < <  and let k
n

α =  

for some appropriately chosen integer k . Then ( )1 ;Q Fα− can be estimated by ,n k n
Y − . 

On the interval ( )( )1 ; ,Q Fα− ∞ we want to use a parametric distribution obtained 

from extreme value theory. This approach is now briefly described. 

Write GPD for the generalized Pareto distribution and GEV for the generalized 

extreme value distribution. It is then well known (see e.g. Beirlant et al., 2004) that 

for a threshold u  

( )| ,  for large D Y u Y u GPD u− > ≐ , 

whenever Y lies in the domain of attraction of the GEV.  

 

Therefore, if G denotes the GPD, we can write 

[ ] [ ] [ ]

( ) ( )

( )

| /

/

,

P Y u y Y u P Y u y P Y u

F y u F u

G y

− > > = − > >

= +

≈

 

where ( ) ( )1F y F y= − and ( ) ( )1G y G y= − . 
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It follows that 

( ) ( ) ( )F y u F u G y+ ≈ , 

which becomes (by letting y u y+ → ) 

( ) ( ) ( )F y F u G y u≈ −  and  

( ) ( ) ( )1F y F u G y u≈ − − . 

The right hand side of this is then the ( )F yθ  in the semi parametric form above. 

 

Remark. Note that the GPD has two unknown parameters, say γ  and σ . The form of 

G is then 

( )
1/

1 1 xG x
γ

σ
γ

−
= − +   . 

The parameters γ  and σ can be estimated by maximum likelihood. See Beirlant et al. 

(2004). 

We now give an estimator for 
SPG

I  by estimating the elements in its expression given 

above. 

Note that, as mentioned above, if we take k
n

α =  then ( )1 ;Q Fα− can be estimated by 

,n k n
Y − . Therefore, for ,n k n

y Y −≤  we estimate �F by  

� ( ) ( )n nF y F y= ,  

the empirical distribution function. 

Consider now ,n k n
y Y −>  and let ( ), 'θ γ σ≡ , the GPD parameter and write ɵθ  for the 

corresponding maximum likelihood estimator. 

Writing G Gθ≡  to indicate the dependence on the unknown parameter, we estimate it 

by 
ɵ

G
θ

. Using the above approximation for ( )F y  for a large threshold, for ,n k n
y Y −>  

we estimate �F  by 

� ( ) ɵ ( )( ),1 1 1k k
n n k nn n

F y G y Y
θ −

 = − − − −
 

. 

Here, with the threshold u taken as ,n k n
Y − , the estimator for ( )F u  is taken as 

( ),1 k
n n k n n

F Y −− = . 

Putting this together, gives the final estimator as 

 

� ( )
( )

ɵ ( )( )
,

, ,1 1 1 .

n n k n

n k k
n k n n k nn n

F y for y Y

F y
G y Y for y Y

θ

−

− −

≤


=   − − − − >  

 

 

Substituting this in 
SPG

I , gives our estimator SPGIɵ . The following result gives a 

convenient computational formula for this estimator.  

 

Theorem. The estimator SPGIɵ  can be written as 

 

�( ) ( )( ) � ɵ ( ) � ɵ( ) ɵ( )
1

2 2 2 2 2 4

, 1,

1

1 2 / 1 2
n k

i
SPG i n i nn

i

I n i Y Y k n k n k nµ σ γ µ γ γ
−−

−

=

 = − − + − − − − − ∑ɵ , 
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where ɵγ  and �σ  are the maximum likelihood estimators and �µ  can be calculated as 

 

� ( )( ) � ɵ( ) ɵ2 2

, 1, 0,

1

1 / 1 , 0, 1.
n k

i
i n i n nn

i

Y Y k n Yµ σ γ γ
−

−

=

= − − + − = <∑ . 

Remark. As is usual in extreme value theory, the choice of the threshold u to work 

with, or equivalently the choice of the number of exceedances k , is of critical 

importance. In our application we will apply a goodness-of-fit test to test for the GPD 

and choose k  as the value that gives a reasonable p value. The goodness-of-fit test 

used will be based on the work of Choulakian and Stephens (2001) and Villasenor-

Alva and Gonzalez-Estrada (2009). 

  

4. Results for IES 2005. 

We apply the proposed method to the variable EQ_INC (Equalized Income) of the 

South African Income and Expenditure Survey data (IES2005), consisting of 20 986 

observations. The data ranges from 0 to 2 910 826.00, with a heavy right tail as 

shown by the histogram below. 

Applying the GPD test (as discussed in Choulakian and Stephens, 2001 and 

Villasenor-Alva and Gonzalez-Estrada, 2009) to the exceedances, we found a p-value 

of ˆ 0.78p =  for 630k =  (3% of the data). The estimates of the shape and scale 

parameters for the GPD are respectively given by ˆ 0.6402γ =  and ˆ 45053.7500σ = . 

The corresponding semi-parametric Gini index is estimated by ˆ 0.6154
SPG

I = . The 

nonparametric estimate of the Gini index is given by ˆ 0.6703
G

I = .  

5. Further work. 

This is a preliminary report on a research project that has only recently started. 

Clearly there are still many outstanding issues to explore. Below some of these are 

mentioned that are currently being investigated. 

• If instead of the exceedances Y u− , relative exceedances /Y u  are 

considered, then it is well known that 

( )/ | ,  for large D Y u Y u Pareto u> ≈ . 

One can thus carry out the program above for the Pareto distribution rather 

than the GPD. Furthermore, a second order approximation exists for such 

exceedances, viz. approximation by the so-called perturbed Pareto distribution 

(PPD). This should give a better fit in the tail of the distribution.  

• The influence functions of the measures of inequality considered are clearly 

sensitive to outlying values. What is the effect of outliers on the semi-

parametric estimators? How should this effect be countered, e.g. through 

appropriate trimming? 

• The above was illustrated only for the Gini measure. Similar results are being 

derived for other measures of inequality. 

• Estimating a measure of inequality is only a first step. The next step would be 

to obtain confidence intervals. This is being carried out in different ways. 

- Using a re-sampling method such as the bootstrap. 
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- Using asymptotic theory. Since these estimators are asymptotically 

normally distributed this is fairly straightforward. However, results may 

not be accurate for “small” samples. 

- In order to improve small sample accuracy of the confidence intervals, use 

could be made of transformations. Some work in this direction has 

recently been done by Schluter and van Garderen (2009). 

• Survey data is often based on complex sampling schemes. How can the semi-

parametric approach be modified to accommodate such data? 
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AN APPLICATION OF SEQUENTIAL REGRESSION MULTIPLE IMPUTATION ON PANEL 

DATA 

MICHAEL JOHAN VON MALTITZ 

ABRAHAM JOHANNES VAN DER MERWE 

 

1. INTRODUCTION 

 

One of the major issues associated with large surveys is that of non-response or lost data. Moreover, the main 

problematic issue regarding missing data is that most data analysis procedures are not designed to handle 

them, leading to analyses that conclude invalid and inefficient inferences about a population (Schafer and 

Graham, 2002). Many economic analyses use either complete-case analysis or a simple but inaccurate method 

of imputing missing data. In most cases, the missing data is multivariate, meaning that missing values appear 

in several observed variables. In essence, we have that a complete data matrix Y��� is made up of an 

observed part, Y���, and a missing part, Y���. The data that is missing has a particular distribution of positions. 

These positions are indicated by a matrix R of zeroes and ones that has the same dimensions as the complete 

data matrix Y���. In R there are ones in the positions of the missing data entries of Y���, and zeroes 

elsewhere. The distribution of R, referred to as the distribution of ‘missingness’, is P(R|Y���, 
), where ξ  is a 

vector of unknown parameters.  

 

There are three mechanisms by which data is said to be missing – ‘missing at random’ (MAR), ‘missing 

completely at random’ (MCAR), or ‘missing not at random’ (MNAR). In the MAR mechanism, the distribution 

of positions of the missing data entries is assumed to be independent of the missing data in the analysis, or 

P(R|Y���, 
� = P(R|Y���, 
�. In the case of MCAR, a special version of the MAR mechanism, the positions of 

the missing data entries are assumed to be independent of all of the variables in the analysis, i.e. 

P(R|Y���, 
� = P(R|
�. In the last case, the MNAR missing data mechanism, the positions of the missing data 

entries are assumed to be at least dependent on data that is missing from the dataset, or, more basically, the 

distribution of missingness is not MAR. This means that for MNAR, P(R|Y���, 
� ≠ P(R|Y���, 
�. If the 

mechanism behind the missing data is MAR, then the mechanism is said to be ‘ignorable’ (Little and Rubin, 

1987). 

 

In complete-case analysis, only cases containing values for each of the variables in question are retained in 

the data analysis procedures. This can raise the problem of serious bias in the analysis (Little and Rubin, 1987). 

One must note, however, that these possible biases may not always exist in complete-case analysis, but rather 

that the extent of bias will depend on the mechanism by which data is deemed to be missing. Particularly, if 

the data is MCAR, then there will be no bias in complete-case analysis of multivariate data with missing 

entries (Schafer, 2003). To overcome the possible biases in complete-case analysis, many methods of dealing 

with incomplete data and imputing missing values have been suggested. The non-imputation methods of 

handling incomplete data include available-case analysis, weighting procedures or model-based procedures.  

 

Alternatively, if complete-case analysis methods are to be used on a dataset that is originally incomplete, data 

can be ‘filled in’ by several imputation procedures, including substitution, cold-deck imputation, unconditional 

and conditional mean substitution, imputation from unconditional distributions or hot-deck imputation, and 

imputation from conditional distributions. All of these imputation procedures are single imputation methods, 

imputing only one value for each missing datum. 

 

Multiple imputation, also proposed by Rubin (1987), is viewed as a flexible alternative to likelihood methods 

for a range of incomplete data problems (Schafer and Graham, 2002). The primary advantage of multiple 



 

imputation is the inflation of uncertainty in the analysis estimates. In essence multiple imputation covers a 

class of methods that impute several plausible values for a single missing data entry. Once the missing values 

have been imputed, several completed datasets are left to be analysed by complete-case methods. A simple 

set of rules is then used to combine the estimates from the separate analyses of the several datasets, and the 

uncertainty of these estimates is then formed from the sample variation as well as variation in the imputed 

values themselves. Although the number of datasets that should be completed is often debated, a small 

number of completed datasets, say, between 10 and 20, often suffices in order to obtain precise estimates.  

 

Multiple imputation can be easily linked to Bayesian statistics, as the imputed values for a single missing data 

entry can be draws from the predictive posterior distribution for the non-missing data. One relatively new 

method of imputation is that of Raghunathan et al. (2001), namely sequential regression multiple imputation, 

or SRMI. This method extends and refines imputation from conditional distributions into a multiple 

imputation context. The process will be detailed in the methodology section. 

 

2. METHODOLOGY 

 

2.1 Hypothesis 

The hypothesis of interest is that there are no changes in the parameters of a regression analysis once 

imputation has been performed using the SRMI process. More accurately, we want to determine whether or 

not social networks have influenced welfare in South Africa. The research problem is quite simply linked to 

this hypothesis. If there are changes in the parameters of interest from before imputation to after imputation, 

then the researcher has to decide which set of parameters, if any, will be used to aid policy decision. The 

problem to be solved is the adequacy of whichever estimates are decided on. 

 

2.2 Data 

This research uses the combined datasets of the Project for Statistics on Living Standards and Development 

(PSLSD), undertaken in 1993, and the follow up KwaZulu-Natal Income Dynamics Study (KIDS) surveys 

undertaken in 1998 and 2004.
1
 These two studies form a three-period panel data set of 1412 households in 

1993, 1075 households in 1998, and 1428 households in 2004. Once data constraints have been taken into 

account, the household models include 1158 African and Indian households. These figures are calculated 

before cases are dropped in any complete-case analysis on the data. Additionally, since the 1993 survey was 

designed to be self-weighted, it may only be assumed that the 1998 sample of households is representative of 

the 1993 population, as is the sample in 2004. The data actually spans 3928 observations in 1906 households 

when the survey waves are combined in a single dataset. If a complete-case random effects regression is 

performed on this data, 1600 cases are dropped before the analysis is completed. This is a large number 

relative to the number of households available for analysis, meaning that the complete-case procedures may 

produce severely biased results if the data is not MCAR. 

 

2.3 Multiple Imputation through Sequential Regression 

Raghunathan et al. (2001: 85) summarize the SRMI process for a single cross-sectional dataset: 

 

                                                      
1
 The KwaZulu-Natal Income Dynamics Study (KIDS) was a collaborative project of the International Food Policy Research 

Institute, the University of Natal-Durban, the University of Wisconsin-Madison, and the Southern Africa Labour and 

Development Research Unit at the University of Cape Town. The 2004 data used in the analysis was generously provided 

by the KIDS research team before the public release of the data. This means that the data had yet to be cleaned. Even 

though extensive cleaning of the data was required, in particular for individual’s ages, education levels, household heads, 

and even gender, the cleaning was approached with much care, so as to preserve the validity of the data. 



 

“This approach specifies an explicit model for variables with missing values, conditional on the fully 

observed variables and some unknown parameters, and a model for the missing data mechanism, 

which does not need to be specified under an ignorable missing data mechanism (Rubin, 1976). This 

explicit model then generates a posterior predictive distribution of the missing values conditional on 

the observed values. The imputations are draws from this posterior predictive distribution.” 

 

Firstly, the dataset’s incomplete variables are sorted from the variable with the least missing entries to the 

variable with the most missing values. Let the variable with the least missing be ��, the variable with the next 

fewest missing be ��, etc., until ��. Let X be that part of the dataset that is originally complete. Finally, let 
�  

be a vector of the unknown regression and dispersion parameters in the conditional model for ��. The sorting 

of the dataset follows as an extension to the fact that in model-based imputations the joint conditional 

density of ��, ��, … , ��  given X can be factored as  

 

 �(��, ��, … , ��|X, 
�, 
�, … , 
��

= ��(��|X, 
����( ��|X, ��, 
�� … ��(��|X, ��, ��, … , ���� , 
�� 
(1.1)  

 

Each conditional density is modelled by an appropriate regression model with unknown parameters, 
�.  

 

Secondly, the first round of imputations begins, and the variable with the least missing data entries (apart 

from the complete variables) is selected. This variable is regressed on the complete data according to a 

regression model that is assumed to fit the distribution of the variable, as mentioned above. The model first 

processed is illustrated in Equation (2.1) by ��. The regression is Bayesian by nature, but utilizes a diffuse or 

non-informative prior. If ξ = (
�, 
�, … , 
�), then the prior for each model is π(ξ) ∝ 1. A set of regression 

parameters is then drawn from the regression model and a single draw from the predictive posterior of the 

model (the predictive distribution of the missing values given the observed values) is made for every missing 

data entry in that variable. These draws are the imputed values for that variable.  

 

Thirdly, the SRMI process then selects the variable with the next fewest missing values, and the procedures in 

the second step are repeated. A new regression model, illustrated by �� in Equation (2.1), is chosen according 

to the assumed distribution of ��, the variable now being regressed. This new variable is regressed on the 

complete data and the newly completed variable from the previous step (i.e. the variable with the least 

missing values, all of which have now been imputed with a single imputation). Again a set of regression 

parameters is drawn from the new regression model and a single draw from the predictive posterior of this 

model is made for every missing data entry in the variable. This step is repeated until all of the variables in the 

dataset are ‘filled in’ by appropriate regression predictions. By the nature of this process, the terms 

‘sequential regression imputation’ are justified. 

 

Fourthly, once an entire dataset has been completed or updated with imputed values for the original missing 

data entries, this completed dataset is subjected to an update round, round two, starting essentially at the 

second step above. Thus, the iterative process involved in SRMI is brought to light. The process involved in the 

updating rounds differs slightly to that of steps two and three above.  

 

The first difference depends on the pattern of the missing data. For a monotone pattern of missing data, if a 

datum for an observation is missing in variable ��, then the data for that observation will be missing in 

variables ����, ����, … , ��. When this pattern occurs the imputations in the first round are approximate 

draws from the predictive distribution of the missing values given the observed values. Draws in subsequent 

rounds can be improved upon using the SIR (sampling, importance-weighting, resampling) or another 



 

rejection algorithm (Raghunathan et al., 2001). When the pattern of missing data is not monotone, a Gibbs 

sampling algorithm must be developed to or improve upon the previous round’s estimates. Raghunathan et 

al. (2001) suggest that the missing values in �� at round (� + 1) need to be drawn from the conditional 

density: 

 

 ��∗ "��#
�
($��), ��

($��), … 
���
($��), 
���

($) , … , 
�
($), ��

($), X%, (1.2)  

where ��
($)

 is the imputed or observed value for variable �� at round �. 

 

Equation (2.2) is computed based on the joint distribution in Equation (2.1), This draw process would be 

extremely difficult to complete, since the density in Equation (2.2) is difficult to compute in most practical 

situations without restrictions (Raghunathan et al., 2001). However, Raghunathan et al. (2001) propose that 

instead, the draw in round (� + 1) for �� is taken from the predictive distribution corresponding to the 

conditional density: 

 

 &� "��#��
($��), ��

($��), … , ����
($��), ����

($) , … , ��
($), X, '% (1.3)  

 

where ' is a vector of the unknown regression parameters with diffuse prior. 

 

In other words, in imputation rounds after the first the values that were originally missing in each variable are 

now predicted from regression models regressing those variables on all of the other variables in the dataset, 

meaning that the variables with values imputed from the first round are used as regressors in the second 

round in addition to the newly updated variables from the current round. This process can be viewed as an 

approximation to the Gibbs sampling procedure in Equation (2.2). In some particular cases this approximation 

is equivalent to drawing values from a posterior predictive distribution under a fully parametric model. For 

example, if all of the variables are continuous and Normally distributed with constant variance, then the 

algorithm governing Equation (2.3) converges to a joint predictive distribution under a multivariate Normal 

distribution with an improper prior for the mean and covariance matrix (Raghunathan et al., 2001). 

 

This fourth step is then repeated as many times as the researcher deems fit (usually to a point where the 

inferences made on the data during subsequent rounds converge). The extent to which the process is 

repeated will be expanded upon in the following section. 

 

2.4 Inference on the Completed Datasets 

Once multiple datasets have been imputed from the same starting point, inferences on the datasets can be 

combined using a simple set of rules known as Rubin’s Rules, as given by Rubin (1987), and explained below.  

 

Suppose that ( is a scalar population quantity to be estimated from the sample data taken in a survey, and 

that an estimate ()  and standard error √+ could be easily calculated if Y���  were available. In multiple 

imputation, Y��� is replaced by , > 1 simulated versions, Y���
(�) , Y���

(�) , …  Y���
(�)

, leading to , estimates and 

their respective standard errors, .()�, /+�0, 1 = 1, … , ,. An overall estimate for ( is: 

 
(2 = 1

, 3 ()�
�

�4�
 (1.4)  

with a standard error of √5, where 

 5 = +6 + 71 + 1
,8 9, (1.5)  



 

+6 = 1
, 3 +�

�

�4�
, 

and 

9 = 1
, − 1 3.()� − (20�

�

�4�
. 

If we have it that 
;)�;
√<  is approximately =(0,1) with complete data, as is assumed to be the case in many 

regression contexts, then 
;)�;
√< ∼ @A, in the imputed data case, where: 

B = (, − 1) 71 + 1
C8

�
, 

and 

C = 71 + 1
,8 9

+6 .    
The latter, C, is the relative increase in variance due to nonresponse (Schafer and Graham, 2002).  

 

The degrees of freedom vary from (, − 1) to ∞ according to the rate of missing information in the dataset. 

This rate of missing information is given by: 

 

 

D = "C + 2
B + 3%

C + 1 , 
(1.6)  

where C is as above.  

 

Schafer and Graham (2002) also note that when the degrees of freedom is large (or alternatively when the 

variation in the estimates between imputations is small compared to the overall variation), then there is not 

much that can be gained from increasing  ,, the number of imputed datasets. 

 

In order to determine the actual number of imputed datasets that should be created, Rubin (1987) also 

provides a measure of efficiency, measured in standard errors, and based on the rate of missing information, 

D. It is given by: 

 

 
G = "1 + D

,%
��

�
 (1.7)  

 

This measure essentially compares the size of the standard error after , imputations with the size of the 

standard error after an infinite number of imputations. This measure is used as a basis for determining 

whether or not the number of imputations made in Section 3’s application of SRMI on real data is adequate.  

 

2.5 Imputing from Generalised Linear Models (GLMs) 

From Equation (2.3) it is evident that a particular regression model needs to be utilized, according to the 

assumed distribution of the variable in question, in order to obtain predictions for the missing data in that 

variable. Three regression models are considered and detailed in the appendix, and detailed in this section, 

the same three that are utilized in Section 3. The regression models considered are the Normal Ordinary Least 

Squares (OLS) regression model for a variable that is Normally distributed, the logistic Generalised Linear 

Model (GLM) for a variable that is dichotomous or binary in nature, and the Poisson GLM for a variable that 

displays count data. For more information on the ordinal Probit GLM used for non-dichotomous categorical 

data, see Raghunathan et al. (2001).  



 

 

3. APPLICATION 

 

The main focus of the application is to determine whether or not social capital, which is generally regarded as 

being the networks, norms and trust present in social organizations (Putnam, 1993), has influenced welfare in 

households after the democratization of South Africa in 1994. In this paper social capital is measured simply 

by whether or not a member of the household in question has a member that is part of a social network. The 

social networks considered include financial (burial societies and savings societies), production (farmers’ 

associations, informal traders’ associations, sewing groups, and community garden groups), cultural (sports, 

dance/music/singing and study groups), service (development committees, water committees and school 

committees), political (tribal authorities, men’s groups, women’s groups and youth groups), and a catch-all 

category for other groups.  

 

The variables that are used in the longitudinal analysis are total years of education of the household 

members, household size, years of education of the household head, gender of the household head, age of 

the household head, location of the household (urban/rural status), social capital (networking potential), and 

welfare (log of real monthly adult equivalent expenditure per month without remittances). The former 

variables are typically significant determinants of welfare (see for example Narayan and Pritchett, 1997; 

Yúnez-Naude and Taylor, 2001; Grootaert et al., 2002; and Grootaert and Narayan, 2004), and, thus, they are 

a logical choice for this research.  

 

Several regression analyses are performed using different determinants. However, the differences in 

determinants are only concerned with the social capital measures – the remainder of the determinants are 

unchanged throughout this section’s analyses. Social capital is firstly represented separately as a single 

dichotomous ‘access to networks’ variable, then secondly as access to financial social capital, and finally as a 

set of dichotomous variables, each indicating ‘access to a particular type of network’. The changes are made 

in order to gain insight into the dynamics of different types of networking social capital, although not all the 

results are reported.  

 

For each set of determinants three panel regressions are performed. In the first, the regressions are 

performed on the original data, essentially dropping observations with missing values as the procedures are 

complete-case analysis methods. Secondly, the entire SRMI ‘filled-in’ dataset is used in the regression analysis. 

Finally, the observations with the dependent variable originally missing are dropped from the analysis and the 

remainder of the data is used in the regression analysis. The argument for carrying out this last procedure is 

that the SRMI process forces a relationship between the missing dependent data and the rest of the dataset – 

in other words adding these cases to the analysis may force the analyses into showing a stronger a 

relationship between the dependent variable and the explanatory covariates than is actually present in the 

population. For brevity’s sake, only the first SRMI results are reported, and then only for the case when social 

capital is represented by the set of dummy variables for its component networks. The analysis of the dataset 

with SRMI filled-in values and the original incomplete dependent variable yields results similar to the case 

without SRMI, but these will be discussed in more detail below.  

 

One must note that in the previous paragraphs the results from a single regression are actually created by 

separately regressing the dependent variable on the independent variables in each of the imputed datasets 

arising from the multiple imputation process. Once all the regression results are combined using Rubin’s 

Rules, a single estimation procedure is said to have been performed. It is these combined results that are 

reported in the tables in this section. 



 

 

In addition to the SRMI procedure detailed in the previous section, the application was extended to include an 

analysis of the datasets that were filled with imputations from a panel-adjusted SRMI procedure. In essence, 

independent variables in each sequential regression in the SRMI procedure included the filled-in variables 

from the previous waves as additional covariates. The results from this additional procedure and analysis 

were, however, so close to the original results that, for brevity’s sake, they are not discussed here.  

 

The amount of missing data that we are dealing with in this section across the three waves of the survey 

increases drastically across the years.  Although the missing data seems to be within reasonable bounds in the 

first wave of the survey, more and more data is missing in the subsequent waves i.e. it changes in most cases 

from around 1% to 16 % to 40% over the waves. In all three waves of the survey, the variables with the most 

missing entries are those measured for the head of the household, namely years of education of the head of 

household, gender of the head of household, and age of the head of household, a missing proportion that 

moves from 15% to 26% to 55% over the three waves.  

 

Another aspect that can be noted is that in 1998 the social capital data was either all missing or all present. 

This leads to the same amount of missing data in each social capital variable. One might argue that, if this is 

the case, the sequential regression imputation procedure might produce different results depending on which 

social capital variable was regressed first in the SRMI procedure. In order to test this argument, another 

multiple imputation run and panel regression was performed when all the social capital dichotomous 

variables were to be included as determinants (and of course only when SRMI is applied). In this additional 

procedure, service social capital and financial social capital were swapped in the order in which they were 

regressed in the SRMI process, so that service social capital would be imputed before production, cultural and 

financial social capital. The results appear to be similar to those where the two social capital variables are not 

swapped, indicating that at least using this particular set of real data, the order of the sequential regressions 

in the SRMI process does not influence the results in any significant way.   

 

Complete-Case Analysis after SRMI 

In each SRMI application ten iterations were performed, meaning that ten separate datasets were created for 

each ECM regression. After SRMI and the ECM regressions on the ten datasets were completed, the 

regression estimates on each of the ten imputed datasets were then combined using Rubin’s Rules to yield 

the estimates tabulated below.  

 

Table 1. Complete-case error component model estimation after SRMI 

After SRMI 
Coefficient 

estimates 

Standard 

errors 

Lower CI 

bound 

Upper CI 

bound 
Efficiency 

Household education 0.0034 0.0041 -0.0058 0.0126 0.9540 

Household size -0.0278 0.0136 -0.0584 0.0029 0.9540 

African household -0.8677 0.0535 -0.9744 -0.7610 0.9818 

Head's education 0.0303 0.0109 0.0057 0.0549 0.9537 

Female head -0.1603 0.0420 -0.2491 -0.0716 0.9640 

Age of head 0.0075 0.0016 0.0040 0.0110 0.9623 

Rural cluster -0.3232 0.0587 -0.4472 -0.1992 0.9639 

Financial social capital 0.1831 0.0335 0.1148 0.2515 0.9726 

Production social capital 0.0174 0.1191 -0.2418 0.2767 0.9587 

Cultural social capital 0.2213 0.0568 0.1037 0.3389 0.9685 

Service social capital 0.1320 0.0766 -0.0276 0.2916 0.9670 

Political social capital 0.2081 0.0743 0.0537 0.3624 0.9680 

Other social capital 0.3061 0.1170 0.0618 0.5505 0.9665 

Constant 7.1226 0.1004 6.9083 7.3370 0.9620 



 

 

Table 2. Additional statistics for the model estimation, after SRMI 

R-sq:  within 0.6122 

R-sq: between 0..6642 

R-sq: overall 0..6700 

Observations 3928 

Groups 1906 

 

In all the estimations performed, the coefficients of the final results are as we would expect them. Across the 

analyses the coefficient signs are identical, while the coefficient magnitudes are also similar. Household 

education, education of the household head, social capital, and age of the household head are all positively 

associated with welfare across the analyses. Additionally, larger households, African households (as opposed 

to Indian households), households headed by females, and rural households are associated with lower 

welfare levels. Note that larger households spend less per adult equivalent than smaller households do, which 

explains the lower welfare measure in this study.  

 

Without SRMI, and after SRMI with the original missing values in the dependent variable still missing, almost 

all coefficients from the ECM regression are always significant, the exception being production social capital 

when social capital is represented by its individual components. When SRMI is performed and all the cases are 

kept in the ECM regressions, household education and size lose significance when social capital is represented 

by every one of its three variants: when it is a single dichotomous variable, separated into distinct 

dichotomous variables and when only financial social capital is entered into the analysis. This is the most 

important result of this study. Without SRMI, or without imputation-filled dependent variables, complete case 

analysis fails to recognize the relative insignificance of household education and household size. It seems that 

the most important seed for an increase in welfare might be an educated and senior household head, and 

social capital, if one ignores factors such as household head gender, race and location, which the Government 

will not be able to address.   

 

The R-square statistics for the published results are quite high, especially the ‘within’ statistic. This can be due 

to the fact that the final ECM regression covariates are used as predictors of the ECM regression dependent 

variable in the actual SRMI process. This may not be a problem, though, since if the regression relationship 

uncovered in the SRMI process is assumed to be correct, the final relationship between the ECM regression 

dependent variable and the ECM regression independent variables is also correct. 

 

The regression R-square statistics are around 6%, 58%, and 53% for within, between, and overall R-square, 

respectively, for each of the three estimations run (one for each different representation of social capital) in 

the case of the ECM regression analysis made before SRMI and after SRMI when the dependent variable 

retains its original missing data. Of course, over 850 cases are dropped without SRMI, and close to 620 are 

dropped if the original incomplete dependent variable is used in the ECM regression analysis after SRMI.  

 

In all the estimations the efficiencies are always high, as in the reported estimation. This indicates robustness 

in the estimates, and gives strength to a pattern that will be detailed in the concluding section. Non-robust 

estimates lose their significance in a few of the regressions, these variables being household size and the 

education of the head of household.  

 

The SRMI process itself has provided adequate results. The ten iterations that were applied in the SRMI 

process seem to have been enough to increase uncertainty in our estimates (to account for the uncertainty in 

the imputation process), and also not too few that the estimates’ standard errors are too large. In fact, every 



 

analysis reveals efficiencies of over 95%, meaning that the standard deviations of the parameter estimates are 

less than 1.0526 times the size of the standard errors after an infinite number of imputations.  

 

4. CONCLUSION 

 

It is clear from the application section that SRMI on the PSLSD/KIDS incomplete dataset has influenced the 

error component model parameter estimates. Before SRMI is applied to the dataset all of the covariates are 

significant in the model. However, once SRMI has been applied to the data several covariates lose their 

significance, showing less of an impact than before. It is clear that the analysis of the data is confounded when 

missing values are not accounted for, meaning that blocks of data that were dropped by the complete case 

analysis before SRMI are important to the analysis. This boils down to the missing values not being MCAR.  

 

It must be noted again that further research into the SRMI process is warranted. Using mixed models inside 

SRMI process could provide more accurate predictions for missing values. Also, finding measures to correctly 

determine the number of rounds and iterations needed in the imputation process is of interest. 

 

In this paper, the error component model estimates arising from the real data analysis using all of the 

observations are similar to those from the analysis using only the observations for which the dependent 

variable was originally missing. These estimates consistently show that the location of the household, the race 

of the household, the gender of the head of household, and social capital access are significant determinants 

of household welfare. Moreover, financial social capital counts for much of the influence of social capital in 

general, while cultural social capital also has a role to play. The most important determinant is consistently 

race, with location always second to this. African households suffer lower welfare than Indian households do. 

The same goes for rural households, who suffer poorer welfare than urban households. The results can be 

considered eye-opening for several more reasons, however. Firstly, social capital access is shown to be a more 

important determinant of welfare than education is, when welfare is measured by household expenditures. 

This raises the question of whether or not Government is promoting the formation of social capital enough. 

Secondly, the gender of the household head is consistently significant, showing that female-headed household 

still suffer poorer welfare than male-headed households do, even ten years after the start of the new South 

Africa. Thirdly, the effects of race are still very strong. While the world is striving for equality, it seems South 

Africa needs to be careful not to fall behind. The divides between Indian and African and between urban and 

rural households are extensive, even after ten years of development plans.  

 

It must be conceded that the model for welfare is by no means complete in this paper. This fact is echoed by 

the poor coefficients of variation that are uncovered in the error component model estimation after SRMI 

(including only observations with non-missing dependent variables), coefficients of variation that are poorer 

even than in the original complete-case analysis. It is clear that further research is needed into finding the 

covariates that truly do determine household welfare. So, while this research has rejected it’s hypothesis of 

interest – that coefficient estimates are unchanged after SRMI – it is clear that further research is required in 

many avenues, namely GLMMs In the SRMI process, an appraisal of the number of rounds and imputations 

used in the SRMI process, the (unbiased) determinants of household welfare in KwaZulu-Natal, and in social 

capital – is there more that South Africa could be doing to promote this useful commodity? 

 

APPENDIX: IMPUTING FROM GENERALISED LINEAR MODELS (GLMS) 

 

Normal Data 



 

When the variable in question is distributed Normally, i.e. �~=(I, J�K), then the OLS regression model is 

applicable, where EM�N = XO. As noted in Section 2.3.1 a random draw from the posterior of the parameters 

and J� is needed, and from there a random draw can be made from the predictive posterior of the variable.  

 

The parameter estimates for OLS are easily shown to be OP = .X ′X0��X′�. In order to generate a random draw 

from the posterior of J� we note that: 

 

+ = .� − XOP0′.� − XOP0
J� ~QR���  

 

where S is the number of observations in the regression and T is the number of parameters. The joint prior 

used is the Jeffrey’s prior, 
�

UV. 

 

Generating a random draw, W, from the QR���  distributions, and using the parameter estimates, OP, one can 

generate an estimate for J�, namely, J∗�, using the following equation: 

 

J∗� = .� − XOP0′.� − XOP0
W  

 

Using this estimate one can draw a set of parameters, O∗, from the posterior distribution of the parameters, 

using: 

 

 O∗ = OP + TY� (1.8)  

 

where T is the symmetric square root of the covariance matrix and Y� is a random draw from the Standard 

Normal distribution.  

 

Using O∗and J∗�, one can impute missing values using the following equation: 

 

 Z���∗ = X���O∗ + J∗Y� (1.9)  

 

where Y� is another random draw from the Standard Normal distribution.  

 

Binary Data 

When the variable in question is binary, one should implement a special case of the Binomial model, in which 

�~9[S(\, ]). With dichotomous data the elements of \ are ones. The GLM that is used to estimate 

parameters for this model is the general logistic regression model, with the following link function: 

 

 ^_&[@(]) = ln " ]
1 − ]% = X O (1.10)  

 

Maximum likelihood estimates of the parameters O, and therefore also of the vector of probabilities 

] = bcd(efghO)
��bcd(efghO), are obtained by maximizing the following log-likelihood function: 

 

 
^(]; �) = 3MZ� ln j� + (1 − Z�) ln(1 − j�)N

R

�4�
 (1.11)  



 

 

From Equation (2.10) we have that  

 

j� = exp(n�O)
1 + exp(n�O) 

 

and therefore 

 

ln(j�) = n�O − lnM1 + exp(n�O)N 

 

and 

 

ln(1 − j�) = − lnM1 + exp(n�O)N 

 

Using these results in Equation (2.11) yields the following log-likelihood function to be maximized: 

 

^(]; �) = 3oZ�Mn�O − lnM1 + exp(n�O)NN − (1 − Z�) lnM1 + exp(n�O)Np
R

�4�
 

 

 
 = 3oZ�n�O − lnM1 + exp(n�O)Np

R

�4�
 (1.12)  

 

For maximum likelihood estimation, the scores with respect to the (q + 1) elements of O are required, 

+r, +�, … , +s,, or in other words the derivatives of the log-likelihood function with respect to the elements of 

O, as well as the information matrix, F. The estimates are then obtained by solving the iterative equation 

F(���)OP(�) = F(���)OP(���) + u(���), where the superscripts denote the number of the iteration. The 

initial settings for the elements of  OP are zeros. Estimates are taken once convergence has been achieved, and 

at that stage the covariance matrix is taken as the inverse of the information matrix. For more details on the 

process, see Dobson (2002). 

 

To impute missing values from this distribution, a random draw, O∗, is drawn from the posterior of the 

parameters as before in Equation (2.8). Then a vector of probabilities is generated: 

 

]∗ = exp(X���O∗)
1 + exp(X���O∗)  

 

Finally, a vector of Uniform random variables is generated that has the same length as ]∗, and this vector is 

compared with ]∗. If an element of the vector of Uniforms is less than or equal to the corresponding element 

of ]∗ then a ‘1’ is imputed for the missing value associated with that element of ]∗. Alternatively, if an 

element of the vector of Uniforms is greater than the corresponding element of ]∗ then a ‘0’ is imputed for 

the missing value associated with that element of ]∗. This process details approximate draws from the 

predictive posterior of the missing values (Raghunathan et al., 2001).  

 

Count Data 

For count data, where �~v_[w(x), the GLM to be used is the Poisson regression model, represented by the 

following equation: 



 

 

x = exp(XO) 

 

The linear predictor &(x) =  XO is used, with &(. ) being the log link function.  

 

Estimation of the parameters occurs in the same way as with regular OLS estimation once the dependent 

variable has been transformed using the log link function.  

 

Once more a random draw, O∗, is taken from the posterior of the parameters of the regression model, as 

before in Equation (2.8). A parameter set, x���∗ , is then generated as follows: 

 

x���∗ = exp(X���O∗) 

 

A missing datum is then imputed by drawing a random number from a Poisson distribution with the element 

of  x���∗  corresponding to that missing datum as the distribution’s parameter. 

 

Imputing from Generalised Linear Mixed Models (GLMMs) 

It should be mentioned that, just as the datasets created in Section 3 are analysed using linear mixed models 

incorporating both fixed and random effects, the creation of the datasets themselves can incorporate the 

same methods. In other words, the sequential regressions used in the multiple imputation process can 

incorporate both fixed and random effects, to be more accurate and true to the data that will be used in this 

research paper. However, this process of including random effects into generalised linear models is not simple 

when prediction is concerned. In order to predict missing values, random effects have to be estimated in each 

generalised linear mixed model for each group in the data (namely households in Section 3’s analysis). This is 

not explicitly possible from model estimation, but rather requires a form of a Gibbs sampling to determine the 

separate random effects. It is therefore not entirely a drawback to exclude this additional complexity in the 

SRMI processes that follow in this research paper. Indeed, it is still worthwhile to investigate the applicability 

of a simpler SRMI model, against which further research into GLMM SRMI can be compared. 
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Abstract 

Bayesian additive regression trees (BART) is a new regression technique developed by 

Chipman et al. (2008). Its usefulness in standard regression settings has been clearly 

demonstrated, but it has not been applied to time series analysis as yet. We discuss 

the difficulties in applying this technique to time series analysis and demonstrate its 

superior predictive capabilities in the case of a well know time series: the Southern 

Oscillation Index. 

Introduction 

The Southern Oscillation Index (SOI) measures the difference in air pressure between 

Tahiti and Darwin. This value has a strong influence on weather patterns. In De Waal 

(2009) we see how the October SOI value in particular affects the rainfall and river 

flows in South Africa. Being able to accurately predict this value into the future is thus 

very important. 

In the past the value of the SOI has been predicted using a classical ARMA approach 

(Chu & Katz, 1985). This approach is limited by the fact that is a linear model of the 

past values and errors. Non-linear models, on the other hand, present unique 

challenges to the researcher wishing to apply them. A good example is the use of 

Neural Networks for time series analysis (Giordano, et al. 2007). 

The biggest challenge is creating prediction intervals, as the standard method does not 

extend to complex non-linear models. Alternatives exist, but they are computationally 

expensive. BART models do naturally produce a predictive posterior distribution for 

predictions, but extending these predictive intervals further than one time interval into 

the future is not a simple matter. 
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According to Chipman et al. (2008), BART models work by summing a large number of 

small decision trees where each tree explains a small portion of the variation in the 

target variable. These trees are kept small by placing a strong prior distribution on the 

size of each tree. The trees themselves differ from standard decision trees in that they 

are built randomly using a MCMC back-fitting technique. They go on to show that 

these models have extraordinary predictive power when compared to established 

techniques. 

In order to predict the SOI it may be useful to gain a deeper understanding of the 

properties of the series. It seems to be a naturally oscillating series with multiple long 

term cycles, as seen by the extreme peaks in the periodogram below. It is worth 

investigating the effect of including these cycles in any model one may fit to this series. 

 

The values of the SOI that were used in this analysis were the values from January 

1876 until August 2009, making this series fairly long by time series standards. 

However, BART is by its very nature a data mining model that works best when 

presented with very large samples. It is this nature that also makes these models prone 

to over-fitting. We thus treat the modelling of the series using BART as a data mining 

problem but randomly dividing the sample into a training portion and a testing 

portion. 
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Regression Approach to Predicting October's SOI Value 

Calculation of Model Accuracy 

Various measures of model accuracy were calculated by comparing the predictions 

with the observed values for all past Octobers, but distinguishing between those 

values that were used to fit the model (sample values) and those values that were kept 

aside (out-of-sample values). Three of these are reported here for every model: the 

correlation coefficient (CORR), the mean absolute error (MAE) and the root mean 

square error (RMSE). 

It is important to note that BART models are random models, in that they produce 

different results every time they are fitted. Also, the allocation of observations to the 

sample versus out-of-sample is random. Thus, all results and measures reported are an 

average taken over ten fits, or runs, of the model. 

Using all available variables 

If we build a model to predict October's value using the twelve months prior as well 

the as 41st and 73rd months prior to each October we notice the presence of over-

fitting, that is to say that the out-of-sample predictions are significantly weaker than 

the sample predictions. 

The model mentioned above with 14 explanatory variables produces the following 

mean fit statistics: 

Sample CORR MAE RMSE 

Training 0.92 3.23 4.04 

Testing 0.72 4.89 6.18 

 

Note that for all models in this section a random 80% of the observations are used to 

train the model and the remaining 20% are used for testing. 

Variable Selection 

One of the reasons BART models over-fit is because too many trees are used, but that 

is not the case here, as we have reduced the number of trees to just twenty. In fact, 

the number of trees used does not seem to have much impact on the results at all. The 

results are only slightly weaker when say ten or forty trees are used. 

The reason for overfitting here seems to be that too many variables are included in the 

model. We need to perform some form of variable selection, but we need to bear in 

mind that we are working with a heavily non-linear model and that most standard 

variable selection techniques are not appropriate. Thankfully, BART has its own, 

unique, method of variable selection. 
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It works by reducing the number of trees to the point where the model has to be 

selective about which variables to use in each branch. The model is then forced to seek 

out those variables that are most useful in predicting the target variable. Counting the 

number of times each variable is used in the model produces a measure of the relative 

importance of each variable. 

Applying this technique to our model produces the following relative variable 

importance (1 = medium relative importance): 

Variable Sep Aug Jul Jun May Apr Mar 

Importance 3.04 1.21 1.68 1.35 1.00 0.60 0.49 

Variable Feb Jan Dec-1 Nov-1 Oct-1 -41 -73 

Importance 0.67 0.42 0.96 0.58 0.44 0.93 0.62 

 

Reduced Model 

Based on this we thus reduce our choice of variables to only the five months prior to 

each October. This reduces the overfitting problem and gives results as follows: 

Sample CORR MAE RMSE 

Training 0.90 3.45 4.33 

Testing 0.81 4.89 5.90 

 

Note that these results can be improved by fitting the model multiple times and 

selecting the best model. 

There is, however, one glaring problem with this model: we only gain one month by 

using it. We must have September's value in order to predict October's value. 

Excluding September 

We can gain another month by excluding September for the previous model. This 

model is slightly weaker but is, nevertheless, the best model we can produce under 

these constraints for the purpose of predicting the October value. Its fit statistics are 

as follows: 

Sample CORR MAE RMSE 

Training 0.82 4.49 5.60 

Testing 0.66 5.65 7.16 

 

Predictions from further back in time 

Making predictions using only higher lags is very difficult. We have already seen that 

there is some relationship with the previous December as well as May of three years 
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prior but we were unable to find additional useful variables. Thus, we can, at best, 

achieve results as follows: 

Sample CORR MAE RMSE 

Training 0.49 7.10 8.58 

Testing 0.22 7.80 9.40 

 

It is possible to achieve better predictions for October by not focusing on October 

itself. This is especially true in the first half of each year. 

Autoregressive Time Series Approach 

In this section we consider every month equal and try to make predictions for the 

months ahead, completely ignorant of the current date. This is closer to the classic 

univariate time series approach. 

When we use this approach we have twelve times as many observations and so over-

fitting is less of a concern (but still worth baring in mind). Here we increase the number 

of trees in each model to 40. We also keep aside a random third of the observations 

for testing (as opposed to a fifth). 

Again, we need to determine the current variables to include in the model. In time 

series analysis, one method that is often used is the inspection of the correlograms. If 

we look at the correlograms below and we restrict ourselves to autoregressive models 

then it is clear that an AR(5) model is appropriate. 
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However, autocorrelations are a linear measure of dependence, and so we once again 

apply BART variable selection: 

Lag 1 2 3 4 5 6 

Importance 4.71 2.11 1.22 0.47 0.83 0.39 

Lag 7 8 9 41 73 

Importance 0.19 0.29 0.21 0.42 0.17 

 

From the table it is clear that using the first 5 lags is, in fact, appropriate. Making 

predictions into the future using BART models of this form gives the following out-of-

sample fit statistics: 

Out of 

Sample Correlation MAE RMSE 

1 Month 0.647 6.158 7.886 

2 Months 0.552 6.763 8.624 

3 Months 0.483 7.083 9.069 

4 Months 0.425 7.365 9.381 

5 Months 0.385 7.554 9.555 

6 Months 0.346 7.697 9.710 

7 Months 0.304 7.852 9.880 

8 Months 0.253 7.980 10.041 

9 Months 0.239 8.001 10.076 

10 Months 0.220 8.052 10.122 

11 Months 0.233 7.967 10.069 

12 Months 0.218 8.014 10.121 

 

In the table above the predictions are made using the mean of the posterior 

distribution. 
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If we use the median of the predictive posterior instead then we get worse results: 

Out of 

Sample Correlation MAE RMSE 

1 Month 0.638 6.238 7.978 

2 Months 0.542 6.849 8.703 

3 Months 0.477 7.130 9.114 

4 Months 0.420 7.420 9.417 

5 Months 0.374 7.651 9.633 

6 Months 0.325 7.779 9.825 

7 Months 0.281 7.918 9.975 

8 Months 0.243 8.024 10.094 

9 Months 0.207 8.110 10.193 

10 Months 0.203 8.084 10.171 

11 Months 0.198 8.093 10.197 

12 Months 0.193 8.093 10.202 

 

Making predictions into the future with BART models is a great deal more difficult than 

it is with standard time series models as BART models do not currently allow for 

situations where the output is to be fed back through the model as input. 

If we are merely interested in a point estimate (as above) then we can take the mean 

prediction as fact and re-fit the model with this value added onto the end of the series. 

This produces a prediction for two months ahead of the current month, which can, in 

turn, be added onto the series, etc. 

If we require predictive intervals then the above process must be repeated many times 

using a random value from the predictive posterior distribution instead of the mean or 

median prediction. This process requires a distributed computing environment to 

avoid excessive run times on current generation computing hardware. 
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It is worth noting that this model produces white noise residuals when making one-

month-ahead predictions. This can be seen quite clearly in the correlogram below: 

 

Comparison and Conclusion 

If we fit a linear AR5 model in the same way we obtain the following out-of-sample fit 

statistics: 

Out of 

Sample Correlation MAE RMSE 

1 Month 0.620 6.154 7.937 

2 Months 0.532 6.743 8.564 

3 Months 0.422 7.207 9.197 

4 Months 0.374 7.383 9.402 

5 Months 0.338 7.466 9.524 

6 Months 0.261 7.676 9.815 

7 Months 0.171 7.879 10.090 

8 Months 0.156 7.807 10.059 

9 Months 0.163 7.705 9.991 

10 Months 0.164 7.745 9.980 

11 Months 0.148 7.761 10.016 

12 Months 0.112 7.784 10.080 
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This is worse than the BART model by some way. However, if we look at the BART 

predictions for the coming months we encounter a problem: 

Sep 09 Oct 09 Nov 09 Dec 09 Jan 10 Feb 10 

-1.97 0.40 0.77 0.09 1.15 0.71 

Mar 10 Apr 10 May 10 Jun 10 Jul 10 Aug 10 

0.76 0.66 0.61 0.75 0.73 0.67 

 

It appears as though the model gradually tends towards a flat model with the variance 

fading after 5 months. This may produce a relatively good fit in statistical terms but it is 

of little value to the researcher wishing to know what future values of the series are 

likely to be. 

We obtain similar (but worse) results from the AR(5) model: 

Sep 09 Oct 09 Nov 09 Dec 09 Jan 10 Feb 10 

0.27 0.55 0.06 0.04 0.15 0.10 

Mar 10 Apr 10 May 10 Jun 10 Jul 10 Aug 10 

0.09 0.07 0.05 0.04 0.03 0.02 

 

In conclusion, the SOI remains a very difficult time series to predict, in spite of the 

power of BART models. 
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Abstract

In this article we study the bias properties of the estimators based on
the first order model presented by Ledford and Tawn (1997). These
authors introduce the coefficient of tail dependence η, giving infor-
mation about the dependence of the extreme values of two variables.
We propose a bias reduced estimator for this coefficient and show its
properties via simulations and real life examples. Further on, a bias
reduced estimator for small tail probabilities follows immediately.

Keywords: Extreme value theory, bivariate slowly varying function, bias
reduction

1 Joint tail modelling

Let (Z1, Z2) be a bivariate stochastic random variable with marginal distribu-
tions which have already been studied. Then, without loss of generality, we
can assume that Z1 and Z2 have Fréchet margins. Indeed, for bivariate (X1,
X2) with general margins, the data can be transformed to Fréchet marginals

using the empirical distribution functions F̂X1
(x) and F̂X2

(x).

Z1 = −1/ log F̂X1
(X1)

Z2 = −1/ log F̂X2
(X2)
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Then the dependence structure between the Fréchet margins (Z1, Z2) can be
studied using the model of Ledford and Tawn (1997) as introduced in
Section 9.5.3 in Beirlant et al. (2005).

P (Z1 > z1, Z2 > z2) = z−c1
1 z−c2

2 L(z1, z2), with c1 + c2 =
1

η
. (1)

The parameter η is called the coefficient of tail dependence whereas the
function L is a bivariate slowly varying function. This means that there
exists a function g such that

lim
t→∞

L(tz1, tz2)

L(t, t)
= g(z1, z2). (2)

We will assume that the function g is homogenous of order 0. This means
by definition that g(tz1, tz2) = g(z1, z2). It implies that there exists a function
g∗, such that

g(z1, z2) = g∗(z1/(z1 + z2)), (3)

In other words the function g does not change on a radius.

In Section 2 the model (1) is extended introducing a second order term. Some
examples are given to shown that this extended model is quite natural. This
second order model will be used in order to find bias reduced estimators
of the parameter models and of small probabilities in Section 3. Then in
Section 4, the newly introduced estimators are studied through a simulation
study. Finally some real life examples are given in Section 5.

2 Second order model

2.1 Second order condition on L
To study how fast the limit in (2) is attained, we need a proper second or-
der condition in the bivariate case. Therefore we try to extend well-known
conditions from the univariate case. Remark indeed that the bivariate slowly
varying functions are an extension of univariate slowly varying functions ℓ.
Indeed the univariate homogenous functions of order 0, are the functions g
such that g(tz) = g(z), being the constant functions. And from the definition

limt→∞

ℓ(tz)
ℓ(t)

= g(x) = a, it follows that this constant must be g(1)=1, leading

2



indeed to the definition of univariate slowly varying functions.

In order to study bias properties in the univariate case, second order condi-
tions are imposed on the univariate slowly varying function. One of these
conditions is the assumption Rℓ(b, ρ), assuming that there exists ρ < 0 and
b(t) → 0 as t → ∞, such that for all z > 1

ℓ(tz)

ℓ(t)
∼ 1 + b(t)

zρ − 1

ρ
as t → ∞. (4)

A more specific condition, is the Hall condition, where

ℓ(t) ∼ C (1 + Dtρ) as t → ∞. (5)

An extension of this Hall condition to the bivariate case could be made by
replacing the constants in the univariate Hall condition again by homogenous
functions of order 0. This leads to the following bivariate Hall condition

L(z1, z2) ∼ g1(z1, z2) (1 + g2(z1, z2)z
ρ1

1 zρ2

2 ) as z1, z2 → ∞. (6)

We will denote ρ1+ρ2 by ρ. Remark the analogy with model (2.2) in Ledford
and Tawn (1997).

2.2 Examples

Remark that assumption (6) holds for a lot of well-known multivariate ex-
amples. Below we assume Fréchet margins.

2.2.1 Morgenstern

P(Z1 6 z1, Z2 6 z2) = F (z1)F (z2)
[
1 + αF (z1)F (z2)

]

P(Z1 > z1, Z2 > z2) = 1 − F (z1) − F (z2) + P (Z1 6 z1, Z2 6 z2)

= 1 − e−1/z1 − e−1/z2 + e−1/z1e−1/z2

[
1 + α

(
1 − e−1/z1

) (
1 − e−1/z2

)]

∼ 1

z1z2

[
1 + α − 1 + 3α

2

(√
z2

z1

+

√
z1

z2

)
1

√
z1z2

]

3



where the last steps follows from Taylor expansions to the third order of
e−1/z1 .

Assumption (6) holds with c1 = c2 = 1 (thus η = 0.5) and g1(z1, z2) = 1 + α.

Further, ρ1 = ρ2 = −0.5 (thus ρ = −1) and g2(z1, z2) = − 1+3α
2(1+α)

(√
z2

z1

+
√

z1

z2

)
.

2.2.2 Extreme Value

P(Z1 6 z1, Z2 6 z2) = e−V (z1,z2)

P(Z1 > z1, Z2 > z2) = e−V (z1,z2) − F (z1) − F (z2) + 1

∼ 1
√

z1z2

[
g1(z1, z2)

(
1 + g2(z1, z2)

1
√

z1z2

)]
,

with

g1(z1, z2) =

√
z2

z1

+

√
z1

z2

−√
z1z2V (z1, z2)

g2(z1, z2) = −1

2

z2

z1

+ z1

z2

− z1z2V
2(z1, z2)√

z2

z1

+
√

z1

z2

−√
z1z2V (z1, z2)

Assumption (6) holds with c1 = c2 = 0.5 (thus η = 1) and g1(z1, z2) as above.
Further, ρ1 = ρ2 = −0.5 (thus ρ = 1) and g2(z1, z2) as above.

2.2.3 Clayton-upper tail

P(Z1 > z1, Z2 > z2) =
[(

F (z1)
)
−1/α

+
(
F (z2)

)
−1/α − 1

]
−α

P(Z1 > z1, Z2 > z2) ∼ 1
√

z1z2

g1(z1, z2)

[
1 + ga

2(z1, z2)
1

√
z1z2

+ gb
2(z1, z2)

1

(z1z2)
1

2α

]
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with

g1(z1, z2) =

[(
z2

z1

)
−

1

2α

+

(
z1

z2

)
−

1

2α

]
−α

ga
2(z1, z2) = −1

2

(
z2

z1

)
−

1

2α
+ 1

2

+
(

z1

z2

)
−

1

2α
+ 1

2

(
z2

z1

)
−

1

2α

+
(

z1

z2

)
−

1

2α

gb
2(z1, z2) =

α
(

z2

z1

)
−

1

2α

+
(

z1

z2

)
−

1

2α

Assumption (6) holds with c1 = c2 = 0.5 and g1(z1, z2) as above. Further,

if α < 1 , ρ1 = ρ2 = −0.5 g2(z1, z2) = ga
2(z1, z2)

if α = 1 , ρ1 = ρ2 = −0.5 g2(z1, z2) = ga
2(z1, z2) + gb

2(z1, z2)

if α > 1 , ρ1 = ρ2 =
1

2α
g2(z1, z2) = gb

2(z1, z2)

Note that for α > 1, the second order term in (6) disappears slowly. This is
a case where one might expect a significant improvement of the estimation
when the second order term is added.

2.2.4 Bivariate normal

Due to the analogy with model (2.2) in Ledford and Tawn, we can use their
results to see that c1 = c2 = 1

1+ρ
and ρ1 = ρ2 = 0. Also here the second order

term might result in improved estimators.

2.3 Model of Ledford and Tawn revisited, using second

order condition

We study the following transformation of (Z1, Z2), based on a treshold t
and a parameter w. Consider Y given by the min(Z1/t, Z2w/[t(1 − w)])
conditioned on the fact that min(Z1, Z2w/(1 − w)) > t. The parameter
w can be chosen freely, while t can be chosen as the k + 1th largest order
statistic of min(Z1, Z2w/(1−w)), as is often done in extreme value statistics.
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It follows from (1) combined with (6) that

P(Y > z) =
P(Z1 > zt, Z2 > zt(1 − w)/w)

P(Z1 > t, Z2 > t(1 − w)/w)
, t > 1

= z−(c1+c2)L(tz, tz(1 − w)/w)

L(t, t(1 − w)/w)

= z−1/η 1 + g2

(
1, 1−w

w

)
(tz)ρ1+ρ2

(
1−w

w

)ρ2

1 + g2

(
1, 1−w

w

)
tρ1+ρ2

(
1−w

w

)ρ2
.

In the last step the homogeneity of the functions g1 and g2 is used.
We can reparametrize this distribution as follows.

P(Y > z) ∼ z−1/η (1 + δ − δzρ)−1/η , t → ∞ (7)

with δ := ηg2

(
1, 1−w

w

) (
1−w

w

)ρ2 tρ1+ρ2 .

This model provides us with bias reduced estimators for η as is shown in
Section 3. Moreover, the model inference can be linked to tail probabilities
concerning Z1 and Z2. Indeed, the probability P(Z1 > z1, Z2 > z2) can be
rewritten as

P
(
Z1 > tz, Z2 > tz 1−w

w

)

P
(
Z1 > t, Z2 > t1−w

w

) P

(
Z1 > t, Z2 > t

1 − w

w

)
(8)

= P(Y > z)P

(
Z1 > t, Z2 > t

1 − w

w

)
, (9)

with tz = z1 and w = z1/(z1 + z2) and t chosen, as before, as the k + 1th

largest order statistic of min(Z1, Z2w/(1 − w)) .

3 Biased reduced estimators

First, we recall in short some first order biased estimators in Section 3.1.
Then, we turn to estimators with reduced bias in Sections 3.2 and 3.3 based
on the second order model introduced in Section 2.
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3.1 Biased estimation

Based on the first order terms in model (1), it immediately follows that

P(min(Z1, Z2) > r) = P(Z1 > r, Z2 > r) = r−1/ηℓ(r),

with ℓ(r) slowly varying. In other words, the variable min(Z1, Z2) is Pareto-
type distributed. Therefore, the Hill estimator performed on this variable
provides an estimator of the parameter η. It should be remarked that the
Hill estimator is based on the k +1 largest data of min(Z1, Z2). Therefor the
estimator will be denoted by η̂H,k.

A first order estimator for the small tail probabilities can be found from (9).
Now only P(Y > z) is estimated by solving the Weismann estimator for large
quantiles of Y for small probabilities. This estimator will be denoted by p̂H,k.
Now k refers to the treshold used for min(Z1, Z2w/(1 − w)) in Section 2.3.

3.2 Bias reduced estimation of model parameters

Based on the tail probability in (7), maximum likelihood estimators can be
determined.
Indeed, the loglikelihood of the model in (7) is given by

log L = − log η − (1/η + 1) log z − (1/η + 1) log(1 + δ − δzρ) + log(1 + δ − δzρ − δρzρ)

with partial derivatives

δ log L

δη
= −1

η
+

1

η2
log z +

1

η2
log(1 + δ − δzρ)

δ log L

δδ
= − (1/η + 1)

1 − zρ

1 + δ − δzρ
+

1 − zρ − ρzρ

1 + δ − δzρ − δρzρ

δ log L

δρ
= (1/η + 1)

δzρ log z

1 + δ − δzρ
− δzρ (1 + (1 + ρ) log z)

1 + δ − δzρ − δρzρ

In the estimation procedure however we have taken ρ equal to the canonical
value -1. It is known in extreme value theory that a misspecification of the
parameter ρ might not affect the estimation of the parameter of main interest
that much, in this case η. We also studied the results when ρ was estimated
using the method suggested by Fraga Alves et al. (2003). Indeed, the results
were not much different. The resulting maximum likelihood estimator, with
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ρ taken equal to -1, will be denoted by η̂B,k. Again, k in the notation stresses
the fact that the estimator depends on the treshold used for min(Z1, Z2w/(1−
w)) in Section 2.3.

3.3 Bias reduced estimation of small probabilities

Bivariate tail probabilities can now be calculated using expression (9) The
probability P(Z1 > z1, Z2 > z2) can then be estimated as follows. P(Y >
z) can be estimated by plugging in the parameter estimates in (7) and
P

(
Z1 > t, Z2 > t1−w

w

)
can be estimated using the empirical distribution func-

tion. The resulting estimator will be denoted by p̂B,k.

4 Simulation results

In this section, we illustrate the finite sample properties of the previous es-
timators through simulation. First, we simulated from a Morgenstern with
Fréchet marginals and α = 0.6. Remark that the true values η = 0.5, ρ = −1.
The effect of the choice of w is examined by choosing different values. The
corresponding tail probabilities are estimated as well.
Next, we simulated from a normal copula with Fréchet marginals and ρ =
−0.5. w is chosen 0.5.
Finally, we also show how the procedure works when general margins are
given. We simulate from bivariate normal data (with normal marginals, in-
stead of Fréchet marginals). Again ρ is -0.5 in the simulation.

For each setting, 10 data sets of size n = 500 are simulated.

4.1 Morgenstern α=0.6

For the estimation of η, the parameter w can be chosen freely. First it is
taken as w = 0.5. In Figure 1 the estimators ηH and the biased reduced
estimator ηB are compared.
Figure 1 clearly shows that ηB has better bias properties than ηH . Moreover,
the choice of k seems to be less crucial for ηB.
The same conclusion can be made when estimating the probability P(Z1 >
20, Z2 > 20). The true value of the probability is 0.0036699. In this estima-
tion in Figure 2 the value w = 0.5 is natural.
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Figure 1: Estimators for η (a) (k, η̂H,k); (b) η̂B. (w=0.5)
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Figure 2: Estimators for P(Z1 > 20, Z2 > 20) (a) (k, p̂H,k); (b) p̂B.

The above conclusions do not heavily depend on the choice w = 0.5 as is
illustrated in Figure 3 and Figure 4 for w = 15/35 = 0.42857 resp. w =
8/28 = 0.285
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Figure 3: Estimators for η (a) (k, η̂H,k); (b)(k, η̂B,k). (w=15/35)

The choices of w = 15/35 and w = 8/28 are also natural choice to estimated
some probabilities. The probability P(Z1 > 15, Z2 > 20) is estimated in
Figure 5. The true value of this probability is 0.0048. The probability
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Figure 4: Estimators for η (a) (k, η̂H,k); (b)(k, η̂B,k). (w = 8/28

P(Z1 > 8, Z2 > 20) is estimated in Figure 6. Now , the true value of this
probability is 0.0086.
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Figure 5: Estimators for P(Z1 > 15, Z2 > 20) (a) (k, p̂H,k); (b) (k, p̂B,k) .

(a) (b)

Time

pr
ob

h[
, 1

]

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Time

pr
ob

a[
, 1

]

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Figure 6: Estimators for P(Z1 > 8, Z2 > 20) (a) (k, p̂H,k); (b) (k, p̂B,k).
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4.2 Bivariate normal ρ=-0.5, with Fréchet marginals

The true value of η equals 0.25. The parameter can be chosen freely and is
taken w = 0.5 in the estimation of η in Figure 11.
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Figure 7: Estimators for η (a) (k, η̂H,k); (b)(k, η̂B,k).

The true value of the probability P(Z1 > 5, Z2 > 5) (natural choice of w =
0.5) is 0.00601.
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Figure 8: Estimators for P(Z1 > 5, Z2 > 5) (a) (k, p̂H,k); (b) (k, p̂B,k).

4.3 Bivariate normal ρ = −0.5, with normal marginals

First the bivariate normal data are transformed into frechet marginals :

Z1 = −1/ log F̂X1
(X1)

Z2 = −1/ log F̂X2
(X2).

Then η can be estimated as before based on this new sample for (Z1, Z2).
The probability P(X1 > x1, X2 > x2) equals

P

(
Z1 > −1/ log F̂X1

(x1), Z2 > −1/ log F̂X2
(x2)

)
:= P(Z1 > z1, Z2 > z2)
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which can be estimated as before.
The true value of η is 0.25. This is estimated in Figure using the choice of
w = z1/(z1 + z2) .
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Figure 9: Estimators for η (a) (k, η̂H,k); (b)(k, η̂B,k).

The true value of the probability P(X1 > 6, X2 > 6) is 0.00378 with a natural
choice w = z1/(z1 + z2). Figure shows the estimators p̂H and p̂B.
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Figure 10: Estimators for P(Z1 > 6, Z2 > 6) (a) (k, p̂H,k); (b) (k, p̂B,k) .

5 Real life examples

5.1 Data set Loss and ALAE

Consider the example of loss-ALAE data examined by Frees and Valdez
(1998) and Klugman and Parsa (1999). This database records medical claim
amounts exceeding 25,000 dollar. In insurance one is interested in the indi-
vidual losses and the expenses that are specifically attributable to the settle-
ment of such claims such as lawyers’ fees and claims investigation expenses,
abbreviated by ALAE’s.
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Again first the bivariate data are transformed into Fréchet marginals (Z1, Z2),using
the empirical distribution function. To estimate P(X1 > 200000, X2 >
100000), it is transformed into Fréchet marginals to become P(Z1 > z1, Z2 >
z2) which can be estimated as before. We choose w = z1/(z1 + z2).
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Figure 11: Estimators for η (a) (k, η̂H,k); (b)(k, η̂B,k).

The empirical probability is 0.006.
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Figure 12: Estimators for P(X1 > 200000, X2 > 100000) (a) (k, p̂H,k); (b)
(k, p̂B,k) with the empirical probability added with a horizontal line.

5.1.1 Data set HANES

We consider the variables X1=Standing Height (cm) and X2 Weight (kg)
for females from the National Health and Nutrition Examination Survey
(NHANES) 2005-2006 (National Center for Health Statistics, 2007). Data
of females of age 18-64 years only have been retained; this leads to a sample
size of 2237. It might be interesting to estimate the proportion of ’tall’ and
’heavy’ females and estimate P(X1 > 175, X2 > 125).
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Again first the bivariate data are transformed into Fréchet marginals (Z1, Z2),using
the empirical distribution function. To estimate P(X1 > 175, X2 > 125), it
is transformed into Fréchet marginals to become P(Z1 > z1, Z2 > z2) which
can be estimated as before. We choose w = z1/(z1 + z2) = 0.49.
The empirical probability is 0.0013 and is added on both graphs below.
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Figure 13: Estimators for P(X1 > 175, X2 > 125) (a) (k, p̂H,k); (b) (k, p̂B,k)
with the empirical probability added with a horizontal line.

The estimators for η are given in Figure 14.
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Figure 14: Estimators for η (a) (k, η̂H,k); (b)(k, η̂B,k).

6 Conclusion

Based on some heuristic arguments, biased reduced estimators ηH and p̂B

were introduced. Simulations show that the bias reduced estimators seem
to work quite well for the coefficient of tail dependence as well as for small
probabilities as far as the bias is concerned. Moreover, the estimators do
not depend as heavily on the number of extremes taken into account in the
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estimation. Also in real life examples the bias reduced estimator seems to
provide reasonable results.
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ABSTRACT

The appropriate assessment of QT prolongation remains controversial. We suggest

that, before the relative merits of various methods can be evaluated, we must state what

we assume an assessment of QT prolongation should be about. As a general framework

for the assessment of QT prolongation we propose that an assessment of “absolute” or

“uncorrected” QT prolongation is properly carried out through a between-treatment

(active versus placebo) comparison of the marginal distributions of QT data; an as-

sessment of “heart rate corrected” QT prolongation is carried out through a between-

treatment comparison of the conditional distributions of QT data (conditional on RR

interval or heart rate). Under this general framework, conditional QT prolongation is,

in general, a function of RR interval, and we discuss three possible summary charac-

teristics for that function. We show how current procedures for the assessment of QT

prolongation relate to the general approach (that is, to between-treatment contrasts

of the marginal and conditional expectation of the QT interval), and to each other. It

transpires that only the so-called “one-step procedure” can provide a complete char-

acterization of conditional QT prolongation. We show that the “two-step procedure”

with data driven correction provides an unbiased estimate of expected conditional QT

prolongation, which may, from a clinical point of view, be a more satisfactory char-

acteristic than the conventional characteristic, QT prolongation at the reference RR

interval. We strongly suggest that two-step procedures with fixed correction be aban-

doned in the analysis of thorough QT/QTc studies: fixed correction is either redundant

(when a drug has no effect on RR average interval), or systematically biased (when a

drug does affect average RR interval).
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1. INTRODUCTION

1.1. QT Prolongation

An undesirable property of some non-anti-arrhythmic drugs is their ability to de-

lay cardiac repolarization, an effect that can be measured as prolongation of the QT

interval on the surface electrocardiogram (ECG) (ICH 2005). A delay in cardiac re-

polarization is associated with the development of arrhythmia, in particular Torsades

de Pointes, which may be life-threatening. Thus prolongation of the QT interval is

used as a biomarker for cardiac safety. In recent years, regulatory authorities require

that every new drug undergo clinical electrographic evaluation. Typically QT data

is collected early in the drug’s development, to be followed by a so-called “thorough

QT/QTc study” in healthy subjects (ICH 2005). If a drug’s potential for QT prolon-

gation cannot be ruled out based on the results of those studies, an expanded ECG

safety evaluation during later stages of drug development must be conducted, including

clinical trials in the target population. Alternatively, the drug’s development might be

terminated. Either way, the assessment of QT prolongation is a crucial part of drug

development and in recent years has generated intensive discussion in the medical and

statistical literature.

1.2. Effect of RR Interval

Because the QT interval is associated with the RR interval (which is the inverse of

the heart rate), the potential of a drug to prolong the QT interval could be “masked”

if the drug decreases the RR interval. Conversely, a drug that does not prolong the

QT interval may appear to do so if the drug increases the RR interval. Therefore,

when a drug affects the RR interval, the drug’s effect on the QT interval must be

distinguished from changes in QT interval due to changes in RR interval (Li et al,

2004). For this reason, QT interval data is routinely “corrected” for RR interval using

various correction formulae or procedures, to obtain a value known as the QTc interval

which is hoped to be independent of RR interval, or at least less dependent of RR

interval than the QT interval itself (ICH 2005). However, as the ICH (2005) guidance
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document states, it is not yet clear whether cardiac arrhythmia is more closely related

to an increase in the absolute (ie. uncorrected) QT interval or to an increase in QTc.

As long is this clinical question is open, both QT and QTc data have to be studied.

1.3. Current Approaches to Assessment of QT Prolongation

Historically, the analysis of QT data proceeds in two steps (Li et al, 2004): In the

first step, the QT interval data is corrected for the effect of heart rate, using one of

the following two correction procedures: either (i) “Fixed” correction where one of

a number of published correction formulae is used to calculate QTc as a function of

QT and HR; or (ii) “Off-drug data driven” correction where the slope estimate from

a regression of placebo (off-drug) QT data against heart rate is used to calculate QTc

for both active and placebo treatment data. Thereafter, in the second step, the QTc

data of active and placebo treatment are compared statistically.

More recently, Li et al (2004) and other authors have pointed out that, from a statis-

tician’s perspective, a so-called “one-step” statistical analysis of both active treatment

and placebo QT data, using mixed model analysis of covariance (where RR is fitted as

a covariate) would be preferable to the two-step approach. Nevertheless, many clinical

pharmacologists and other medical researchers seem to be comfortable with the two-

step analysis and the ICH (2005) guidance as well as most analyses of QT/QTc trials

in practice adhere to the two-step approach. The situation persists despite published

work pointing out serious shortcomings of the various two-step approaches (Dmitrienko

and Smith, 2003; Shah and Hajian, 2003; Li et al, 2004; Wang, Pan and Balch, 2008).

1.4. Outline of the Rest of the Paper

The appropriate assessment of QT prolongation evidently remains controversial.

We suggest that, before the relative merits of the various methods for assessment of

QT prolongation can be evaluated, a basis for discussion is needed. At a minimum, we

must explicitly state what we assume an assessment of QT prolongation is (or should

be) about. In Section 2, therefore, we propose a general and basic principle for the
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assessment of QT prolongation: We suggest that an assessment of uncorrected or “ab-

solute” QT prolongation is properly carried out through a between-treatment (active

versus placebo) comparison of the marginal distributions of QT data; an assessment

of “heart rate corrected” QT prolongation is carried out through a between-treatment

comparison of the conditional distributions of QT data (conditional on RR interval).

Current procedures (analysis of central tendency and categorical analysis of QT pro-

longation (ICH 2005, Section 3.2)) emerge as special cases.

Both the relevant literature and current practice focus on the case where the con-

ditional expectation of QT data is written as a linear or log-linear function of the RR

interval. In Section 3 we adopt this approach and argue that, in general, the linear

or log-linear model should allow for unequal slopes for the regression of QT against

RR interval. Thus conditional QT prolongation is, in general, a function of RR in-

terval. We discuss three possible summary characteristics for that function, and show

how the various characteristics for assessment of both marginal and conditional QT

prolongation can be given a geometric interpretation.

In Section 4 we show how current procedures for assessment of QT prolongation

relate to the general approach (that is, to between-treatment contrasts of the marginal

and conditional expectation of the QT interval), and to each other. It transpires that, in

general, only the one-step procedure provides a complete characterization of conditional

QT prolongation. We show that the two-step procedure with data driven correction

provides an unbiased estimate of expected conditional QT prolongation, which may,

from a clinical point of view, be a more satisfactory characteristic than the conventional

characteristic, QT prolongation at the reference RR interval. The two-step procedure

with fixed correction is either redundant (when a drug has no effect on RR average

interval), or potentially biased (when a drug does affect average RR interval).

In Section 5 we sketch a procedure and statistical decision rule for assessment of

QT prolongation. When QT data is analyzed on the logarithmic scale, we propose to

formulate the statistical decision rule on the ratio scale. Section 6 is devoted to an
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example of application, and Section 7 to the discussion.

In summary, our paper focuses on the parametric characterization of QT prolonga-

tion. We aim to answer the following question: which parameter contrast is statistical

inference about under various current QT assessment procedures (one-step procedure,

two-step procedure with data driven correction, two-step procedure with fixed cor-

rection, analysis of uncorrected data). We also make a suggestion regarding which

parameter contrast statistical inference should be about in our view. Details of the

estimation or testing of the parameter contrasts in question are not of primary interest

in the present paper.

2. MARGINAL VERSUS CONDITIONAL QT PROLONGATION

Let QT denote a QT interval measurement and RR the corresponding RR interval.

We define y = f(QT ) and x = f(RR), where f(·) is a suitable monotonic transfor-

mation. Usually, f(·) is either the identity function or the natural logarithm (Malik

et al. 2002; Ring, 2009). The bivariate random variables (yA, xA) and (yP , xP ) denote

the paired (possibly transformed) QT and RR interval measurements under active (A)

and placebo (P) treatment, respectively. Furthermore, FA and FP denote the marginal

distributions of yA and yP , FA|x and FP |x the conditional distributions of yA and yP

(conditional on a given value of x), and GA and GP the marginal distributions of xA

and xP .

We define the assessment of “uncorrected” or “absolute” QT prolongation as a

between-treatment (active versus placebo) comparison of the marginal distributions

FA and FP ; in the following, we will refer to such a comparison as an assessment

of marginal QT prolongation. Similarly, we define the assessment of “heart rate

corrected” QT prolongation as a between-treatment comparison of the conditional

distributions FA|x and FP |x; we will refer to such a comparison as an assessment of

conditional QT prolongation.

While in general an assessment of marginal and conditional QT prolongation in-

volves a comparison of marginal and conditional distributions of QT measurements,
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in practice such a comparison will focus on specific parameters or functions of those

distributions. Below, we present two such types of characteristics.

2.1. Characteristics for Marginal QT Prolongation

An assessment of marginal QT prolongation may focus on the means E(yA) =

EFA
(yA) = µA and E(yP ) = EFP

(yP ) = µP of the relevant marginal distributions FA

and FP ; in the terminology of the relevant ICH guidance (ICH 2005, Section 3.2.1) a

comparison of means constitutes an analysis of the “central tendency” of QT measure-

ments. Then the between-treatment contrast of marginal means,

γm = µA − µP (1)

can be viewed as a “moment-based” characteristic for marginal QT prolongation, to

use terminology from area of bioequivalence assessment (Schall and Luus, 1993). (The

subscript “m” in γm stands for “marginal”.)

Of course the difference in means is not the only criterion that can be used to

compare the distributions FA and FP in a clinically meaningful way. For example,

so-called “categorical” analyses (ICH 2005, Section 3.2.2) involve estimation of excess

probabilities of the form ProbFA
(yA > c) and ProbFP

(yP > c), where c represents a

clinically relevant cut-off value for y, such as c = f(450ms), c = f(480ms) or c =

f(500ms). A “probability-based” characteristic for marginal QT prolongation could

then be defined as the risk ratio

ρm,d =
ProbFA

(yA > d)

ProbFP
(yP > d)

(2)

Alternatively, the odds ratio or risk difference involving the excess probabilities for

active and placebo treatment could be used to characterize relative risk.

2.2. Characteristics for Conditional QT Prolongation

An assessment of conditional QT prolongation may focus on the conditional means

E(yA|x) = EFA|x(yA) and E(yP |x) = EFP |x(yP ) of yA and yP . Then, a moment-based
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characteristic for conditional QT prolongation is the between-treatment contrast of

conditional means

γc(x) = E(yA|x)− E(yP |x) (3)

which in general is a function of x. (The subscript “c” in γc(x) stands for “condi-

tional”.) We note that Equation (3) does not necessarily require a linear model for

the conditional means. In principle, E(yA|x) and E(yP |x), and consequently γ(x), can

be estimated using non-linear or nonparametric regression techniques. However, in

the following we concentrate on the case when E(yA|x) and E(yP |x) can be written as

linear functions of x.

Similarly to Equation (2), a probability-based characteristic for conditional QT

prolongation can be defined as the risk ratio

ρc,d(x) =
ProbFA |x(yA > d)

ProbFP |x(yP > d)
=

ProbFA
(yA > d | x)

ProbFP
(yP > d | x)

(4)

3. CHARACTERIZATION OF QT PROLONGATION UNDER

LINEAR/LOG-LINEAR MODEL

3.1. Linear/Log-linear Model for QT Data

In the spirit of Dmitrienko and Smith (2003), Shah and Hajian (2003) and Li et al

(2004) we postulate the following linear model for the conditional expectations E(yA|x)

and E(yP |x) as a function of x:

E(yi|x) = αi + βi · (x− xr); i = A, P (5)

Here xr = f(RRr) = f(1000), where RRr = 1000 ms is the fixed value of the so-called

“reference” RR interval corresponding to a heart rate of 60 beats/min. Note that in

Model (5) we allow, in general, for different (non-parallel) slopes βA and βP for active

and placebo treatment, respectively. When f(·) is the identity function, Model (5) is

linear; when f(·) is the logarithm, Model (5) is log-linear.

In terms of the parameters of Model (5), and of the marginal means EGA
(xA) =

E(xA) = νA and EGP
(xP ) = E(xP ) = νP of xA and xP , the unconditional expectations
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of yA and yP are given by

E(yi) = µi = αi + βi · (νi − xr); i = A, P (6)

We can now express the moment-based characteristics for marginal and conditional

QT prolongation – Equations (1) and (3), respectively – in terms of the parameters of

Model (5) and of the expected values of xA and xP .

To illustrate the various characteristics for QT prolongation, in Figure 1 we present

a schematic plot of the regression lines specified in Model (5), namely of E(yA|x) and

E(yP |x). For simplicity, but without loss of generality we assume that (5) represents a

log-linear model with xr = log(1[s]) = 0.

3.2. Marginal QT prolongation

Although not necessary for the assessment of marginal QT prolongation, it will be

instructive to express γm in terms of the parameters of Model (5), using Equation (6):

γm = µA − µP = [αA + βA · (νA − xr)] − [αP + βP · (νP − xr)] (7)

Thus γm, the treatment contrast for assessment of marginal QT prolongation, can be

written as γm = E(yA|νA) − E(yP |νP ).

We note that the contrast γm can be obtained geometrically as follows: project the

points E(yA|νA) and E(yP |νP ) parallel with the x-axis (that is, using a slope of zero)

onto the y-axis; γm is then given by the difference of the projections of E(yA|νA) and

E(yP |νP ) onto the y-axis (Figure 1). Below we will show how the various characteristics

for conditional QT prolongation can also be obtained geometrically, namely as the

difference of projections of E(yA|νA) and E(yP |νP ) onto the y-axis using particular sets

of regression slopes (Table 1).

3.3. Conditional QT prolongation

Using Equation (5), we can write the between-treatment contrast of conditional

means, γc(x) in (3), as

γc(x) = E(yA|x)− E(yP |x) = αA − αP + (βA − βP ) · (x − xr) (8)
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When, in Model (5), we are willing to assume that the slopes are equal (βA = βP),

γc(x) simplifies to γc(x) ≡ γc ≡ αA − αP , and conditional QT prolongation is charac-

terized globally (independent of RR interval) by the difference in intercepts αA − αP .

However, in general the assumption of equal slopes cannot be made so that the extent

of conditional QT prolongation, γc(x), depends on x = f(RR). For use in a statis-

tical decision rule, we might consider the following three summary characteristics for

conditional QT prolongation: (i) conditional QT prolongation γc(x) evaluated at some

reference RR interval; (ii) the expected value of conditional QT prolongation γc(x);

(iii) the maximum conditional QT prolongation γc(x) over a “reference range” of RR

interval values, that is, the maximum of γc(x) over a clinically relevant range [x0, x1]

of values of x.

(i) Conditional QT prolongation at some reference RR interval

Characteristic γc(x) evaluated at the conventional reference RR interval is given by

γc(xr) = αA − αP (9)

Characteristic (9) is commonly viewed almost as the “definition” of (conditional) QT

prolongation. However, in the case of unequal slopes under Model (5), γc(xr) charac-

terizes conditional QT prolongation only for one particular RR interval, namely for the

conventional reference RR interval RRr = 1 s, and one may suspect that RRr = 1 s

was not necessarily chosen for its clinical relevance but simply because it is a “round”

number. Therefore, regulatory authorities might consider changing the definition of

reference RR interval, for example to a value that better represents the typical RR

interval seen in the patient target population.

Geometrically, γc(xr) can be obtained as follows: project the points E(yA|νA) and

E(yP |νP ) onto the y-axis using the respective regression slopes βA and βP ; γc(xr) is

then given by the difference of these projections, namely as the difference of intercepts

αA − αP (Figure 1; Table 1).
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(ii) Expected value of conditional QT prolongation

The expected value of γc(x), taking the expectation with respect to the distribution

GA of x = f(RR) under active treatment, is given by

EGA
{γc(x)} = αA − αP + (βA − βP ) · (νA − xr) = γc(νA) (10)

Characteristic (10) can be interpreted as contrast γc(x) evaluated at the expected value

νA of x under active treatment.

Geometrically, γc(νA) can be obtained as follows: project both, E(yA|νA) and E(yP |νP ),

onto the y-axis using the regression slope βP for placebo; γc(νA) is then given by the

difference of the projections (Figure 1; Table 1).

(iii) Maximum conditional QT prolongation over RR reference range

If x ∈ [x0, x1] is a clinically relevant range of values of x, which we refer to as the

“reference range” of RR interval (or heart rate) values, then the maximum conditional

QT prolongation over that range is given by

γc,max = max{γc(x) | x0 ≤ x ≤ x1} = max{γ(x0), γ(x1)} (11)

One could view characteristic (11) as a generalization of characteristic (9), in the

sense that instead of considering conditional QT prolongation only at one particular

value of RR interval, (maximum) conditional QT prolongation over a range of values

is considered. Thorough QT/QTc studies are usually conducted in healthy young

subjects, whose average heart rate may well be around 60 (although heart rates under

50 beats/min are often observed). However, the distribution of heart rates of a potential

target patient population is likely to be shifted to the right. By specifying [x0, x1] so

as to represent a range of heart rates from 50 to 70 beats/min, say, (11) would also

characterize potential QT prolongation at higher heart rates.

4. CONVENTIONAL PROCEDURES IN THE LIGHT OF THE GEN-

ERAL APPROACH
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4.1. One-Step Procedure

In the one-step procedure, Model (5) is fitted simultaneously to both active and

placebo data, usually through a linear or log-linear mixed model. From the fitted

model, unbiased and efficient point and interval estimates for characteristic γc(x) in (8)

can be obtained for any x, that is, over any range of RR interval values of interest (not

only for xr, the reference RR interval). In that sense, the one-step procedure provides

a “complete” characterization of conditional QT prolongation. Furthermore, the one-

step procedure provides a sound statistical setting for testing specific hypotheses of

interest, such as the hypothesis of equal slopes βA and βP in Model (5); as we shall

see, the question of equal slopes βA and βP is highly relevant, both statistically and

clinically, to the problem of heart rate correction.

In a conventional application of the one-step procedure, statistical inference is about

the parameter contrast γc(xr) = αA − αP , which is summary characteristic (i) of

γc(x) from the general approach: Conditional QT prolongation at some reference RR

interval. As noted before, however, in the general case of unequal slopes βA 6= βB in

Model (5), γc(xr) is not necessarily the most appropriate characteristic for conditional

QT prolongation and the one-step procedure can be used to characterize conditional

QT prolongation more completely.

4.2. Two-Step Procedure with Data Driven Correction

The so-called two-step procedure proceeds as follows: In Step 1, a model of type

(5) is fitted to the placebo (or drug-free baseline) data only, namely E(yP |x) = αP +

βP · (xP −xr). From this model, an estimate β̂P of the slope βP is obtained. Note that

the slope estimate β̂P might have been obtained either as a “pooled” estimate – Model

(5) is fitted to the pooled placebo data – or as “individual” estimate – slope estimates

are obtained individually for each subject in the placebo group. The slope estimate is

then used to correct both the active and placebo data as follows:

yc
A = yA − β̂P · (xA − xr)
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yc
P = yP − β̂P · (xP − xr)

Thereafter, in Step 2, the heart rate corrected data yc
A and yc

P are analyzed. Statistical

inference is therefore about the parameter contrast

γ2 = E(yc
A) − E(yc

P ) (12)

Assuming that the slope estimate β̂P from the placebo data is an unbiased estimate of

βP , we can write E(yc
P ) and E(yc

A) in terms of the parameters of Model (5):

E(yc
P ) = EGP

{E(yc
P |x)}

= EGP

[

E
{

yP − β̂P · (x− xr) | x
}]

= EGP
{E(yP |x)} − EGP

{

E(β̂P |x) · (x − xr)
}

= EGP
{αP + βP · (x − xr)} − EGP

{βP · (x − xr)}

= αP + βP · (νP − xr) − βP · (νP − xr)

= αP

Similarly,

E(yc
A) = EGA

{E(yc
A|x)}

= EGA

[

E
{

yA − β̂P · (xA − xr) | x
}]

= EGA
{E(yA|x)} − EGA

{

E
(

β̂P |x
)

· (x − xr)
}

= EGA
{αA + βA · (x − xr)} − EGA

{βP · (x − xr)}

= αA + βA · (νA − xr) − βP · (νA − xr)

= αA + (βA − βP ) · (νA − xr)

The contrast γ2 in (12) is therefore given by

γ2 = αA − αP + (βA − βP ) · (νA − xr)

= γc(νA)

Thus the contrast γ2 = E(yc
A) − E(yc

P ) from the two-step procedure with data driven

correction is equal to summary characteristic (ii) of γc(x) from the general approach:
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The expected value of conditional QT prolongation (with the expectation taken over

the distribution of x under active treatment).

Is the two-step procedure biased?

Li et al (2004) have pointed out that the two-step procedure is biased, and that

the procedure implicitly assumes that the slopes βA and βP in Model (5) are the

same. In the light of the above result, these statements can be put into context: If

the slopes βA and βP in Model (5) are different, one can indeed view the two-step

procedure as providing a biased estimate of the between-treatment contrast γc(xr) =

αA − αP , which is the conditional QT prolongation at the reference RR interval; the

bias term is (βA − βP ) · (νA − xr). In that sense, Li et al (2004) are correct when

claiming that the two-step procedure is biased. However, as shown above, the two-step

procedure provides an unbiased estimate of the between-treatment contrast γc(νA), the

expected conditional QT prolongation. Therefore, although it may seem that the two-

step procedure implicitly assumes that the slopes βA and βP are the same, it actually

handles the case of unequal slopes rather deftly in the following sense: the two-step

procedure shifts, as it were, the focus of interest from QT prolongation at the reference

RR interval to QT prolongation at the average RR interval (νA) under active treatment.

One might consider the latter quantity, which can be interpreted as the “typical” QT

prolongation experienced by subjects taking active treatment, to be the clinically more

relevant contrast precisely when the slopes are unequal.

4.3. Two-step Procedure with Fixed Correction

In Step 1 of the two-step procedure with “fixed correction” QT measurements are

corrected using one of a number of published formulae. Effectively, a fixed slope β̃ is

used to correct both active and placebo data as follows:

yfc
A = yA − β̃ · (xA − xr)

yfc
P = yP − β̃ · (xP − xr)
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A slope of β̃ = 1/3 under a log-linear model yields the correction formula of Fridericia

(1920, 2003), a slope of β̃ = 1/2 under a log-linear model yields the correction formula

of Bazett (1920), and a slope of β̃ = 0.154 under a linear model yields the Framingham

correction formula (Sagie et al, 1992). Thereafter, in Step 2, the heart rate corrected

data yfc
A and yfc

P are analyzed. Statistical inference is therefore about the parameter

contrast γf = E(yfc
A ) − E(yfc

P ) which can be written as

γf = EGA

{

E(yfc
A |x)

}

− EGP

{

E(yfc
P |x)

}

= EGA

[

E
{

yA − β̃ · (x− xr) | x
}]

− EGP

[

E
{

yP − β̃ · (x − xr) | x
}]

= αA − αP + (βA − β̃) · (νA − xr) − (βP − β̃) · (νP − xr)

Geometrically, γf can be obtained as follows: project both, E(yA|νA) and E(yP |νP ),

onto the y-axis using the fixed slope β̃; γf is then given by the difference of the projec-

tions (Figure 1; Table 1).

It is instructive to consider γf for the special cases of no shift in average RR interval

due to treatment (ν = νA = νP ), and of equal slopes (β = βA = βP ), respectively:

When ν = νA = νP we can write γf as

γf = αA − αP + (βA − βP) · (ν − xr)

= γ2 = γc(ν) = γm

If νA = νP , therefore, γf is identical to the between-treatment contrast for the two-

step procedure with data driven correction, identical to the expected value of γc(x),

and identical to the between-treatment contrast for uncorrected QT data. These re-

lationships suggest that for drugs that do not shift the average RR interval, heart

rate correction, whether fixed or data driven, is redundant in the sense that such cor-

rection has no effect on the treatment contrast relative to the treatment contrast for

uncorrected QT data.

Similarly, when β = βA = βP we can write γf as

γf = αA − αP + (β − β̃) · (νA − νP ) (13)
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Under the assumption of equal slopes the appropriate treatment contrast for assessment

of conditional QT prolongation clearly is γc = αA − αP . Equation (13) then reveals

how the two-step procedure with fixed correction, depending on the effect of active

treatment on average RR interval, can falsely suggest conditional QT prolongation,

or can mask its presence: When active treatment decreases the average RR interval

(νA−νP < 0) and β < β̃, then γf > αA−αP and conditional QT prolongation might be

falsely suggested. Vice versa, when active treatment increases the average RR interval

(νA − νP > 0) and β > β̃, then γf < αA − αP and the presence of conditional QT

prolongation might be masked.

In summary, fixed correction methods are either redundant (when the drug in ques-

tion does not change average RR interval), or potentially biased (when the drug does

change average RR interval) (Wang, Pan and Balch, 2008).

A case in point is the analysis published by Shah and Hajian (2003): active treat-

ment increased the average heart rate by about 10 beats/min, and therefore decreased

the average RR interval (their Table II); furthermore, the slope estimate from the

one-step procedure assuming equal slopes (an assumption supported by the data) was

β̂ = 0.292, which is only slightly smaller than Fridericia’s slope of β̃ = 1/3 but consider-

ably smaller than Bazett’s slope of β̃ = 1/2. Data analysis using the one-step method

suggested QT shortening, while the two-step method using fixed correction accord-

ing to Bazett suggested QT prolongation; the two-step method using fixed correction

according to Fridericia suggested QT shortening, but less extensive than the QT short-

ening estimated by the one-step method. Thus the results of the one-step procedure

and of the two-step procedure using Bazett’s correction are completely contradictory,

but exactly as predicted by Equation (10) above.

4.4. Comparison of Uncorrected QT Data

For completeness we recall that in a comparison of uncorrected QT data statistical

inference is about the difference of the marginal means γm = µA − µP (1), which can

expressed as in (7). For the case of no shift in average RR interval due to treatment
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(ν = νA = νP ), we have already pointed out in Section 4.3 that γm = γ2 = γf = γc(ν).

Thus, when a drug does not shift the average RR interval, marginal QT prolongation

(γm) is the same as conditional QT prolongation at the average RR interval (γc(ν)).

Note, however, when βA 6= βP , an assessment of conditional QT prolongation using

characteristics γc(xr) and γc,max can still provide information different to an assessment

of marginal QT prolongation, because γc(xr) and γc,max characterize conditional QT

prolongation at RR intervals other than ν.

In the case of equal slopes, β = βA = βP , γm is given by

γm = αA − αP + β · (νA − νP ) (14)

Under the assumption of equal slopes the appropriate characteristic for assessment of

average conditional QT prolongation clearly is γc(x) ≡ γc = αA − αP . Equation (14)

then reveals why in general (νA 6= νP ) an assessment of marginal QT prolongation – sta-

tistical inference on γm – can indeed provide different information from an assessment

of conditional QT prolongation: β is always positive, and if active treatment decreases

the average RR interval (νA < νP ), then conditional QT prolongation (αA � αP )

might be present in the absence of marginal QT prolongation, since β · (νA − νP ) is

negative and consequently γm might be small even when αA � αP . Conversely, if

active treatment increases the average RR interval (νA > νP ), then β · (νA− νP ) is pos-

itive and therefore γm might be large (presence of marginal QT prolongation) although

there is no conditional QT prolongation (αA − αP ≈ 0).

5. PROPOSED ASSESSMENT OF QT PROLONGATION

Thorough QT trials often have a cross-over design and ECG data obtained in such

trials typically have a hierarchical, cross-classified structure: each subject undergoes

several treatment periods, in each treatment period multiple ECGs are obtained at

various time points and within each ECG recording, QT and RR data are measured

in three to four wave forms (Ring, 2009). For this reason, statistical analysis of both
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marginal and conditional QT prolongation involves fitting linear or log-linear mixed

models (Shah and Hajian, 2003; Dmitrienko and Smith 2003; Li et al, 2004; Ring, 2009).

Furthermore, covariates such as gender might be fitted. In the following we assume

that an appropriate statistical model is fitted to the data that yields statistically valid

point and interval estimates of the various characteristics of marginal and conditional

QT prolongation.

Schematically, assessment of conditional QT prolongation based on characteristic

γc,max could proceed as follows:

1. Fit a linear (or log-linear) mixed model to the QT data measured under both

active treatment and placebo, with, at a minimum, fixed effects as in Model (5)

(“ one-step procedure”).

2. Report point and interval estimates for the parameters of Model (5). In addition,

a point and interval estimate for the difference of slopes (βA − βP ) could be

reported, as well as a test for equality of slopes.

3. Given a reference range [x0, x1] for RR interval values, report point and interval

estimates for γc(x0) and γc(x1). – Let u0 and u1 denote the upper limits of the

two-sided 90% CI for γc(x0) and γc(x1), respectively.

- If data are analyzed on the original scale, declare absence of conditional QT

prolongation if max{u0, u1} ≤ δ, where δ = 10 ms is the relevant regulatory

limit (ICH 2005, Section 2.2.4).

4. If data were analyzed on the logarithmic scale (log-linear mixed model was fitted),

report the antilogs of the point and interval estimates for γc(x0) and γc(x1). –

Let be U0 = exp(u0) and U1 = exp(u1).

- Declare absence of conditional QT prolongation if max{U0, U1} ≤ ∆, where

∆ is a regulatory constant on the ratio or percent scale (to be specified) for

maximum permissible QT prolongation.
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Further research would be needed on the relative merits of the possible analysis scales:

analysis of untransformed versus analysis of log-transformed data. If the log-linear

analysis is chosen, the associated decision rule (under item 4 above) is suggested by

analogy with the statistical analysis and decision rule for log-transformed pharmacoki-

netic data in bioequivalence studies (see, for example, Chow and Liu 2008): point

estimates and associated 90% CIs for between-treatment contrasts on the logarithmic

scale are back-transformed to the original scale by taking the antilog. For exam-

ple, on the logarithmic scale we have a point estimate and 90% CI for the difference

of conditional means γc(x0) = E(yA|x0) − E(yP |x0). Taking the antilog, we obtain

a point estimate and 90% CI for the ratio of geometric means R0 = exp{γc(x0)} =

exp {E(yA|x0)} /exp {E(yP |x0)} ; similarly for γc(x1). Thus analysis results for QT pro-

longation would be reported on the ratio or percent scale (rather than the difference

scale). A value for the regulatory constant ∆ (ratio scale) could be motivated as follows:

since u = 10 ms is the maximum permissible QT prolongation on the difference scale,

and assuming an average QT interval of approximately 400 ms, the maximum permis-

sible QT prolongation on the ratio scale could be specified as ∆ = 410/400 = 1.025.

Of course, any such limit would have to be determined by regulatory authorities based

on appropriate comment and clinical input.

If, instead of γc,max, one chooses to assess conditional QT prolongation using char-

acteristic γc(xr), statistical inference could proceed in the same manner as above.

Statistical inference on Characteristic (10) is not possible based on a mixed model

implementation of Model (5), since γc(νA) is a nonlinear function of parameters of

both the conditional distribution of y given x, and of the marginal distribution of x.

Statistical inference on γc(νA) could be based on the joint likelihood of y and x, written

as the conditional likelihood of y given x, times the marginal likelihood of x, namely

L(y, x) = L(y|x) · L(x). Point and interval estimates of γc(νA) could then be obtained

using a Bayesian approach. Alternatively, a 90% CI for γc(νA) could be constructed

using the bootstrap.
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6. EXAMPLE

6.1. Data

To illustrate the proposed assessment of QT prolongation (Section 5) we consider

data from a thorough QT/QTc study where healthy subjects received single doses of

the following treatments: placebo, different doses of the study drug, and moxifloxacin

(active control treatment). All subjects received placebo and the study drug in ran-

domized cross-over fashion. During each of the study periods QT and RR interval

data were collected at the following time points: 30 min before drug application, and

at 0h30, 1h00, 1h30, 2h00, 3h00 and 4h00 after drug application. At each time point,

subjects underwent 10-second ECGs, and 12 QT and RR interval measurements per

subject, treatment period and time point were taken. Before data analysis, these 12

replicate QT and RR interval measurements per time point were averaged (on the

logarithmic scale). For the purposes of this illustration we analysed the placebo data

and data for one of the active doses (in the following labeled “Active Treatment”). In

order to maintain data confidentiality, a small random noise term was added to all data

points, but conclusions from the data made here remained unaffected by this measure.

6.2. Log-Linear Mixed Model

We conducted a one-step analysis of the QT interval data using a log-linear mixed

model as outlined in the previous section. The basic SAS PROC MIXED code (SAS,

2004) is presented in Table 2: In the manner of Patterson, Jones and Zaffira (2005)

we fitted the following fixed effects: period, treatment, timepoint, period×timepoint,

treatment×timepoint, and baseline QT measurement as covariate. In addition, in

order to implement the correction for RR interval, we fitted the log-transformed RR

interval value as covariate; finally, to allow for different (non-parallel) slopes for the

two treatments (see Equation (5)) we fitted the interaction between treatment and the

RR interval covariate. The relevant SAS MODEL statement is presented in Table 2.

To account for within-subject correlation between QT interval data at the seven

post-dose time points we fitted a repeated measures model, again in the manner of
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Patterson, Jones and Zaffira (2005), but with unstructured covariance pattern because

the time points in our example are not equally spaced and because the selection of po-

tentially simpler covariance models is not the focus of this paper (REPEATED statement

in Table 2).

Finally, in order to accommodate the individual nature of the QT/RR relationship

(see, for example, Shah and Hajian, 2003) we fit random intercepts / random slopes

for each subject, with an unstructured covariance pattern for this bivariate vector of

random coefficients (RANDOM statement in Table 2).

Maximum likelihood estimates of treatment contrasts (“Active – Placebo”) at each

time point, and associated two-sided 90% CIs, were calculated on the logarithmic scale

(LSMEANS statements in Table 2). The resulting point and interval estimates were back-

transformed to the original scale using the antilog, to obtain point estimates and 90%

CIs for the “Active / Placebo” ratios of geometric mean QT interval.

6.3. Results: Regression Slopes

Fitting the mixed model yields an average (or fixed effect) slope estimate of β̂P =

0.246 (SE = 0.025) for Placebo, and β̂A = 0.181 (SE = 0.022) for active treatment

(logarithmic scale). The estimate of the difference in slopes is β̂A − β̂P = −0.065

(SE = 0.026), which is statistically significant (P = 0.0131) (so that this data set

represents an example of a relatively large slope difference between active and placebo

treatment). Thus the extent of QT prolongation depends on the RR interval: since

the regression slope for active treatment is smaller than for placebo, the extent of QT

prolongation increases with decreasing RR interval (that is, with increasing heart rate).

6.4. Results: Assessment of QT Prolongation

QT prolongation, expressed on the ratio scale, is summarized in Table 3 for the

seven post-dose time points. Since the RR interval regression slopes are significantly

different for active treatment and placebo, QT prolongation was estimated over a heart

rate reference range of [50, 70] beats/min (see Section 3.3 (iii)). For completeness, QT
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prolongation is also presented for the conventional reference heart rate of 60 beats/min

(corresponding to the conventional reference RR interval of RRr = 1 s).

In this example active treatment causes significant QT prolongation, particularly

within the first hour after drug administration. (The point estimates and upper limits

of the 90% CIs can be compared to a value of 1.025 for maximum permissible QT pro-

longation on the ratio scale, as motivated in Section 5.) Furthermore, the dependence

of the extent of QT prolongation on the heart rate (RR interval) is quite clear. As

predicted from the relative sizes of the estimated regression slopes, QT prolongation is

considerably smaller at a heart rate of 50 beats/min than at 70 beats/min. We note

that both at 2h00 and 3h00 post drug administration, the results for a heart rate of 60

beats/min (conventional reference value) suggest that no significant QT prolongation

occurred at those time points (upper limits of 90% CI below 1.025). However, at a

heart rate of 70 beats/min, significant QT prolongation at those time points cannot be

ruled out (PE of about 1.023, upper limits of 90% CI of about 1.034). At a heart rate

of 50 beats/min, the 3h00 data suggest slight QT shortening.

6.5. Results: Discussion

The fact that the RR interval regression slopes are not parallel can have clinical

implications. In the present example, the direction of the difference in regression

slopes implies that higher heart rates are associated with increased QT prolongation.

Since higher heart rates than the reference value of 60 beats/min may be typical for a

target patient population, QT prolongation for a drug with RR interval regression slope

significantly smaller than that of placebo must be assessed with extra care. However,

it is also possible that the RR interval regression slope for active drug is significantly

larger than that of placebo (we have evaluated such a data set; not shown here). In

that case, QT prolongation at higher heart rates typical of a patient population is

smaller than QT prolongation at the reference heart rate of 60 beats/min.

It should be noted that probably only few drugs produce slope differences as large as

seen in the current example. However, the fact that such differences may exist suggests
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that unequal slopes should, at least initially, be accommodated in the statistical model

for analysis of QT data.

7. DISCUSSION

In this paper have suggested that an assessment of uncorrected or “absolute” QT

prolongation is carried out through a between-treatment comparison of the marginal

distributions of QT data; an assessment of “heart rate corrected” QT prolongation is

carried out through a between-treatment comparison of the conditional distributions

of QT data (conditional on RR interval). One way to carry out such a comparison of

marginal and conditional distributions in practice is to compare marginal and condi-

tional expectations, respectively. Under this framework, γc(x) = E(yA|x) − E(yP |x)

emerges as the appropriate treatment contrast for the assessment of conditional QT

prolongation in general, and γc(x) = αA − αP + (βA − βP ) · (x − xr) under the usual

assumption of a linear or log-linear model for the conditional expectations.

7.1. Choice of summary characteristic for conditional QT prolongation

Our example demonstrates that in general the assumption of equal slopes in Model

(5) (βA = βP ) cannot be made. In general, therefore, the extent of conditional QT

prolongation, γc(x), is a function of x = f(RR). We have proposed three possible

summary characteristics for this function: γc(x) evaluated at some “reference” RR

interval; the expected value of γc(x); and the maximum value of γc(x) over a “reference

range” of RR interval values.

The expected value of γc(x) (where the expectation is taken over the distribution of

x under active treatment) seems an attractive choice of summary characteristic, but is

associated with both statistical and conceptual difficulties. Statistically, inference on

γc(νA) is not possible based on a mixed model implementation of Model (5), since γc(νA)

is a nonlinear function of parameters of both the conditional distribution of y given x,

and of the marginal distribution of x. Conceptually, the difficulty is that a thorough

QT/QTc study might not provide a suitable estimate for γc(νA) = EGA
{γc(x)}; trial
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subjects are not a random sample of the target patient population, and therefore

the distribution GA of RR interval measurements in a trial with healthy subjects is

unlikely to reflect the distribution of RR values in the target patient population. Using

γc(νA) as characteristic for conditional QT prolongation implies that the characteristic

is determined by the choice of trial subjects.

Alternatively to γc(νA), a regulatory authority might specify a suitable reference

RR interval RRr, so that γc(xr) is used as a summary characteristic for conditional

QT prolongation. We suggest that RRr might be chosen smaller than the conventional

reference RR interval of 1 s, since a lower value might be more reflective of average or

typical RR interval in the target population.

Our preferred characteristic for conditional QT prolongation is the maximum value

of γc(x) over a suitable “reference” range [x0, x1] of RR interval values, where x0 and

x1 would have to be specified by regulatory authorities. (Characteristic γc(xr) can

be viewed as a special case where x0 = x1 = xr.) For example, a reference range of

[0.857, 1.20] s, corresponding to heart rates from 50 to 70 beats/min, includes, at the

upper end, HR values reflective of the target patient population. Because lack of QT

prolongation is concluded if the upper confidence bounds of both γc(x0) and γc(x1) are

below the regulatory limit, no alpha adjustment for repeated tests would be required.

7.2. One-step procedure

As we have seen, the so-called one-step procedure, by fitting Model (5) simultane-

ously to both active and placebo data, has at least two advantages: the procedure can

provide unbiased estimates of the parameters of Model (5), and therefore the proce-

dure can provide a “complete” characterization of conditional QT prolongation since

γc(x) can be estimated over any range of RR interval values of interest. Furthermore,

and this point has been made by other authors, if an appropriate error model for the

one-step procedure is specified, usually a linear or log-linear mixed model, then point

estimates for γc(x) are efficient, and the interval estimates have correct coverage.

Another advantage of the one-step procedure is that QT prolongation is assessed
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directly through analysis of QT data (under a model that contains RR interval as a

covariate): it is not necessary to calculate QTc, the heart rate corrected QT data. The

choice of various QT correction methods, e.g. data driven with “population” slopes,

data driven with “individual” slopes, or data driven with shrinkage of individual slopes,

is replaced by the equivalent choice of an appropriate mixed model for the QT data,

fixed and random effects. However, unlike the various two-step procedures, the one-step

procedure provides a standard statistical framework for proper model selection.

7.3. Two-step procedure with data driven correction

We have shown that the two-step procedure with data driven correction provides

an unbiased estimate for γc(νA), that is, of the expected conditional QT prolongation,

where the expectation is taken with respect to the distribution of x = f(RR) under

active treatment. We have argued that this contrast in principle is meaningful, and

might indeed be of greater clinical interest than γc(xr), particularly when the reference

RR interval is poorly chosen. However, as pointed out above, a thorough QT/QTc

study in healthy volunteers probably is not the ideal setting for estimating γc(νA).

Furthermore, interval estimates of the treatment contrast from the two-step procedure

do not have the correct coverage (Dmitrienko and Smith, 2003): whether population or

individual data driven correction methods are used, multiple QT values are corrected

using the same slope estimate. The resulting correlation between QTc data (and

reduction of error degrees of freedom) is not taken into account when the data are

analyzed. Consequently, confidence intervals for γc(νA) from the two-step procedure

have coverage smaller than their nominal coverage so that the two-step procedure is

not valid statistically. Two methods for proper statistical inference about γc(νA) were

sketched in Section 5.

7.4. Two-step procedure with fixed correction

The treatment contrasts for the various fixed correction procedures, namely γf =

E(yfc
A ) − E(yfc

P ), are not appropriate characteristics for conditional QT prolongation.
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Depending on the effect of active treatment on average RR interval, the two-step

procedure with fixed correction can falsely suggest conditional QT prolongation, or

mask its presence. QT “correction” according to Bazett is particularly notorious in this

regard because Bazett’s regression slope tends to be considerably larger than regression

slopes estimated from modern data bases (see, for example, Dmitrienko and Smith,

2003; Shah and Hajian, 2003). Bazett’s procedure will falsely suggest QT prolongation

for drugs that increase heart rate, and will mask QT prolongation for drugs that

decrease heart rate. (No harm is done only when active treatment does not shift average

heart rate, but only because in this case correction has no effect and is redundant.)

The consequences of falsely declaring an unsafe drug safe, or of falsely declaring a

safe drug unsafe, are obviously serious. All fixed correction methods are potentially

biased, and the bias of Bazett’s method is the most severe. Fixed correction may be

appropriate when single or sparse ECG data are evaluated, such as in routine clinical

practice; however, we think that in the statistical analysis of thorough QT studies fixed

correction methods should be abandoned.

7.5 Conclusion

Conditional QT prolongation γc(x) in general is a function of RR interval or heart

rate. The various procedures for assessment of QT prolongation have different require-

ments, for example, regarding the number of sampling points and number of subjects.

From the point of view of an adequate parametric characterization of QT prolongation,

however, we suggest fitting a linear or log-linear mixed model in an implementation of

the one-step procedure, and allowing, in general, for non-parallel regression slopes for

the different treatments.
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Table 1. Geometric Derivation of Characteristics for QT Prolongation

Method Characteristic Projection Slope for

E(yA|νA) E(yP |νP )

1 Marginal QT Prolongation γm zero zero

2 One Step Method γc(xr) βA βP

3 Two Step Method γc(νA) βP βP

– data driven

4 Two Step Method γf β̃ β̃
– fixed
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Table 2. SAS Code for One-Step Analysis of QT Data (Example of Section 6)

PROC MIXED;

CLASS subject treat time period;

MODEL y = baseline period treat time period*time treat*time

x treat*x / DDFM=KR;

RANDOM int x / SUBJECT=subject TYPE=UN;

REPEATED time / SUBJECT=subject*treat TYPE=UN;

ESTIMATE ’slope A’ x 1 treat*x 1 0 / CL;

ESTIMATE ’slope P’ x 1 treat*x 0 1 / CL;

ESTIMATE ’slopediff A - P’ treat*x 1 -1 / CL;

LSMEANS treat*time / DIFF AT x=7.09008 CL ALPHA=0.1;

LSMEANS treat*time / DIFF AT x=6.90776 CL ALPHA=0.1;

LSMEANS treat*time / DIFF AT x=6.75360 CL ALPHA=0.1;

RUN;

subject: Subject; treat: Treatment; time: Time Point; period: Study Period

y: QT interval measurement [ms] after logarithmic transformation: y=ln(QT)

x: RR interval measurement [ms] after logarithmic transformation: x=ln(RR)

“DIFF AT x=7.09008”: LSMEANS differences calculated at x=ln(1000*60/50), that is

at heart rate of 50 beats/min or RR interval of 1000*60/50=1200 ms; similarly for

“DIFF AT x=6.90776” (RR interval of 1000*60/60=1000 ms) and

“DIFF AT x=6.75360” (RR interval of 1000*60/70=857 ms)

A: Active Treatment

P: Placebo Treatment
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Table 3. Assessment of QT Prolongation (Example of Section 6)

Heart Rate Time Geom. Mean QT Int. [ms] Ratio “Active/Placebo”

[beats/min] Active Placebo PE 90% CI

50 0h30 419.8 411.2 1.0209 1.0094 – 1.0325

1h00 422.8 414.7 1.0198 1.0088 – 1.0309

1h30 418.6 415.5 1.0072 0.9955 – 1.0191

2h00 415.2 414.7 1.0013 0.9896 – 1.0131

3h00 413.5 413.6 0.9997 0.9872 – 1.0124

4h00 410.7 414.7 0.9903 0.9779 – 1.0029

60 0h30 406.2 393.2 1.0330 1.0242 – 1.0419

1h00 409.1 396.4 1.0319 1.0239 – 1.0399

1h30 405.0 397.3 1.0192 1.0103 – 1.0282

2h00 401.7 396.5 1.0132 1.0044 – 1.0220

3h00 400.1 395.5 1.0116 1.0015 – 1.0218

4h00 397.3 396.5 1.0021 0.9924 – 1.0118

70 0h30 395.0 378.5 1.0434 1.0319 – 1.0549

1h00 397.8 381.7 1.0423 1.0316 – 1.0530

1h30 393.8 382.6 1.0294 1.0182 – 1.0408

2h00 390.7 381.8 1.0233 1.0124 – 1.0344

3h00 389.1 380.8 1.0218 1.0096 – 1.0340

4h00 386.4 381.8 1.0121 1.0006 – 1.0238

PE: Point Estimate

CI: Confidence Interval
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SOME ASPECTS OF COMMON SINGULAR SPECTRUM 

ANALYSIS AND COINTEGRATION OF TIME SERIES. 

D.G. Nel and H. Viljoen, Department of Statistics and Actuarial Science,  

Stellenbosch University, South Africa 

Abstract:  Singular spectrum analysis (SSA) is a time series modelling technique 

where an observed time series is unfolded into the column vectors of a Hankel 

structured matrix, known as a trajectory matrix.  For deterministic series the column 

vectors of the trajectory matrix lie on a single R-flat.  Singular value decomposition 

(SVD) can be used to find the orthonormal base vectors of the linear subspace parallel 

to this R-flat.   SSA is useful to model time series with complex cyclical patterns that 

increase over time. 

Common singular spectrum analysis was investigated by Viljoen and Nel (2009). In 

this paper the method is briefly discussed and the similarities with cointegration is 

investigated, the most important that time series when sharing similarities identified 

by co-integration, shares a common R-flat of dimension r, which need to be 

determined. Common singular spectrum analysis provides the methodology to 

identify r by using the common principal component (CPC) approach of Flury (1988). 

CSSA decomposes the different original time series into the sum of a common small 

number of components which are related to common trend and oscillatory 

components and noise. The similarities and differences between cointegration and 

CSSA are studied simulating several different scenarios. 

Keywords: Co-integration, hierarchical approach, singular spectrum analysis, 

Singular value decomposition, Common principal components 
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1. Introduction 

Singular spectrum analysis of time series was introduced by Broomhead and King 

(1986a, 1986b). Extensive literature exists regarding the development of the method 

since then, for example E.G Buchstaber (1994), J.B. Elsner and A.A. Tsonis (1996), 

Danilov (1997) and Golyandina et al (2001). These methods are also known as 

caterpillar methods (Caterpillar 3.30) and are used to study the structure of time 

series. The purpose is to unfold a time series into a trajectory matrix whose singular 

values are then determined to reconstruct a smoother time series which can be used 

for explaining structure and for forecasting.  

Flury (1984) derived methods to determine common principal components of several 

symmetric matrices, usually covariance matrices in multivariate analysis, under the 

assumption that these matrices have a common principal component (CPC) structure.  

CSSA is a method utilizing the methodology of Flury (1988) to determine the 

common base vectors which spans the r-dimensional manifold (or R-flat) suspected to 

be common to both series. Co-integration analysis is the most frequently used method 

to study such common structures among time series (Engle and Granger (1987), 

Johansen (1988), (1991) and Wei (2006)). The purpose of this paper is to discuss 

relationships between CSSA for only two time series and co-integration.  

Singular spectrum analysis of time series (SSA) is discussed briefly in section 2 and 

common principal component analysis (CPC) and partial common principal 

component analysis (CPC(r)) in section 3.  In section 4 the common singular spectrum 

analysis method is introduced.  In section 5 a heuristic method and a hierarchical 

method are discussed to determine the dimensionality of the common supporting 

linear subspace or R-flat.  An example is presented in section 6 where two series share 
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common features. In section 7 several simulated studies are done to compare CSSA to 

co-integration. 

2. Singular spectrum analysis (SSA) 

In SSA methodology an observed time series tX  is unfolded into the column vectors 

of a matrix ( ): ; 1n n Tτ τ× = − +X : 

1 2

2 3 1

1

.

n

n

T

x x x
x x x

x x xτ τ

+

+

 
 
 =
 
 
 

…
…

M M M M
…

X  

The Hankel matrix X is called the trajectory matrix and the number τ of rows of X is 

referred to as the window length. The process to stack the elements of a time series 

into a Hankel matrix is called the hankelization of a time series.  The window length 

is the dimension of the Euclidean space into which the time series is unfolded and the 

choice of τ is restricted to ( )2 [ 1 2]Tτ≤ ≤ + , where the notation [b] indicates the 

integer part of a fraction b. Golyandina et al (2001), section 1.6, give general outlines 

for the choice of the window length. The window length should be chosen as a 

multiple of the periodicity but not exceeding half of the time series.  

Buchstaber (1994) noted that if a deterministic time series is unfolded into the column 

vectors of a trajectory matrix, all the column vectors of the trajectory matrix lie on a 

single ( )-flat rR H . The term R-flat indicates a r-dimensional manifold which does not 

necessarily passes through the origin.  

Venter (1998) illustrated how the -flat rR H  can be considered as a combination of a 

shift vector b  and parallel linear subspace rℑ , where ( )1 2, , ,r rspan v v vℑ = … . The 

R-flat rH  is then defined as: 
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{ }1 1: ; ; ; 1r r r iH x x b a v a v a v rτ τ= = + +… ∈ ∈ ≥ +¡ ¡ ,    

where the vectors 1 2, , , rv v v…  form a base for the parallel linear subspace and are 

therefore linearly independent.  

For an observed time series the singular value decomposition (SVD) is used to find a 

reconstructed signal series tf% , which can be used for forecasting.  (Golyandina et al. 

2001).  First it is necessary to find a low-rank approximation of the trajectory matrix 

X, say matrix Y from which the series tf%  can be obtained.   

The singular value decomposition (SVD) of a ( )nτ ×  matrix X, of rank r, is defined 

by 
1
2 'X = ΒΛ U , where 

( ) 1 2 rr
b b b

τ×
 =  B …  is the matrix of normalized 

eigenvectors of the column space of X,  
( ) 1 2 rn r

u u u
×

 =  U …  is the matrix of 

normalized eigenvectors of the row space of X and matrix ( )1
2 : r r×Λ  is a diagonal 

matrix of singular values of the matrix X.  The matrix 'XX  is then diagonalized 

as ' 'Β XX B = Λ. 

In SSA, SVD is used to diagonalize the symmetric τ τ×  scatter matrix 'XX% %  where 

'x j= −X X%  the centred trajectory matrix with x  the vector of means and 'j  the 

transpose of the unit vector. The vector of means x  is used as the shift vector of 

the -flat rr H . The result is given by ' '=XX BΛB% % .  The SVD of the matrix %X  will 

tend to possess r larger singular values and ( )rτ − smaller singular values which can 

be ascribed to noise in the time series. Suppose that the trajectory matrix is of rank 

( )min ,d nτ≤  then the problem statement in SSA is to find a low-rank approximating 

matrix Y of rank r d≤  for the trajectory matrix X.  The first r eigenvectors need to be 
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selected from the columns of matrix B.   The choice of r can be assisted by using a 

scree plot or using phase state portraits. (Vautard et al.1992).    

Once the choice of r is made, the projection matrix of the parallel linear subspace 

spanned by the r leading eigenvectors '
rH =P BB  is formed.  Then the closest 

( )-flat rr H  to the column vectors of the trajectory matrix is given by 

'
rHx j= +Y P X% .  The de-hankelization operation (Buchstaber 1994) performed on Y 

will yield the reconstructed signal series tf% as follows. 

, 1
1

, 1
1

1

, 1
1

1 for 1

1 for

1 for
1

s

i s i
i

t i s i
i

N s

i s n n i
i

Y s
s

f Y s n

Y n s N
N s

τ

τ

τ
τ

− +
=

− +
=

− +

+ − − +
=

 ≤ ≤ 
 
 

= ≤ ≤ 
 
 

≤ ≤ 
− + 

∑

∑

∑

%  

The reconstructed smoother series can then be used for forecasting.  

 3. Common principal component and partial common principal component   

     models 

Flury (1984) introduced common principal components of two or more symmetric 

covariance matrices as a possible model in a hierarchy of models to explain 

heteroscedasticity among covariance matrices. In this paper the concepts of common 

principal components CPC and partial common principal components CPC(r) will be 

used and are  briefly described for clarity. 

Two (or more) symmetric matrices 1 : p p×S  and 2 : p p×S   have common principal 

components if an orthogonal matrix 1 2 ... pb b b =  β exists such that 

( )' ( ) ( ) ( ) ( )
1 1, , , , , , 1, 2i i i i

i r r pdiag l l l l i+= =β β … …S  meaning that:  

( ) ' for 1, ,i
j j i jl b b j p= = …S . 
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If CPC structure exists, the FG-algorithm of Flury and Gautschi (1986) can be used to 

find the maximum likelihood estimates of the eigenvalues and the common 

eigenvectors in the orthogonal matrix β.    

If two matrices β1 and β2 exist which contains r common eigenvectors and diagonalize 

the scatter matrices S1 and S2, e.g. they are of the form   

  ( )2 ( ) ( )
1 1 , 1,2i i

i i r rb b b b iτ+
   = = =   … …B Bβ   , 

then S1 and S2 satisfy a partial common principal components or CPC(r) model. Thus 

r of the eigenvectors forming the submatrix B of dimension rτ ×  are common while 

the submatrices  ( )2
iB : ( )rτ τ× − are specific.  Flury (1988) Chapter 6 described the 

estimation of these matrices using the Flury-Gautschi algorithm. The CPC(r) model or 

initially the CPC model (actually a CPC(τ-1) model) can be used to determine the 

common eigenvectors : rτ ×B   to be used in extending the SSA model to CSSA.  The 

estimation of the matrices is rather complicated, but an approximate estimation 

procedure of these matrices B and ( )2 , 1, 2i i =B  is described in Flury (1988) p.130.  

This approach is recommended rather than solving the complete system of equations 

as described by Flury (1988) p.203, section 9.7.  

4.  The Common Singular Spectrum Analysis (CSSA) method  

Two time series 
1t

X and 
1t

X of equal length and observed over the same period of time 

are considered. It is assumed that common properties exist which explain the variation 

in both time series. It is assumed that both series can be described by models of the 

form: 

, 1, , , 1, 2
i i it t t iX f t T iε= + = =…  
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 where 
it

X denotes  the observed time series of length T, 
it

f the deterministic time 

series or signal series of length T  and
it

ε the white noise series. 

In terms of SSA methodology this means that a common -flat rR H defined by:  

{ }1 1: ; ; ; 1r r r iH x x b a v a v a v rτ τ= = + +… ∈ ∈ ≥ +¡ ¡ , 

may exist for both series. Both the dimensionality r and the common base 

vectors 1 2, , , rv v v…  spanning the common parallel linear subspace need to be 

determined. The CPC and CPC(r) methods of Flury (1988) provide the necessary 

methodology to accomplish this. The CSSA method is described in Viljoen and Nel 

(2009) and it  is briefly given here again for illustrative purposes: Both series are 

unfolded into two trajectory matrices and the centered trajectory matrices 1 : nτ ×%X  

and 2 : nτ ×%X  are formed similar to the SSA method. The symmetric matrices 

'
1 1 1 :τ τ= ×% %S X X and '

2 2 2 :τ τ= ×% %S X X  are formed and the FG algorithm (Flury and 

Gautschi (1986)) applied on the matrices 1S  and 2S  to determine a matrix : rτ ×B  

using the CPC model, which yields a matrix 

[ ] (2)
1 1r rb b b bτ+  = =  … … B Bβ   where : rτ ×B  and ( ) ( )2 : rτ τ× −B , 

 such that  

( ) ( ) ( ) ( )
1 1 , 1, 2i i i i

r rdiag l l l l iτ+ = = L L'
iSβ β . 

The first r common eigenvectors [ ]1, , :rb b rτ= ×LB  are of particular interest in 

CSSA and the remaining eigenvectors 1, ,rb bτ+ L  are assumed to be associated with 

noise in both series.  The matrix : rτ ×B  is the matrix of common eigenvectors 

spanning the column space of both matrices and% %
1 2X X  such that 
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1 1
2 2

1 21 2andX X= B B% %' '
1 2X Λ U X = Λ U .  Note that the row space of both matrices is still 

spanned by different U-matrices.  

The remainder of the CSSA algorithm is similar to SSA:  Form the projection matrix 

'
rH =P BB , where : rτ ×B  and form the projected matrices  

' , 1,2
ri i n Hx j i= + =iY P X% .  Using the dehankelization operation on the projected 

matrices 1Y  and 2Y  will yield the reconstructed series
1 2

andt tf f% % .  

The matrix : rτ ×B   can be determined more accurately by fitting a CPC model 

firstly to the scatter matrices as described above and then fitting a CPC(r) model, with  

( )2 ( ) ( )
1 1

i i
i i r rb b b bτ+

   = =   β … …B B , i=1,2 which essentially specify that 

the matrices ( ) ( )2 :i rτ τ× −B  can be specific to the two time series, while the base 

vectors of the R-flat in : rτ ×B   are common. If the CPC(r) method was used to 

determine : rτ ×B   the CSSA method will be refered to as the CSSA(r)  method. 

Fitting the CPC model serves as a first step in the CSSA(r) method. 

5.  Choosing the dimension r 

The number r of eigenvectors in : rτ ×B  needed from the columns of the matrix 

:τ τ×β  for the CSSA method can be selected using either a heuristic approach from 

CSSA or a hierarchical selection procedure from CSSA(r).   

The heuristic approach is as follows: Arrange the eigenvectors in :τ τ×β  to yield the 

eigenvalues of 1S  in descending order: e.g. ( ) ( ) ( )1 1 1 (1)
1 2 dl l l lτ≥ ≥ ≥ ≥ ≥… … .  Now apply 

the same sequencing to the eigenvalues of the matrix 2S  to determine the index d such 

that ( ) ( ) ( )2 2 2
1 2 dl l l≥ ≥ ≥…  but the remaining eigenvalues ( ) ( ) ( )2 2 2

1 2, , ,r rl l lτ+ + … of 2S  need not 

be ordered.   The dimension  r can then at most be d. Alternatively the eigenvalues of 

matrix 2S  can be sorted in descending order and then apply this sequencing to the 
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eigenvalues of matrix 1S .  If the values for d differ from these two methods then d 

will be the minimum value.  The square roots of the eigenvalues 

( ) ( ) ( )1 1 1
1 2 dl l l≥ ≥ ≥… and ( ) ( ) ( )2 2 2

1 2 dl l l≥ ≥ ≥…  are now the singular values of the common 

singular value decomposition of 1 : nτ ×%X  and  2 : nτ ×%X .    

If d is very small, e.g. 1d =  then 1r ≤  too and the scree plots of the second series 

according to its own ordering and according to the ordering of the first series will be 

quite different. Thus a small value of r or immediate differences between the plots in 

this scree plot, is a clear indication that the CSSA structure is not applicable for the 

two time series and that no common R-flat exist. Due to the magnitude of the 

eigenvalues, the log-eigenvalues are sometimes rather plotted which gives a better 

illustration. 

The hierarchical selection procedure is described in Viljoen and Nel (2009), where the 

CSSA(r) approach is used for this purpose.  If r is assumed known, then a submatrix 

of common eigenvectors : rτ ×B  exist in both matrices β1 and β2.  The value of r is 

now selected using a similar hierarchical selection procedure as described by Flury 

(1988) p.148 – 151.   

Two time series models CSSA ( )1r +  and CSSA ( )r  for r=1,2, …d are compared by 

fitting CPC ( )1r +  and CPC ( )r  models to the scatter matrices and comparing the 

improvement in the 2χ - statistic, ( ) ( )( )2 12
1 1

log logr r
r r i i ii

nχ +
+ =

= −∑ S S   (Flury 1988, 

p150 eqn(1.1)) which is asymptotically distributed 2χ  with degrees of freedom, 

( )1df rτ= − +  where ( )( )r
i i i idiag ′= β βSΛ , ( )

( )
( )

( )

2( ) , and ,r r
i i i i i ir rτ −

 
′= =  

  
S B Bβ β βΛ .  

i=1,2. For 0r = , CPC(1) is compared to unrelated Si with 
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( )
( )( )2 12 2

1CPC 1 1
log logi i ii

nχ χ
=

= = −∑ S S  and associated degrees of freedom 

1df τ= − , where Si denotes the original scatter matrices.  The following table is 

useful to measure the change. (Viljoen and Nel (2009)). 

1r +  Time series Scatter matrices  (df) 2
1r rχ +  

1 CSSA ( )1  vs unrelated ( )CPC 1  vs unrelated 1τ −  
( )

2
1CPCχ  

2 ( )CSSA 2  vs ( )CSSA 1  ( )CPC 2 vs ( )CPC 1  2τ −  2
2 1χ  

3 ( )CSSA 3  vs ( )CSSA 2  ( )CPC 3 vs ( )CPC 2  3τ −  2
3 2χ  

- -------- ---- --- --- 
1τ −  ( )CSSA 1τ −  vs ( )CSSA 2τ −  ( )CPC 1τ − vs ( )CPC 2τ −  1 2

1 2τ τχ − −  
Table 1  Comparing CSSA models 

The value of r is detected where the ratio 2
1r r dfχ +  is closest to 1 (one) among the 

possible values 1 2r τ≤ ≤ − , since the CPC(τ-1) model coincides with the CPC 

model. The values of r where 1 r d≤ ≤  may be more realistic to choose from since the 

dimension r of the R-flat should be much less than τ. 

It was noted that if two time series do not share a common R-flat, the sequencing of 

the eigenvalues or log eigenvalues are immediately quite different and the value of d 

very small. The following scree plot of the log eigenvalues of series 2 sorted 

according to the sequence of the series 1 eigenvalues and not, illustrates this situation.  
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When no common R-flat exists, the hierarchical approach immediately gives high chi-

square values and ratios 2
1r r dfχ + ,  close to 1, which the following table illustrates. 

The hierarchical approach: 

1r +  Time series 2
1r rχ +   (df) 2

1r r dfχ +  
1 CSSA ( )1  vs unrelated 44.45 47 0.95 

2 ( )CSSA 2  vs ( )CSSA 1  45.11 46 0.98 

3 ( )CSSA 3  vs ( )CSSA 2  52.18 45 1.16 

4 ( )CSSA 4  vs ( )CSSA 3  21.67 44 0.49 

5 ( )CSSA 5  vs ( )CSSA 4  11.01 43 0.26 

6 ( )CSSA 6  vs ( )CSSA 5  7.80 42 0.19 

7 ( )CSSA 7  vs ( )CSSA 6  43.74 41 1.07 

8 ( )CSSA 8  vs ( )CSSA 7  16.41 40 0.41 

9 ( )CSSA 9  vs ( )CSSA 8  56.32 39 1.44 

10 ( )CSSA 10  vs ( )CSSA 9  19.02 38 0.50 

-- -- -- -- -- 
Table 2 Comparing CSSA models in a no common R-flat case. 
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In section 6 an example is given where two times series will be analyzed by using 

CSSA sharing common properties and a common R-flat of dimension r.  

6. Examples   

Example 1 

The well known Lydia Pinkham annual advertising and sales dataset from 1907 to 

1960 is used as a first example. (Data W12 of Wei 2006).  

 

Figure 2  Time series plot for the Advertising and Sales data. 

Using the heuristic method, the CPC-eigenvalues of the scatter matrices S1 and S2 

were arranged according to the sequence in S1.  The eigenvalues of series 2 are 

descending up to 5d = , so r can be chosen in the interval 1 5r≤ ≤ . 

r Eigenvalues for time series 1 Eigenvalues for time series 2 
1    30519735.66      94225252.53 
2    20941334.05 71111830.77 
3 5064088.50 11134196.86 
4 3772917.66    2179336.42 
5 3457664.59    1447251.44 
6 2573748.36    5240595.10 
7 1868804.60 2588007.08 
8 1037291.96     846631.05 
9 487195.37     267719.61 

10 401720.08     182911.91 
11 275363.64     312517.49 
12 219246.44     327039.47 
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Table 3 Comparing the eigenvalues of series 2 sorted according to series 1. 

The following scree plot of the log-eigenvalues of series 2 illustrates this. The 

eigenvalues of S2 are ordered according to the sequence of the first series with dots 

and according to its own sequence as the line.   

 

 

The hierarchical approach yielded the following table: 

1r +  Time series 2
1r rχ +   (df) 2

1r r dfχ +  
1 CSSA ( )1  vs unrelated 3.95 11 0.36 

2 ( )CSSA 2  vs ( )CSSA 1  1.97 10 0.20 

3 ( )CSSA 3  vs ( )CSSA 2  0.85 9 0.09 

4 ( )CSSA 4  vs ( )CSSA 3  6.13 8 0.77 

5 ( )CSSA 5  vs ( )CSSA 4  3.57 7 0.51 

6 ( )CSSA 6  vs ( )CSSA 5  0.86 6 0.14 

7 ( )CSSA 7  vs ( )CSSA 6  0.76 5 0.15 

8 ( )CSSA 8  vs ( )CSSA 7  1.36 4 0.34 

9 ( )CSSA 9  vs ( )CSSA 8  0.12 3 0.04 
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10 ( )CSSA 10  vs ( )CSSA 9  0.66 2 0.33 

-- -- -- -- -- 
Table 4  Comparing CSSA models for Advertising and Sales. 

Note that at 3r =  the improvement in the 2χ - statistic’s value ( 2
4 3χ )  is the highest 

and 2
4 3 8 0.77χ =  closest to 1 of all r’s less than 1τ − .  The following figures 

illustrate the fit of the CSSA(3) model to both series.  For Advertising: MSE 

=19334.09 and MAPE=10.81 and for Sales: MSE= 16266.91 and MAPE=6.03. 

 

Figure 3  Advertising with the CSSA(3) fitted model. 

 

Figure 4  Sales with the fitted CSSA(3) model 
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These series are quite short and the CSSA fit is rather rough. The following example 

gives a CSSA fit to two longer economic time series. 

Example 2 

The Business Cycle index (BCI) for South Africa and New car sales index (NCI) is 

studied for the period January 1960 till December 2004.  Both series are linearly 

increasing and co-integrated according to the Johansen test. (Johansen (1988).  

According to the Granger test, BCI is the leading indicator.  BCI was chosen as 

indicated as series 1 and NCI as series 2. 

 
 
Figure  5 Time series plot for the Business Cycle Index and New Car Sales Index 
 

From the heuristic method,  the CPC-eigenvalues of the scatter matrices S1 and S2  

were arranged according to the sequence in S1.  The eigenvalues of series 2 are then 

descending up to 8d = , so r can be chosen as  1 8r≤ ≤ . 
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r Eigenvalues for time series 1 Eigenvalues for time series 2 
1 86869413.07 186701030.01 
2 3349072.75 9423654.37 
3 1171954.24 4297880.54 
4 300583.09 1488426.46 
5 149693.55 674539.52 
6 53973.58 304759.23 
7 27800.64 225962.43 
8 10368.25 199305.28 
9 8251.51 292722.28 

10 8078.78 293498.28 
11 4439.45 130724.62 
12 4171.39 185790.49 
13 3907.47 271004.90 
14 2111.98 110564.06 
15 1979.00 259989.93 

Table 5  Comparing the eigenvalues of series 2 sorted according to series 1. 

The following scree plot of the log-eigenvalues illustrates these differences among the 

eigenvalues of 2S  when ordered according to the sequence of the first series with dots 

and when ordered according to its own sequence with a line. 
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Figure 6 illustrates the descending order among the eigenvalues of series 2 for the 

different orderings and indicates a ‘fit’ of the CSSA(r) model for a value of r of about 

7.  

The hierarchical approach yields: 

1r +  Time series 2
1r rχ +   (df) 2

1r r dfχ +  
1 CSSA ( )1  vs unrelated 8.26 47 0.18 

2 ( )CSSA 2  vs ( )CSSA 1  3.67 46 0.08 

3 ( )CSSA 3  vs ( )CSSA 2  6.21 45 0.14 

4 ( )CSSA 4  vs ( )CSSA 3  2.66 44 0.06 

5 ( )CSSA 5  vs ( )CSSA 4  3.54 43 0.08 

6 ( )CSSA 6  vs ( )CSSA 5  8.40 42 0.20 

7 ( )CSSA 7  vs ( )CSSA 6  8.99 41 0.22 

8 ( )CSSA 8  vs ( )CSSA 7  45.61 40 1.14 

9 ( )CSSA 9  vs ( )CSSA 8  9.02 39 0.23 

10 ( )CSSA 10  vs ( )CSSA 9  11.93 38 0.31 

-- -- -- -- -- 
Table 6 Comparing CSSA models for BCI and NCS. 

Note that at 7r =  the improvement in the 2χ - statistic’s value ( 2
8 7χ )  is the highest 

and 2
8 7 40 1.14χ =  closest to 1 of all r’s less than 1τ − .  The following figures 

illustrate the fit of  the CSSA(7) model fits for both time series.    

 
Figure 7 The Business Cycle Index with the CSSA(7) fitted model. 
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Figure 8  The New Car Sales Index with the fitted CSSA(7) model 

The MSE = 2.99 and MAPE=0.58 for the Business Cycle Index and the MSE=226.20 

and MAPE=3.27 for the New Car Sales Index. 

7  Co-integration and CSSA. 

Two time series of length 100T =  were simulated to investigate common properties 

with CSSA and co-integration:  

( )
( )

2
1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2 2

cos sin

cos sin

y t A t B t c d t e t

y t A t B t c d t e t

ω ω ε

ω ω ε

= + + + + +

= + + + + +
 

where andi iA B  are the amplitudes , andi i ic d e , parameters for a polynomial model 

and iε  a random value drawn from a normal distribution with mean 0 and variance 1 

multiplied by a constant amount ni to enlarge the noise level  for each time series 

( )iy t , where 2i ifω π=  and 1i if P=  where Pi is the periodicity of each time series 

for 1,2i = . 

Different values for andi iA B , , andi i ic d e  where chosen and the noise levels ni were 

also increased to reflect differences between the series.  
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In the investigation process the  scree plot of the log eigenvalues of series 2 sorted to 

series 1 is considered. The chosen value of r ( )0 r d< ≤ , among the number d of 

descending singular values is then reported. If the scree plot indicate common 

decreasing log eigenvalues as in the examples given in section 6,  Figures 2 and 6 

with only minute differences among these eigenvalues of series 2, it will indicate “fit” 

of the CSSA model meaning that common features exist .   In Figure 1 (see section 6)  

the scree plot indicates a “non-fit”, meaning that no common features exist. In Table 

2 the hierarchical method indicates a “non-fit” characterized by immediate high chi-

square values and ratios 2
1r r dfχ + ,  close to 1. 

 To avoid the further use of too many scree plots or tables, we will simply refer to a fit 

or a non-fit of the CSSA model.  In the following section several scenarios are 

investigated to access the fit of the CSSA model. The scree plots of the log 

eigenvalues are investigated like mentioned above and the mean squared errors and 

mean absolute percentage errors of the fitted series are calculated and reported as 

MSE1, MSE2 and MAPE1, MAPE2 respectively for each scenario.   

6.1 Investigating the window length for different values ofτ :    

The values for the slopes 1 2andd d  where chosen as 0.5 while the following values 

where chosen for the intercepts and polynomial terms 1 2 1 210, 0c c e e= = = = , the 

amplitudes 1 1 2 2 5A B A B= = = = and the period of the time series Pi =12. The noise 

constants where chosen as 0.5.  The two time series are therefore positive linear and 

sinusoidal. When using 12τ =  it was found that the window length is too short to 

detect the similarity between the two series and consequently the window length was 

extended to 48τ = . The number of mutually decreasing eigenvalues was determined 

as 5d =  which yielded scree plots indicating fit. Consequently 4r =  is chosen for 
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the CSSA reconstruction.  The reconstructed time series now fit the original time 

series with respective error measures MSE1 =0.16, MAPE1 =1.30 and MSE2=0.20, 

MAPE2=1.27.  Since a window length of 48τ =  gives a better fit, this window length 

is chosen for all further comparisons.  

6.2 Influence of different slopes:  Different slopes involve choosing different 

values of 1 2andd d .  The starting values given in (a) below are 1 20.5 and 0.6d d= =  

while the other components are chosen as:   

1 2 1 2 1 1 2 2 1 210, 0, 5 and
12

c c e e A B A B πω ω= = = = = = = = = = . 

The noise constants were chosen as 0.5.  In (a) the two slopes are almost similar, (b) 

gives the results when the slope of the one time series is linear positive and the second 

one linear negative.  In (c) the slope of the first time series is linear positive but the 

second one is stationary. Note that in this case the series are not co-integrated. 

(a) The slopes for the two time series are 1 0.5d =  and 2 0.6d = .  The number of 

similarly ordered eigenvalues from CSSA is determined as 4d = .  The scree 

plots indicate fit and using 4r =  resulted in MSE1=0.16, MAPE1=1.12, 

MSE2=0.21 and MAPE2=1.24.  Using the hierarchical approach, 4r = . 

(b)   The slopes were chosen as 1 0.5d =  and 2 2d = − .  The number of ordered 

eigenvalues from CSSA is 6d = . The scree plots indicate fit and the use of 

4r =  resulted in fits with MSE1 =0.18, MAPE1=1.29, MSE2=0.25 and 

MAPE2=0.98. The hierarchical approach yielded, 4r = . 

(c) The slopes where chosen as 1 0.5d =  and 2 0d = . The number of ordered 

eigenvalues is 1d =  which immediately indicate non-fit of the CSSA model.  

This is also clear from the scree plots and by comparing the MSE’s and 

MAPE’s after the CSSA model is fitted. Using 1r =  results in MSE1=24.59, 



 21

MAPE1=17.12, MSE2=24.22 and MAPE2=68.82.  The Hierarchical approach  

indicates a non-fit.  Immediate high chi-square values and ratios 2
1r r dfχ + ,  

close to 1 ( as in Table 1) is obtained. 

Note that the two series in (a) and (b) are both first order non-stationary and the CSSA 

model fits, indicated by the small MSE’s and MAPE’s.  It seems that a difference in 

the slopes when both series are first order non-stationary does not influence the fit of 

the CSSA model, though it influences co-integration. However in (c) the one series is 

first order non-stationary while the second one is stationary. In this case the series are 

not co-integrated but the CSSA model also does not fit. 

 6.3 Influence of different quadratic components:  In the following analysis (a) 

the values for the linear coefficients are fixed on 1 2 0.5d d= =  but the quadratic 

coefficients are chosen as 1 0e =  and 2 0.05e = .  Thus the one time series has a linear 

trend while the other one has a quadratic trend. The noise variance is chosen as 0.5, 

while the other components were chosen as 1 2 10c c= = , 1 1 2 2 5A B A B= = = =  

and 1 2 12
πω ω= = . In the analysis (b) the linear coefficients are changed to 1 0.5d =  

and 2 2d = −  resulting in a negative linear series 2 being also perpendicular to series 1.  

(a) The quadratic components were chosen as 1 0.05e =  and 2 0e = . The number 

of ordered eigenvalues is 2d = .  Using  2r =  yielded the following fitted 

series with CSSA:  MSE1 =13.35, MAPE1=7.00, MSE2 = 11.31 and 

2MAPE =12.68 .   From the hierarchical approach, 3r = . 

(b)  The slopes were chosen as 1 0.5d = , 2 2d = −  and the quadratic components as 

1 0.05e =  and  2 0e = . The ordered eigenvalues 3d = .  The Hierarchical 

approach gives immediate high chi-square values indicating a non-fit. 
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Choosing 3r =  both the scree plot and the error measures MSE1=9.70, 

MAPE1=7.20,  2MSE =86.92  and MAPE2 = 42.98 also indicate no fit. 

In both cases (a) and (b) the large MAPE’s indicate bad fit, particularly for the second 

case as in (b). Note that since the one series is linear, i.e. of order I(1) and the other 

quadratic of order I(2), they are not co-integrated and the CSSA model does not fit. 

6.4 Influence of periodicity on CSSA:   The periods of the two time series, 

1 2andω ω  were chosen as different, 1 12
π

ω =  and 2 6
πω =  while the other 

components were chosen the same, 1 1 2 2 5A B A B= = = = ,  1 2 10c c= = , 1 2 0.5d d= = , 

1 2 0e e= =  and noise constant 0.5.   Three ordered eigenvalues ( 3d = ) were 

observed.  Using 3r =  and fitting the CSSA model resulted in MSE1=0.21, 

MAPE1=1.31, MSE2=25.50 and MAPE2=18.09. The Hierarchical approach indicates 

a non-fit of the CSSA model due to immediate large chi-square values.  This is also 

visible from the scree plot and larger MSE and MAPE of the second series. Since the 

two series are however co-integrated according to the Johansen (1991) test, this 

illustrates that co-integration not necessarily imply that the CSSA model will fit. Thus 

CSSA is a stronger condition or measure of similarity between two time series than 

co-integration. 

6.5 Influence of different amplitudes on CSSA:  Different amplitudes were given to 

the two time series.  The time lag k, was set to 0 and the other components were 

chosen as 1 2 0.5d d= = , 1 2 0e e= = , 1 2 10c c= =  and  1 2 12
πω ω= = . 

(a)   The amplitudes were chosen as 1 1 5A B= = , 2 2 7A B= = .  The ordered 

eigenvalues indicate 6d = .  The scree plot indicate fit and when choosing 
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5r = , the following error measures were found MSE1=0.18, MAPE1=1.23, 

MSE2=0.22 and MAPE2= 1.54.  Using the hierarchical approach  5r = . 

 (b)   The amplitudes were chosen as 1 1 5A B= =  and 2 2 15A B= = .  The number of 

ordered eigenvalues is 1d = , which immediately indicates a non-fit, even 

without plotting any scree plot.   If the CSSA model is fitted the error 

measures are MSE1=25.03, MAPE1=17.38, MSE2=222.74 and 

MAPE2=224.51, confirming the bad fit.  The hierarchical approach’s large 

chi-square values also confirm the non-fit. 

For ratios of amplitudes 2 1A A  and 2 1B B  close to one, the CSSA model gives a good 

fit, but when these amplitude ratios get larger, the CSSA model does not fit.   In both 

cases (a) and (b) the two series are still co-integrated.  

  
8. CONCLUDING  

Common singular value decomposition can be used to investigate common structure 

among different time series. The common structure is explained in terms of the r 

singular values resulting from the common submatrix : rτ ×B  in the matrix/matrices 

( )2 ( ) ( )
1 1 , 1,2i i

i i r rb b b b iτ+
   = = =  β … …B B , used to simultaneously 

diagonalize the scatter matrices i i
′% %X X  to CPC or CPC(r ) structure in the Flury-

Gautschi sense, where ( )1,2i i =%X are the respective centered trajectory matrices. 

These vectors are the base vectors of the common R-flat. Failure to simultaneously 

diagonalize these matrices with CPC or CPC(r) indicates that no common structure 

exists at all and thus no common R-flat exists. 

CSSA gives more insight into the nature and dimensionality of common features 

among time series than co-integration alone.  



 24

 REFERENCES 

Broomhead, D.S. and King, G.P.,1986a. Extracting qualitative dynamics from 

experimental data. Physica D 20, 217-236. 

Broomhead, D.S. and King, G.P., 1986b. On the qualitative analysis of 

experimental dynamical systems. In S. Sarkar (Ed.), Non-linear phenomena and 

chaos. 113-144. Adam Hilger, Bristol.   

Buchstaber, V.M., 1994. Time series analysis and Grassmannians. Amer. Math. 

Soc. Transl 162 Series 2, 1-17.  

Danilov, D.L., 1997. Principal components in time series forecast. Journal of 

computational and Graphical Statistics, 6, 112-121. 

Elsner, J.B. and Tsonis, A.A., 1996.  Singular Spectrum Analysis.  A New Tool in 

Time Series Analysis.  New York:  Plenum Press. 

Engle, R.F. and Granger, C.W.J., 1987. Co-integration and error correction: 

representation, estimation and testing. Econometrica 55, 251-276. 

Flury, B., 1984.  Common principal components in k groups. Journal of the 

American Statistical Association 79, 892-898. 

Flury, B., 1988. Common principal components and related multivariate models.  

New York:  Wiley. 

Flury, B. and Gautschi, W.,  1986.  An algorithm for simultaneous orthogonal 

transformation of several positive definite symmetric matrices to nearly diagonal 

form.  SIAM Journal of Scientific and Statistical Computing 7, 184-196. 

Golyandina, N.,  Nekrutkin, V.V. and Zhigljavsky, A., 2001. Analysis of Time 

series Structure SSA and Related Techniques. Boca Raton,  Chapman & 

Hall/CRC. 



 25

Johansen, S., 1988. Statistical analysis of cointegration vectors. Journal of 

Economic Dynamics and Control 12, 231-254. 

Johansen, S., 1991. Estimation and hypothesis testing of cointegration vector in 

Gaussian vector autoregressive models. Econometrica  59, 1551-1580. 

Vautard, R., Yiou, P. and Ghil, M. 1992. Singular-spectrum analysis: A toolkit 

for short, noisy chaotic signals. Physica D, 58, 95-126. 

Venter, J.H., 1998. Forecasting by identification of linear structure in a time 

series.  Unpublished talk presented at the 1998 Conference of The South-Africa 

Statistical Association. 

Viljoen, H  and  Nel D.G.,  2009.  Common singular spectrum analysis of several 

time series. Journal of Statistical Planning and Inference (In press) 

Wei, W.W.S., 2006. Time Series Analysis: Univariate and Multivariate Methods. 

(Sec. Ed.) Boston:  Pearson Addison Wesley. 


