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APPROXIMATING THE GENERALIZED BURR-GAMMA WITH A GENERALIZED 

PARETO-TYPE OF DISTRIBUTION 

 

A. VERSTER AND D.J. DE WAAL 

 

ABSTRACT 

 

In this paper the Generalized Burr-Gamma (GBG) distribution is considered to model data 

that includes extreme values. Since the tail of the distribution is often the only interest it is 

shown in this paper that the tail of the GBG can be approximated by a Generalized Pareto-

type (GP-type) of distribution.  This approximation is simpler to work with since it only has 

one parameter, namely the extreme value index (EVI), where the GBG has four parameters.  

The GP-type of distribution differs from the Generalized Pareto distribution since it is 

dependent on the threshold t, as is shown in equation (3).  This aspect is advantageous in 

selecting an optimum threshold.  The goodness of fit of this approximated distribution is 

tested by comparing the tail probabilities of the approximated distribution with the tail 

probabilities of the GBG.  The Jeffreys prior of the EVI under the GP-type is derived and the 

posterior predictive survival distribution is used for predicting high quantiles.   A valuable 

contribution is made on how to select the optimum threshold when working with extreme 

values.  

 

KEYWORDS: GBG, GP-type, threshold, posterior predictive survival distribution, tail 

probabilities, high quantiles.  
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1 INTRODUCTION 

 

In extreme value analysis, the Peaks Over Threshold method became a popular method to 

predict high quantiles or estimate tail probabilities. Although parametric models exist to 

model all the data such as the Burr, Frechét, t ,F and others, the generalized Burr-Gamma 

class is another class of distributions to fit the whole data set (Beirlant et al. 1999). The 

Generalized Burr-Gamma is fairly flexible since it consists of four parameters. Since the tail 

is sometimes the only interest we suppose that the data is Generalized Burr-Gamma 

distributed and for large values of the threshold we approximate the distribution of the tail 

with a Generalized Pareto-type of distribution. This approximated distribution is dependent on 

the threshold t and therefore a valuable contribution can be made in selecting an optimum 

threshold. Further, we explore the estimation of tail probabilities through the posterior 

predictive survival distribution of the approximated Generalized Pareto-type distribution and 

the goodness of the approximated Generalized Pareto-type distribution is tested by comparing 

the tail probabilities with the tail probabilities of the Generalized Burr-Gamma distribution.  

 

2 THE GENERALIZED BURR-GAMMA DISTRIBUTION (GBG) 

 

The GBG class of distributions includes many of the well known extreme value distributions, 

such as the Gumbel, Weibull, Burr, Generalized Extreme Value and Generalized Pareto 

distributions to name a few.  The GBG is a fairly flexible distribution which contains four 

parameters, , , ,k    , where   is known as the extreme value index. If  then  is the 

mean of , where  is GBG distributed.  Similarly if  then  is the 

standard deviation of . 

The GBG distribution models all the data, also the data in the tail and is given as follows: 

(Beirlant et al. 1999).  A random variable X is GBG( , , ,k    ) distributed when the 

distribution function is given by 
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respectively.   

The parameter space is defined as  , 0, 0,k              . 

A very important characteristic shown by Beirlant et al. 1999, p. 115 is that  ~ ,1GAMV k .   

 

3 APPROXIMATING THE GBG TAIL 

 

The following theorem shows how the tail of the GBG above a reasonable high threshold, can 

be approximated though a Generalized Pareto-type of distribution.  
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Theorem 1: 

If  is Gamma distributed, then for large t, 
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Generalized Pareto-type of distribution with survival function given by  
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can be expressed as a ratio of two incomplete Gamma functions. The incomplete Gamma 

function is given by the integral 
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The following equation is an approximation of the incomplete gamma function for large 

values of a (Amore, 2005) 
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When using L’Hospital’s rule (Salas et al. 1999), 

 

 

1
1

1 ln 1

1
1

1 ln 1

k

t v

t

 







 
     

  
      
 

, as t  .  

Therefore we conclude that for large t, 
 

 

,

,

k a

k b





1

1
1

v

t







 
 

 
 = ,which is the distribution 

function of the Generalized Pareto distribution with parameter   on the exceedances above t.  

Thus, for large values of the threshold the GBG distribution can be approximated with the 

Generalized Pareto-type of distribution with one parameter . 
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Theorem 1 shows that for a large threshold t, V > t  is approximated by the Generalized 

Pareto-type of distribution, given by the equation 
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and the incomplete gamma integral is given by the equation  
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The following Figures show how the approximated Generalized Pareto-type of distribution (9) 

fits the data above the threshold when compared with the ratio of the incomplete gamma 

distributions (10).  In Figure 1 a threshold is chosen at t = 10,   is chosen as 0.95 and k takes 

on different values between 0.5 and 1.3. 
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Fig. 1 Comparison between the approximated GPD and the incomplete gamma 

distribution 

  

In Figure 2 a threshold is again chosen at t = 10, but now   is chosen as  0,2   and k is 

again chosen as different values between 0,5 and 1,3. 
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Fig. 2 Comparison between the approximated GPD and the incomplete gamma 

distribution with a smaller value of   

 

In Figure 3 a threshold is chosen at a larger value t = 30,   is chosen again as 0,2   and k 

is chosen again as different values between 0,5 and 1,3. 
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Fig. 3 Comparison between the approximated GPD and the incomplete gamma 

integral with a larger value of t 

 

From the above figures it can be seen that, for small values of  , the approximated 

Generalized Pareto-type of distribution follows the ratio of the incomplete gamma 

distributions more closely.  If   becomes large, close to 1, a higher threshold should be 

chosen to make sure that the second term of equation (8) strives to 1.  

 

4 FORCASTING TAIL PROBABILITIES USING THE POSTERIOR PREDICTIVE 

SURVIVAL  DISTRIBUTION 

 

In this section tail probabilities of future V0 values is calculated by using the posterior 

predictive survival distribution given by  
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where  is the approximated Generalized Pareto-type distribution of the V0 values 

above a large enough threshold and  is the posterior distribution which is proportional 

to the prior times the likelihood.  The logarithm of the likelihood function is given as  

 

  

         .    (12) 

 

The prior assumed in this study is Jeffrey’s prior given by the following equation 
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 where  is Fisher’s information matrix given by  
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and 

  

 .  (16) 

The Jeffreys prior is therefore derived as follows: 
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  = 

   (17) 

 

The derivation of equation (17) is shown in more detail in Appendix A.1.  

 

The posterior predictive survival distribution (11) can now be approximated as follows 

 

         (18) 

 

for different values of  simulated from the posterior distribution.  Equation (18) can now be 

used to calculate tail probabilities for a specific value of v0.  This process is illustrated in the 

next section through a practical application.  

 

5. PRACTICAL APPLICATION THROUGH SIMULATION 

 

A data set of 500 values is simulated from a . The following figure shows the  

500 simulate v values. 
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Fig. 4  500 simulated v values from a  

 

Next the Generalized Pareto quantile plot is considered to choose a threshold value (Beirlant 

et al., 2004).  The Generalized Pareto quantile plot of the v values is given in the following 

figure.  It seems as if the Generalized Pareto quantile plot follows a straight line at 2.9, 

therefore a threshold  is chosen.  
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Fig. 5  Generalized Pareto quantile plot on the v’s  

 

The v values above the threshold is now assumed to follow the approximated Generalized 

Pareto distribution which have one parameter .   can be estimated as the value of   where 

the posterior distribution reaches a maximum. The following figure shows the posterior 

distribution for different values of .  The posterior distribution reaches a 

maximum at  and is thus our estimate for .  is close to the actual simulated value 

of . 
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Fig. 6  The posterior distribution for  

 

To see how good the approximated Generalized Pareto distribution fits the v data above the 

threshold, the tail probabilities for the v values above the threshold are calculated using 

equation (18), for different  values simulated from the posterior distribution. The following 

figure shows the posterior predictive survival function.  
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Fig.7  The posterior predictive survival function for values of v above the threshold 

 

These tail probabilities are then compared to the tail probabilities of the actual GBG 

distribution.  The following figure shows the actual tail probabilities plotted against the 

posterior predictive tail probabilities calculated for values of v above the threshold.  
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Fig. 8  Actual tail probabilities plotted against the posterior predictive tail  

probabilities 

 

 

 

From Figure 8 it seems as if the values of the two tail probabilities are close.  An indication of 

a good fit is when the tail probabilities lie close to the 45
0
 line. 

The sum of squared differences between the two probabilities is calculated as 0.0002 which is 

close to zero. The correlation between the two probabilities is calculated as a high value of 

0.9578 also indicating that the approximated Generalized Pareto distribution is a good fit for 

the v values above the threshold.  

An ongoing question in extreme value theory is where to choose a reasonable and optimum 

threshold?  Various studies have been done on how to select a threshold, see for example 

Beirlant et al., 2004 and Guillou and Hall, 2001. A recent paper by Peng, 2009, suggested an 

alternative method, to Guillou and Hall, 2001, for estimating a tail index.  This alternative 

method of Peng, 2009 can also be extended to estimate the extreme value index and tail 

dependence function.  In this study we consider selecting a threshold by minimizing the sum 

of squared differences between the two tail probabilities, , where  denotes 

the posterior predictive tail probabilities and  the actual tail probabilities from the GBG. For 

an appropriate threshold the sum of squared difference between the two tail probabilities 
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should be small, close to zero.  It can be shown that for different values of the threshold, the 

sum of squared difference between the two tail probabilities differs, as shown in Figure 9.  

Therefore, one can conclude that the threshold value that gives us the smallest sum of squared 

difference between the two tail probabilities will be the best threshold to use.   

 

Fig. 9  The sum of squared difference for different values of the threshold 

 

For this simulation study the minimum sum of squared difference, equal to 0.000017, was 

obtained at a threshold value of t = 20.8468. The estimated parameter value for  at this 

threshold is 0.14 which is rather close to the actual simulated parameter value of .  

The following figure shows the actual tail probabilities plotted against the approximated tail 

probabilities at this threshold value.  
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Fig. 10  Actual tail probabilities plotted against the posterior predictive tail 

probabilities 

 

 

 

6. CHOOSING AN OPTIMUM THRESHOLD IN A REAL DATA SET 

 

The data considered here is the total annual water spillage at the Gariep Dam during 1971 to 

2006.  The Gariep Dam is the largest reservoir in South Africa and lies in the upper Orange 

River. At full supply it stores 5943 million cubic meters of water. ESKOM, the main supplier 

of electricity in South Africa, has a hydro power station at the dam wall consisting of four 

turbines, each turbine can let through 162 cubic meters per second. If all 4 turbines are 

operating, the total release of water through the turbines is 648 3 /m s .  Spillage over the wall 

will occur if the dam is 100% full with all 4 turbines running and the inflow into the dam 

exceeds 648 3 /m s .  The total loss observed at Gariep due to spillage during 1971 to 2006 is 

1.7693x1010  million cubic meters and in terms of South African Rand it was calculated as 

R76, 950, 708 which is a major loss. It is however important to note that out of the 36 years, 

23 appeared without losses.  Figure 11 shows the spillage during this period. 
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Fig. 11  Spillage at Gariep Dam during 1971-2006 

 

 

 

It is shown in the article by Verster and De Waal (2009) that the water spillage data set can be 

considered to be Generalized Burr-Gamma (GBG) distributed.  Verster and De Waal (2009) 

shows that the two parameters, , is estimated through the method of moments when 

only considering the values Y below the threshold. The parameters  are estimated by 

calculating the Kolmogorov Smirnov measure, , (Conover, 1980) where 

F
n
 denotes the empirical cdf and F the fitted cdf. Since  the Kolmogorov 

Smirnov measure calculates the maximum absolute difference between the empirical Gamma 

function and the cumulative Gamma function for different values of k and . The k and  

values that gives the minimum value of the different maximum Kolmogorov Smirnov 

measure values will be the estimates of k and  respectively (Verster and De Waal). Thus, the 

threshold value plays an important role in estimating the parameters.  For different threshold 

values the parameter values can be estimated and the set of estimated parameter values that 

coincides with the optimum threshold can be found.  The optimum threshold is again obtained 

when considering the minimum sum of squared difference between the two tail probabilities.    

The Generalized Pareto quantile plot of the water spillage data is given in the following 

figure.   
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Fig. 12  Generalized Pareto quantile plot 

 

 

 

From Figure 12 the best threshold value for the spillage data was chosen among different 

threshold values t = exp(19.5) to t = exp(22.4).  For every threshold values the sum of squared 

differences between the tail probabilities were calculated and the best threshold value was 

chosen as the threshold value that gives the minimum sum of squared difference. The 

threshold value of t = exp(20.5), on the water spillage data, and t = 26.0518, on the 

transformed v data, is chosen to be the best threshold.  For this threshold value a minimum 

sum of squared difference of 0.0084 is obtained.  The posterior distribution of the 

approximated Generalized Pareto distribution at this value of t is shown in the following 

figure, and an estimate of , where the posterior is a maximum, is 0.201. At this value of the 

threshold the four parameters of the GBG by using the method of moments and Kolmogorov 

Smirnov measure respectively is calculated. Table 1 gives the estimated parameter values. 
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Fig. 13  The posterior distribution for  

 

Table 1  The estimated parameter values of the GBG at t = exp(20.8) 

 

    

-18.6978 1.0241 17.5 0.02 

 

The Figure 14 shows the GBG tail probabilities, calculated with the parameters in Table 1, 

plotted against the approximated tail probabilities of the approximated Generalized Pareto-

type distribution when considering the threshold t = exp(20.5).  
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Fig. 14  Actual tail probabilities plotted against the posterior predictive tail 

probabilities 

 

 

7. PREDICTING FUTURE OBSERVATONS 

 

Future values can now be predicted by using the posterior predictive survival distribution of 

the approximated Generalized Pareto-type distribution given in equation (18).  For the 

simulated data set, discussed in Section 5, we can for example predict the probability of 

obtaining a large value such as 98.39 namely .  The actual 

probability form the GBG distribution is . 

Another approach which is common in extreme values theory is to predict large quantiles. The 

p
th

 quantile is defined as the value xp for which . For the simulated data the (1-

0.0061)
th

 quantile is calculated as 89.2741.  The p
th

 quantile can now be predicted by using 

the predictive quantile distribution given in the following equation 
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where   is the posterior distribution of the approximated Generalized Pareto-type of 

distribution and  is the quantile function of the approximated Generalized Pareto-type of 

distribution given in the following equation 

 

 .       (20) 

 

Equation (19) can be approximated as 

 

 .     (21) 

 

 is predicted by using equation (21), where different values of  is 

simulated from the posterior distribution, as . 

 

8.  CONCLUSION 

 

This study shows that the tail of a GBG distribution can be approximated with an 

approximated Generalized Pareto-type of distribution which is more convenient to work with 

because it has only one parameter . 

Further, the problem about choosing an optimum threshold is addressed here by considering 

the minimum sum of squared difference between the tail probabilities of the GBG and the tail 

probabilities of the approximated Generalized Pareto-type of distribution.  This is a fairly easy 

and fast way to choose an optimum threshold. 

An interesting question arising is: What is the difference between the Generalized Pareto-type 

and Generalized Pareto in approximating high quantiles? Can the Generalized Pareto-type be 

applied in general instead of the Generalized Pareto?  
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9. APPENDIX 

A.1 

Deriving Jeffreys prior, . 

 

Let   and 

. 

First B is simplified as follows: 

 

  

 

 

Let C = , D =  and  

E = . Integration by part is now considered to solve the 

intergrals. 
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C =  

 

 

 

D =  

 

 

E =  

   . 

 

Therefore 

 

B =  

 

and 

 

. 

 

therefore Jeffreys prior is  



26 
 

 . 

 

REFERENCE 

 

[1] Amore, P 2005, Asymptotic and exact series representations for the incomplete Gamma 

function. Retrieved August 30, 2007, from 

www.edpsciences.org/articles/epl/abs/2005/13/epl8802/epl8802.html/  

[2] Beirlant, J,  De Waal, DJ & Teugels, JL 1999,  ‘The generalized Burr-Gamma family of 

distribution with applications in extreme value analysis’, Limit Theorems in Probability 

and Statistics I, pp.113-132. 

[3] Beirlant, J, Goedgebeur, Y, Segers, J & Teugels, J 2004, Statistics of Extremes Theory 

and Applications, Weily, England.  

[4] Conover, WJ 1980, Practical Nonparametric Statistics, Second Edition, Wiley & Sons, 

USA. 

[5] Guillou, A & Hall, P 2001, ‘A diagnostic for selecting the threshold in extreme value analysis’, 

Journal of the Royal Statistical Society, vol. 63, no. B, pp. 293-305. 

[6] Salas, SL, Hille E & Etgen, GJ 1999, Calculus one and several variables Eight Adition, 

John Wily & Sons inc., USA. 

[7] Peng, L 2009, ‘A practical method for analyzing heavy tailed data’, The Canadian 

Journal of Statistics, vol. 37, no. 2, pp. 235-248. 

[8]  Verster, A & De Waal, DJ 2009, ‘ Modelling Risk on Losses due to Water Spillage for 

Hydro Power Generation’, from 

http://www.uovs.ac.za/faculties/documents/04/117/TechnicalReports/Teg394.pdf  

 

http://www.edpsciences.org/articles/epl/abs/2005/13/epl8802/epl8802.html/
http://www.uovs.ac.za/faculties/documents/04/117/TechnicalReports/Teg394.pdf

