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Abstract 

The lognormal distribution is currently used extensively to describe the distribution of 

positive random variables.  This is especially the case with data pertaining to 

occupational health and other biological data.  One particular application of the data is 

statistical inference with regards to the mean of the data and even more specifically the 

ratio between two means from two different lognormal distributions with different 

parameters.  An added specification to the problem is the analysis of data with zero 

observations, where the non-zero data has a lognormal distribution.  In this paper we 

consider a variety of issues from a Bayesian perspective, namely, the problem of 

constructing Bayesian confidence intervals for the ratio of the means of two independent 

populations that contain both lognormally distributed data and zero observations.  An 

extensive simulation study is conducted to evaluate the coverage accuracy, interval width 

and relative bias of the proposed method.  In addition, since the Bayesian procedure is 

evaluated the choice of which prior distribution to use becomes an important 

consideration.  Three different prior distributions (independence Jeffreys' prior, the 

Jeffreys-rule prior, namely, the square root of the determinant of the Fisher Information 

matrix and uniform prior) are evaluated and compared to determine which give the best 

coverage with the most efficient interval width.  Finally, this analysis is a Bayesian 

adaptation of the maximum likelihood and bootstrap methods originally proposed by 

Zhou and Tu (2000) and also the generalized confidence intervals used by 

Krishnamoorthy and Mathew (2003).  The simulation results indicate that for the 

analysed priors the Bayesian procedure gives the correct coverage probability and is in 

general better than the maximum likelihood and bootstrap procedures.  In addition to this, 

reference and probability-matching priors were derived and applied to rainfall data. 

 

Keywords: Bayesian procedure; Lognormal; Zero observations; Monte Carlo 

simulation; Credibility intervals; Coverage probabilities. 
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Introduction 
Lognormally distributed data presents itself in a number of scientific fields.  However, 

the previously mentioned problem, as proposed by Zhou and Tu (2000) was in response 

to a demand in the field of diagnostic medical testing.  The Ambulatory Care Group 

(ACG) was used to divide patients into distinct populations based on the burden of their 

medical illness.  The ACG system provides a method of measuring the health status of 

the patient as well as the health resources they are likely to consume (Starfield, Weiner, 

Mumford, Steinwachs, 1991; Weiner, Starfield, Mumford., 1991).  The diagnostic testing 

charges were then obtained for each patient.  Since some of the patients had no diagnostic 

testing charges this resulted in zero observations.  However, the testing charges for 

patients with data can be modeled with a lognormal distribution. 

 

For testing the equality of means from two skewed populations Zhou, Gao and Hui 

(1997) and Zhou, Melfi and Hui (1997) first proposed a Z-score method for populations 

that have lognormal distributions.  Zhou and Tu (1999) then extended the scenario by 

proposing a likelihood ratio test for instance when the populations contain both zero and 

non-zero observations.  Furthermore, Zhou and Gao (1997) did propose confidence 

intervals for the one-sample lognormal mean, but until Zhou and Tu (2000) no 

confidence intervals had been proposed for methods that compare the means of two 

populations.  Even though Zhou & Tu (1999) provided a test of whether the means were 

the same, if they were indeed found to be different the method they proposed did not add 

any additional information on the relative differences and magnitudes of the two 

population means, as a confidence interval would indeed. 

 

Tian and Wu (2007), Tian (2005) and Tian and Wu (2006) variously proposed a 

frequentist method that is in effect rather similar to the method proposed here.  However, 

this method was not suggested for the case of the ratio of two means from a lognormal 

population containing zero values, but rather only from a single mean. 

 

As mentioned, Zhou and Tu (2000) considered the problem of constructing confidence 

intervals for the ratio of two means of independent populations that contain both 

lognormal and zero observations.  The context of the proposed techniques is as described 

earlier concerning the excess charges of diagnostic testing.  For the purposes of the 

analysis a maximum likelihood method and a two-stage bootstrap method was used.  An 

extensive simulation study was conducted to ascertain the coverage accuracy, interval 

width and relative bias of the proposed methods.  The focus was also on inferences about 

the overall population means, including zero costs.  The results for different methods 

indicated that for confidence interval estimation of the ratio of the two different 

population means when the two skewness coefficients are the same the maximum 

likelihood based method had a better coverage accuracy than the bootstrap method.  

However, when the skewness coefficients are not the same the bootstrap method provides 

better results in terms of coverage accuracy than what the maximum likelihood based 

methods did. 
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In this paper we take a Bayesian approach to the problem, that is, constructing credibility 

intervals (Bayesian confidence intervals) for the ratio of the means from two independent 

lognormal populations that contain zero and non-zero observations.  Depending on the 

choice of prior distribution it will be shown that the Bayesian procedure has better 

coverage accuracy than both the maximum likelihood and bootstrap methods.  In the next 

section we begin with a formulation of the model and a specification of all parameters 

and distributions of interest.  In further sections we compare the performance of the 

method for different prior distributions by conducting a simulation study to assess the 

following quantities of the proposed credibility intervals in pre-defined finite sample 

sizes (the same as those used by Zhou and Tu [2000]): 

− Coverage accuracy 

− Interval width 

− Bias 

 

Description of the Setting 

The lognormal distribution in itself does not allow for zero values to be included in the 

data.  This suggests an interesting setting, namely the analysis of data that contains both 

zero and non-zero values, with the non-zero values being lognormally distributed. 

 

The Case of Zero-Valued Observations 

Model Formulation 

From the specification of the problem in the Introduction we can assume that the 

populations of interest contain both zero and non-zero (positive observations) and we 

furthermore assume that the probability of obtaining a zero observation from the j-th 

population (j = 1,2) is jδ  where 10 ≤≤ jδ .  Furthermore, we assume that the non-zero 

observations are distributed lognormally with mean jµ  and variance 2

jσ .  Now, let 

1 2, ,...,j j njX X X  be a random sample from the th
j population and let ( )j ijM E X= .  From 

this preliminary setting specification we wish to construct credibility intervals for the 

ratio of the means, 1M  and 2M , of the two populations.  As in Zhou and Tu (2000) we 

assume that in the th
j sample the non-zero observations come first: 0ijX > , and 

1ln( ) | ~ ( , )ij j j jX n N µ σ , for 1,...,1 jni = .  In addition, 0ijX = , for jj nni ,...,11 +=  and 

),(~10 jjjjj nBinnnn δ−= .  From this it follows that the mean of the th
j population, 

which is a function of 2, jj σµ  and jδ , is given by: 

 )
2

1
exp()1( 2

jjjjM σµδ +−= . 

To compare the two population means we will construct credibility intervals (Bayesian 

confidence intervals) for the ratio of the means: 
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Intervals Based on a Bayesian Procedure 

Denote lnij ijy X=  and 2 2

1 1 1 2 2 2[ ]δ µ σ δ µ σ ′=θθθθ  then the likelihood function is 

given by: 
1

0 1

212

2
2 2

1 1

( )1
( | ) { (1 ) ( ) exp[ ]}

2

j

j j

n
n n ij j

j j

j i j j

y
L data

µ
δ δ

σ σ= =

−
∝ − −∏ ∏θ    (1) 

The choice of prior to be used in this setting will be discussed in further sections.  Given 

the previous specification of the likelihood, the Fisher Information Matrix in our case can 

be written as: 

���� =  −� 	 
�

�� �
���|������ 

Therefore, 

���� =  ���� � 
����1 − ���

��1 − ���

���

��1 − ���

2���

����1 − ���


��1 − ���
���


��1 − ���
2���

� 

          (2) 

1 Independence Jeffreys Prior: 

Since θθθθ  is unknown the prior  

 
2

1 1
2 2 2

1

( ) (1 )
j j j

j

p σ δ δ
− −−

=

∝ −∏θθθθ       (3) 

will be specified for the unknown parameters.   This is known as the independence 

Jeffreys prior.  In (3) we have assumed 
jµ  and 2

j
σ , for 1,2j = to be independently 

distributed, a priori, with 
jµ  and 2log

j
σ  each uniformly distributed.  See Zellner (1971) 

and Box and Tiao (1973) for further discussion.  The prior 
1 1

2 2( ) (1 )j j jp δ δ δ
− −

∝ −  is the 

one proposed by Jeffreys (1967) for the binomial parameter.  Combining the likelihood 

function (1) and the prior density function (3) the joint posterior density function can be 

written as: 
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where  
1

11

1
ˆ

jn

j ij

ij

y
n

µ
=

= ∑ ,  1 1 1j jnν = − , 

 
1

2 2

11

1
ˆ ˆ( )

jn

j ij j

ij

yσ µ
ν =

= −∑  and  
( )

( , )
( ) ( )

m n
B m n

m n

Γ +
=

Γ Γ
. 

From (4) it follows that the posterior distribution of 
jδ is a Beta distribution (specifically 

0 1

1 1
;

2 2
j jB n n

 
+ + 

 
) and 

jδ is independently distributed of 
jµ  and 2

j
σ , where the 

conditional posterior distribution of 
jµ is normal: 

2

2

1

ˆ| , ~ ,
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j j

j
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 
  
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        (5) 

and for 2

j
σ , the posterior density function is an Inverted Gamma density, specifically: 

1

1

21
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     =          Γ    

.    (6) 

 

From equation (6) it follows that ��∗ =  !"#$%"&
$"&

 has a chi-square distribution with '�� 

degrees of freedom.  From classical statistics (if �(��is considered to be random) it is well 

known that ��∗ is also distributed chi-square with '�� degrees of freedom.  This agreement 

between classical and Bayesian statistics is only true if the prior )*���+ ∝ ��-� is used.  If 

some other prior distributions are used, for example )*���+ ∝ ��-. or )*���+ ∝ /0
1��
�, 

then the posterior of ��∗ will still be a chi-square distribution but the degrees of freedom 

will be different. 

 

The method proposed here to find the Bayesian credibility intervals for 

1 2ln lnD M M= − , the log of the ratio of the population means, is through Monte Carlo 
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simulation.  Since 

2

ln ln(1 )
2

j

j j j
M

σ
δ µ= − + +  (j = 1,2), standard routines can be used in 

the simulation procedure. 

 

Simulation Procedure: 

The following simulation was obtained from the preceding theory using the MATLAB® 

package: 

1. Simulation of 2

j
σ  can be obtained from (6) in the following way: 

a. Simulate *

j
τ  from a 

1

2

jvχ  distribution, as the sum of 1jν  squared 

independent normal random variables. 

b. Calculate 
*

2

2

12

*

ˆ
j j

j

j

ν σ
σ

τ
=  

2. Given 2*

j
σ , simulate *

j
µ  from (5). 

3. A simulated value of 
jδ  (a Beta random variable), namely *

j
δ , can easily 

be obtained by using the rejection method (Rice (1995) p. 91).  The 

rejection method is commonly used to generate random variables from a 

density function, especially when the inverse of the cumulative 

distribution function (CDF) cannot be found in closed form.  However, for 

the purposes of this analysis Beta-distributed random variables were 

simulated using built-in MATLAB® functions. 

4. Substitute the simulated values 2*

j
σ , *

j
µ  and *

j
δ  into the expression for D  

to obtain *D , a simulated value for the log-ratio of the population means. 

5. Repeat steps 1. to 4. l  times to obtain l  simulated values, * * *

1 2, ,..., lD D D .  

Sort then in ascending order such that * * *

(1) (2) ( )...
l

D D D≤ ≤ ≤ . 

6. Let 1
2

K l
α 

=   
 and 2 1

2
K l

α  
= −  
  

 where [ ]a  denotes the largest 

integer not greater than a . 

7. { }
1 2

* *

( ) ( ),
k k

D D  is then a 100(1 )%α−  Bayesian confidence interval for 

1

2

ln
M

M

 
 
 

. 

8. The resulting Bayesian confidence interval for the ratio 1

2

M

M
 is 

( )
1 2

* *

( ) ( )exp( ),exp( )
k k

D D  

 

Alternate Prior Distributions – Jeffreys-Rule Prior: 

As mentioned in the Abstract and Introduction to this document, one of the objectives 

was to compare the Bayesian procedure for different choices of prior distributions for θθθθ , 
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the unknown parameters.  In the previous two sections we discussed the analysis methods 

using Jeffreys’ non-informative prior and the resulting simulation technique respectively. 

 

In this and subsequent sections different choices of prior distributions will be discussed in 

an effort to eventually compare the results.  The choice of density applied in this section 

is the square root of the determinant of the Fisher Information Matrix, which is an 

adaptation of the Jeffreys’ rule used in the previous section. 

 

Since θθθθ  is unknown this prior becomes 

 
2

1 1
3 2 2

1

( ) (1 )
j j j

j

p σ δ δ
−−

=

∝ −∏θθθθ       (7) 

This was derived from 
1

2| ( ) |I θθθθ , which was defined in (2).  In (6) we have assumed 
jµ  

and 2

j
σ , for 1,2j = to be independently distributed, a priori, with 

jµ  and 2log
j

σ  each 

uniformly distributed.  Combing the likelihood function (1) and the prior density function 

(7) it follows that ��∗ has a chi-square distribution with '��2� degrees of freedom and the 

posterior distribution of 34 given ��� is as defined in equation (5).  From (7) it is also clear 

that the posterior distribution of ��  is a Beta distribution (specifically 5 6
�7 + �
� , 
�� + .

�:) 

and  ��  is distributed independently of 34 and ���. 

 

A similar simulation procedure to the one previously described can be used with the 

following differences: 

1. Simulation of 2

j
σ  can be obtained in the following way: 

a. Simulate *

j
τ  from a 

1 1

2

jvχ
+

 distribution, as the sum of 1 1jν +  squared 

independent normal random variables. 

b. Calculate 
*

2

2

12

*

ˆ( )
j j

j

j

ν σ
σ

τ
=

 

c. Simulate ��  from a 5 6
�7 + �
� , 
�� + .

�: distribution. 

Furthermore, the simulation procedure is similar to the procedure described previously. 

 

Alternate Prior Distributions – Constant (Uniform) Prior: 

Since θθθθ  is unknown this prior becomes 

 ( )p const∝θθθθ       (8) 

In (8) we have assumed 
jµ  and 2

j
σ , for 1,2j = to be independently distributed, a priori, 

with 
jµ  and 2

j
σ  each uniformly distributed.  Combing the likelihood function (1) and the 

prior density function (8) it follows that ��∗ has a chi-square distribution with '��-� 

degrees of freedom, the posterior distribution of 
jδ is a Beta distribution (specifically 

( )0 11; 1
j j

B n n+ + ) and 
jδ is independently distributed of 

jµ  and 2

j
σ .  Furthermore, the 

simulation procedure is similar to the procedure described previously. 
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Simulation Study 

As was done in Zhou and Tu (2000) we will use computer simulations to study the 

operating characteristics of the proposed Bayesian confidence interval procedure in finite 

sample sizes.  Random sample sizes containing both zero and lognormal observations are 

generated using the following different sample sizes: 

 

Table 1 

Sample Sizes Analysed by Monte Carlo Simulation Techniques 

1n  2n  

10 10 

25 25 

50 50 

100 100 

10 25 

25 10 

25 50 

 

Zero proportions with different skewness coefficients are also considered.  Based on 

these generated samples the credibility intervals (or Bayesian confidence intervals 

[BCI’s]) are constructed.  The following additional characteristics are reported: 

− coverage probabilities 

− average interval lengths 

− coverage error (target coverage – actual coverage), 

− percentages of under-coverage on both sides ( %BCI θ<  and %BCI θ> ) 

− relative bias 
( )
| % % |

% %

BCI BCI

BCI BCI

θ θ

θ θ

< − >

< + >
. 

As was in Zhou and Tu (2000) the nominal significance level of 0.05α = will be used 

and for each parameter setting, 10000C =  random samples are simulated to ensure that 

the margin of error is less than 0.005  with 95% confidence.  l  is taken to be 1000. 

 

In the following table the parameter settings used in the simulation study are presented 

(the skewness coefficients for samples 1 and 2 are reported under headings ;� and ;�): 

 

Table 2 

Parameter Settings used in the Simulation Study 

 

Design 2

1σ  2

2σ  1δ  2δ  1γ  2γ  

1 3.0 1.0 0.0 0.0   96.4851     6.1849 

2 4.0 4.0 0.0 0.0 414.3593 414.3593 

3 3.0 1.0 0.1 0.1 100.9809     6.1763 

4 2.0 0.5 0.0 0.1   23.7323     2.6848 

5 2.0 0.5 0.1 0.2   24.5572     2.5806 
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The results from the simulation study performed by Zhou and Tu (2000) for the 

Maximum Likelihood and Bootstrap methods have been supplied as well for the purposes 

of comparison.  For the purposes of brevity only a summary of the average results of the 

five designs are presented here. 

 

Discussion of Results for the Simulation Studies 

As mentioned, Zhou and Tu (2000) presented the results for the ML and Bootstrap 

methods and compared only these.  They ascertained that when the two population 

skewness coefficients are the same the ML-based method results in better coverage 

probabilities in comparison with the stated nominal level.  However, it is found that the 

ML-based method is more biased than the bootstrap method, as evidenced by a larger 

relative bias.  This was particularly evident when the sample sizes were not the same.  

The ML method tends to cover too many observations on the left and too few on the 

right. 

 

When the two skewness coefficients are not the same the results indicate better coverage 

accuracy for the bootstrap method.  This method is also less biased than the ML-based 

method. 

 

However, the objective of this report was to compare these results against results 

obtained from a Bayesian-based simulation study using a specifically chosen set of prior 

distributions and to evaluate the performance of each prior distribution against both the 

other distributions and the results obtained by Zhou and Tu (2000), overall. 

 

The following table presents the summary statistics of the results in both the Zhou and Tu 

(2000) simulation study and the Bayesian simulation study. 
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Table 3 

Summary Results for Simulation Studies 
Design Method Coverage 

Probability 

Coverage 

Error 

Average 

Length 
%CI θ<  %CI θ>  Relative 

Bias 

1  ML 0.9285 0.0215 2.3625 0.0636 0.0080 0.6678 

  Bootstrap 0.9266 0.0234 2.6252 0.0393 0.0341 0.0857 

  Prior 1 0.9550 -0.0050 3.2020 0.0234 0.0216 0.1126 

  Prior 2 0.9473 0.0027 2.8889 0.0226 0.0301 0.2028 

  Prior 3 0.9603 -0.0103 4.3057 0.0280 0.0117 0.4019 

         

2  ML 0.9476 0.0024 3.8491 0.0278 0.0246 0.3417 

  Bootstrap 0.9369 0.0131 3.9506 0.0324 0.0307 0.0287 

  Prior 1 0.9494 0.0006 5.4961 0.0249 0.0257 0.1409 

  Prior 2 0.9429 0.0071 4.8849 0.0271 0.0300 0.1506 

  Prior 3 0.9590 -0.0090 7.6650 0.0207 0.0460 0.2535 

         

3  ML 0.9237 0.0263 2.5127 0.0675 0.0088 0.7266 

  Bootstrap 0.9298 0.0202 2.7003 0.0393 0.0308 0.1269 

  Prior 1 0.9486 0.0014 3.5759 0.0257 0.0514 0.1422 

  Prior 2 0.9446 0.0093 3.1424 0.0227 0.0327 0.2508 

  Prior 3 0.9569 -0.0069 7.3283 0.0289 0.0143 0.3953 

         

4  ML 0.9274 0.0226 1.7269 0.0624 0.0102 0.6828 

  Bootstrap 0.9294 0.0206 1.8569 0.0380 0.0326 0.0716 

  Prior 1 0.9564 -0.0064 2.2691 0.0211 0.0224 0.0608 

  Prior 2 0.9513 -0.0013 2.0566 0.0206 0.0230 0.1699 

  Prior 3 0.9619 -0.0157 3.0409 0.0224 0.0119 0.3122 

         

5  ML 0.9274 0.0226 1.8666 0.0619 0.0108 0.6650 

  Bootstrap 0.9346 0.0154 1.9795 0.0349 0.0305 0.0596 

  Prior 1 0.9524 -0.0024 2.5810 0.0241 0.0234 0.1119 

  Prior 2 0.9450 0.0050 2.2786 0.0243 0.0307 0.1356 

  Prior 3 0.9627 -0.0127 4.6573 0.0250 0.0123 0.4981 

         

Overall ML 0.9309 0.0191 2.4636 0.0566 0.0125 0.6168 

  Bootstrap 0.9315 0.0185 2.6225 0.0368 0.0317 0.0745 

  Prior 1 0.9524 -0.0024 3.4248 0.0239 0.0289 0.1137 

  Prior 2 0.9462 0.0046 3.0503 0.0235 0.0293 0.1819 

  Prior 3 0.9601 -0.0109 5.3994 0.0250 0.0192 0.3722 

 

From the overall summary statistics we see that the choices of prior distributions have 

better coverage than both the ML-based and bootstrap methods.  However, this does not 

provide the full picture. 

 

Coverage Probabilities 
As evident from the above summary table, it is apparent that the ML and Bootstrap 

methods are comparable in terms of the coverage probability.  The ML method, as noted 

by Zhou and Tu (2000), gives better coverage for designs 1, 2 and 3, i.e., when the 

skewness coefficients of the two populations are the same.  Otherwise the Bootstrap 

method offers superior coverage.  However, the coverage probabilities overall for the ML 

and Bootstrap methods were 0.9309 and 0.9315 respectively. 
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The three Bayesian methods considered here all provide better coverage than the ML and 

Bootstrap methods proposed.  However, at least one of the Bayesian methods, the method 

of the constant or uniform prior distribution, results in over-coverage, with an overall 

coverage ratio of 0.9601.  Naturally, this will imply a larger coverage error when 

compared with the other prior distributions used, which is ultimately due to a larger 

average interval length.  But this will be discussed further in later sections. 

 

Overall, the best prior distribution to be used in terms of coverage probability was the 

independence Jeffreys prior.  In terms of the literature, Box and Tiao (1973), this would 

be the natural choice of prior distribution in this setting and thus, its accuracy compared 

to the other prior distributions should be expected.  The overall coverage probability was 

0.9524 compared to 0.9462 for the Jeffreys-rule prior described previously. 

 

However, the Jeffreys Rule  appears to be nearly as good as the Independence Jeffreys 

prior.  The prior tends to under cover, but not by much at all.  What is particularly 

positive is that even though there is slight under coverage, the average interval length is 

shorter for the Jeffreys Rule prior. 

 

A point of interest is that the coverage of the Bayesian methods does not appear to be 

affected by the skewness coefficients of the different designs. 

 

The better coverage probabilities are as a direct result of the increased average interval 

lengths for the Bayesian methods.  However, this is discussed in more comprehensively 

in subsequent sections. 

 

Coverage Error 
Overall, the coverage error for the Bootstrap method is better than if compared to the ML 

method.  The only possible exception to this overall figure is perhaps the case when the 

population skewness coefficients are similar.  However, this is by no means concrete. 

 

For the Bayesian methods the overall coverage error was better for all choices of prior 

distributions, as opposed to the ML and Bootstrap methods.  For the independence 

Jeffreys prior the coverage error appears smallest, thereby reinforcing the observation of 

the better coverage probability. This error for the uniform prior appears to increase when 

the population skewness coefficients are different. 

 

Average Length 
Firstly, results by Zhou and Tu (2000) indicate that the Bootstrap method results in 

intervals with longer interval lengths.  Overall, the interval length for the Bootstrap 

method was 2.6225 compared to the 2.4636 of the ML method.  As previously 

mentioned, coverage probability and average interval length are related.  Thus, we would 

expect the average interval length for the Bootstrap method to be greater since it provides 

better probability of coverage.  However, the average interval length for both these 

methods appears to be related to the population skewness coefficients in the following 

way: when the coefficients are the same (designs 1, 2 and 3) the average interval lengths 

are distinctly larger for the Bootstrap method, particularly when sample sizes are small. 
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Overall, when analyzing the results from the Bayesian methods it is apparent that the 

interval lengths are larger.  Once again this would be expected due to the previously 

mentioned relationship between the coverage probabilities and the interval length.  As 

with the methods proposed by Zhou and Tu (2000), the average interval length decreases 

when the population skewness coefficients are different.  The independence Jeffreys prior 

and the Jeffreys-rule prior produced average interval lengths of 3.4248 and 3.0503 

respectively.  One way to obtain smaller Bayesian intervals with the correct coverage 

probability is to assign proper priors to the unknown parameters.  The assignment of 

proper priors to specific parameters must however, be justifiable from a practical point of 

view.  We also tested other types of non-informative prior (reference and probability-

matching priors), but did not achieve any improvement on the independence Jeffreys and 

Jeffreys rule priors.  In the next section we will, however, apply these two priors 

(reference and probability-matching priors) to rainfall data. 

 

Lastly, as was mentioned previously, the constant or uniform prior tends to over-cover.  

This inefficiency is accurately portrayed by the average interval length, namely: 5.3994. 

 

Coverage on Left and Right and Bias 
As mentioned in previous sections, the results obtained by Zhou and Tu (2000) indicate 

that the ML method covers too many observation on the left and too many on the right.  

The only exception to this is Design 2.  Overall, the Bootstrap method had a better 

spread. 

 

The Bayesian methods employed indicate a much more equal spread of observations 

above and below.  The uniform prior is the only possible exception.  Thus, although the 

average interval lengths are greater for the Bayesian case the spread of the interval 

appears better, i.e., the Bayesian methods overall tend to cover as many observations on 

the right as on the left. 

 

In addition, even though the relative bias in the last column seems to be better for the 

Bootstrap method than the Bayesian methods employed, the exact bias (

| % % |BCI BCIθ θ> − < ) for the four cases are as follows: 

 Bootstrap:       0.0051 

 Independence Jeffreys prior:     0.0050 

 Jeffreys-rule prior:      0.0058 

 Constant Prior:      0.0058 

Thus, the exact bias is comparable for all models. 

 

Example – Rainfall Data 

 

For the purposes of comparison of the different methods, an example was chosen using 

raw data obtained from the South African Weather Service.  The data consisted of the 

monthly rainfall totals for the cities of Bloemfontein and Kimberley, two South African 

cities, over a period of 69 to 70 years of measurement.  However, these two cities are 
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both located in relatively arid regions and are characterised by mainly summer rainfall.  

For that reason, the winter months of June do contain some rainfall data, but also contain 

many years where the total monthly rainfall data was zero.  Probability plots as well as 

the Shapiro-Wilk (1965) test indicate that the lognormal distribution is a better fit than 

the normal distribution.  The data can be summarised as follows: 

 

Table 4 

Summary of the Rainfall Data 

 
City Parameter Value 

Bloemfontein Number of Years of Available Data 70 

 Number of Zero Valued Observations 18 

 Mean of Log-Transformed Data 1.9578 

 Variance of Log-Transformed Data 2.1265 

   

Kimberley Number of Years of Available Data 69 

 Number of Zero Valued Observations 10 

 Mean of Log-Transformed Data 1.0526 

 Variance of Log-Transformed Data 3.1589 

   

 

 

In order to compare the results, both the Maximum Likehood and Bootstrap methods of 

Zhou and Tu (2000) were applied to the data. 

 

In addition to the maximum likelihood and boostrap confidence intervals the confidence 

intervals were obtained using the Bayesian methods described in the preceding text and 

for the following priors: Independence Jeffery’s Prior (Prior 1 in the table), the Jeffery’s 

Rule Prior (Prior 2), the constant prior (Prior 3) , the Reference Prior (Prior 4) and the 

Probability Matching Prior (Prior 5).  Priors 4 and 5 will be derived in the next section.  

The results are presented in the following table: 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5 

Summary of Results for the Rainfall Data

 
 

Maximum 

Likelihood 

  

Lower Limit of 

Logged Data 

-0.6914 

Upper Limit of 

Logged Data 

1.1880 

Lower Limit   0.5009 

Upper Limit   3.2805 

  

 

The following graphs also illustrate these results:

 

Prior 1 

 

 

From Table 5 it is clear that the intervals for the seven methods are for practical purposes 

the same. 
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Summary of Results for the Rainfall Data 

Bootstrap Prior 1 Prior 2 Prior 3 

Reference 

Prior

     

-0.6404 -0.8019 -0.7942 -0.8624 -0.8188

1.2444 1.2013 1.1954 1.2248 1.2104

0.5271 0.4485 0.4520 0.4221 0.4410

3.4710 3.3245 3.3048 3.4035 3.3548

     

graphs also illustrate these results: 

From Table 5 it is clear that the intervals for the seven methods are for practical purposes 

Reference 

Prior 

Probability 

Matching 

Prior 

 

0.8188 -0.7794 

1.2104 1.1982 

0.4410 0.4587 

3.3548 3.3141 

 

 

From Table 5 it is clear that the intervals for the seven methods are for practical purposes 
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Probability-matching and Reference Priors for <= =  =>2?
@A@

, the Mean of the 

Lognormal Distribution 

 

Probability-matching and reference priors often lead to procedures with good frequency 

properties while retaining the Bayesian flavor.  The fact that the resulting posterior 

intervals of level 1 − B are also good frequentist intervals at the same level is a very 

desirable situation. 

 

The Probability-matching prior forCD =  D3+1
2�2

  

 

Datta and Ghosh (1995) derived the differential equation that a prior must satisfy if the 

posterior probability of a one-sided credibility interval (Bayesian confidence interval) for 

a parametric function and its frequentist probability agree up to ( )10 n− , where n  is the 

sample size.  They proved that the agreement between the posterior probability and the 

frequentist probability holds if and only if the differential equation 

 ( ) ( ){ }
1

0
m

pα
α α

η
=

∂
=

∂
∑ θ θθ θθ θθ θ

θθθθ
 

is satisfied, where ( )p θθθθ  is the probability-matching prior distribution for θθθθ , the vector 

of unknown parameters.   

 

Also, 

 ( ) ( )
1

,...,
t

m

t t
θ θ

′ ∂ ∂
∇ =  

∂ ∂ 
θ θθ θθ θθ θ  

and 

 ( )
( ) ( )

( ) ( ) ( )
( ) ( )

1

1
1

,...,
t

m

t t

F

F

η η η
−

−

∇ ′= =   
′∇ ∇

θ θθ θθ θθ θ
θ θ θθ θ θθ θ θθ θ θ

θ θ θθ θ θθ θ θθ θ θ
. 

It is clear that ( ) ( ) ( ) 1Fη η′ =θ θ θθ θ θθ θ θθ θ θ  for all θθθθ  where 1( )F
− θθθθ  is the inverse of ( )F θθθθ .  

( )F θθθθ  is the Fisher information matrix of θθθθ  and ( )t θθθθ  is the parameter of interest. 

 

The following theorem can now be stated: 

 

Theorem 1 

For the mean, 
21

2
eM e

µ σ+′ = , of the lognormal distribution, the probability matching prior 

is given by: 

 ( )2

2 2

1 2
, 1

P
p µ σ

σ σ
∝ + .       (9) 

Proof:  The proof is given in the appendix. 

Multiplying (9) by the likelihood function in equation (1) it follows that: 
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)E*���|����+ ∝ *���+-��*!"#2�+ F1 +  2
���

G
�� DH) �− '���(��

2���
� 

for I = 1,2 

           (10) 

 

Simulation from (10) can be obtained using the rejection method.  Simulation of 3� and 

�� are as before. 

 

The Reference prior forCD =  D3+1
2�2

  

 

The determination of reasonable, non-informative priors in multiparameter problems is 

not easy; common non-informative priors, such as Jeffreys’ prior, can have features that 

have an unexpectedly dramatic effect on the posterior distribution.  In recognition of this 

problem Berger and Bernardo (1992) proposed the reference prior approach to the 

development of non-informative priors.  As in the case of the Jeffreys and probability-

matching priors, the reference prior method is derived from the Fisher information 

matrix.  Reference priors depend on the group ordering of the parameters.  Berger and 

Bernardo (1992) suggested that multiple groups, ordered in terms of inferential 

importance, are allowed, with the reference prior being determined through a succession 

of analyses for the implied conditional problems.  They particularly recommend the 

reference prior based on having each parameter in its own group, i.e. having each 

conditional reference prior be only one dimensional. 

 

As mentioned by Pearn and Wu (2005) the reference prior maximises the difference in 

information (entropy) about the parameter provided by the prior and posterior 

distributions.  In other words, the reference prior is derived in such a way that it provides 

as little as possible information about the parameter. 

 

The following theorem can now be stated. 

 

Theorem 2 

For the mean, CD =  D3+1
2�2

 , of the lognormal distribution, the reference prior relative to 

the ordered parameterisation ( )2,µ σ  is given by: 

 ( )2

2

1 2
, 1

R
p µ σ

σ σ
∝ + .       (11) 

Proof:  The proof is given in the appendix. 

The posterior distribution of ��� is now 

)E*���|����+ ∝ *���+-��*!"#2�+ F1 +  2
���

G
�� DH) �− '���(��

2���
� 

for I = 1,2 

           (12) 
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Appendix  
 

Proof of Theorem 1 

The probability matching prior is derived from the inverse of the Fisher information 

matrix.  Now 

  ( ) ( )
2

1 1 2

4

0
,

0 2
F F

σ
µ σ

σ
− −  

= =  
 

θθθθ . 

and  

 

 ���� = DJ2 #&$&
 

 

from which it follows that  

 
( ) 21

2
t

e
µ σ

µ

+∂
=

∂

θθθθ
 and 

( ) 21
2

2

1

2

t
e

µ σ

σ

+∂
=

∂

θθθθ
. 

Also 

 ( )
( ) ( ) 21

2
2

1
1

2
t

t t
e

µ σ

µ σ

+∂ ∂   ′∇ = =   ∂ ∂   

θ θθ θθ θθ θ
θθθθ  

and 

 ( ) ( )
21

1 2 42
t

F e
µ σ

σ σ
+−′  ∇ =  θ θθ θθ θθ θ  

 ( ) ( ) ( )
21 2 2 41

2
t tF e

µ σ σ σ− +  ′∇ ∇ = + 
 

θ θ θθ θ θθ θ θθ θ θ  

and  

 ( ) ( ) ( )
21

1 2 42
1

2
t t

F e
µ σ

σ σ
+

−′∇ ∇ = +θ θ θθ θ θθ θ θθ θ θ . 

Therefore 

 KL��� =  ∇NO���PQ#���
R∇NO���PQ#���∇N ���

=  SK����  K����T =  �
R$&2 #&$U S�� ��T  

For a prior ( ) ( )2,
P P

p p µ σ=θθθθ  to be a probability matching prior, the differential 

equation 

 
V

VJ SK����  )E���T +  V
V$& SK����  )E���T = 0  

must be satisfied.  If we take 

 ( )2

2 2

1 2
, 1

P
p µ σ

σ σ
∝ +  

then the differential equation will be satisfied. 
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Proof of Theorem 2 

The Fisher information matrix of 2,µ σ  θ =θ =θ =θ =  per unit observation is given by: 

 ( ) ( )
2

2

4

1 0

,
10

2

F F
σ

µ σ

σ

 
 = =
 
  

θθθθ . 

The parameter of interest is the mean of the lognormal distribution 

 ���� = DJ2 #&$&
 

Define 
( )
( )( )

( )
2

2

1 1, 2

, 0 1

tA
t

µ σ

σ

 −∂
 = =
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 

θθθθ
θθθθ

. 

Hence, the Fisher information matrix under the reparameterisation ( )( )2,t σθθθθ  is given by 

 ( )( ) ( )
( ) ( )

( )

2 2 2

2 2

2 2 4

1 1

2
, ,

1 1 1

2 4 2

t t
F t A F A

t

σ σ
σ µ σ

σ σ σ

− 
 
 ′= =
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+ 
 

θ θθ θθ θθ θ
θθθθ

θθθθ

. 

Following the notation of Berger and Bernardo (1992), the functions ( ), 1,2
j

h j = , which 

are needed to calculate the reference prior for the group ordering ( )( )2,t σθθθθ , can be 

obtained from ( )( )2,F t σθθθθ  as follows: 

 
( ) ( ) ( )

1
12 11 2
2

2
1 2 2 2 2 4 2 2

1 1 1 1 1 1 1

2 4 2 2
h

t t tσ σ σ σ σ σ

− −    
= − + = −       +    θ θ θθ θ θθ θ θθ θ θ

 

and 

 

1
1 2
2
2 2 2

1 1 1

2 2
h

σ σ

  
= +  
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. 

Therefore, the reference prior relative to the ordered parameterisation ( )( )2,t σθθθθ  is given 

by 

 ( )( )
( )

2

2

1 1 2
, 1Rp t

t
σ

σ σ
∝ +θθθθ

θθθθ
. 

In the ( )2,µ σ  parameterisation this corresponds to 

 ( )
( )

( )( )2

2 2

1 1 2 1 2
, 1 1Rp t

t
µ σ

σ σ σ σ
∝ + ∝ +θθθθ

θθθθ
. 

This is the same result derived by Roman (2008). 
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