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1 Introduction

The parameters of the generalized Pareto distobyGPD) are estimated by
making use of quantile regression and the Box-@omf(Zellner ,1996),
assuming Laplace (double exponential) distributeors in the regression. This
assumption leads to the least absolute estimatidB) form, often used in
guantile regression (Kuan (2007), Koenker and H&l{@001)). DasGupta and
Mishra (2003) wrote a review on LAD estimation. Soaf the aspects of
importance are the asymptotic normality of LAD ettors, iterative estimation
procedures and if the disturbances follow a Laptistibution, likelihood
estimation is equivalent to LAD estimation.

The properties and a discussion of estimationHferGPD is given in the book of
Johnson, Kotz and Balakrishnan (1994). The two odghmost widely to
estimate the GPD parameters are the moment estigibasking &Wallis (1987))
and maximum likelihood estimation (Zhang, 2007)m{th, 1985). There are
complications besides the difficult nonlinear aspdd¢he maximization of the
likelihood, and the anamolous behaviour of theliliiad surface is discussed by
del Castillo and Daoudi (2009). Teugels and Varmog¢P004) investigated the



use of the Box-Cox transformation for heavy-taigstributions focusing on the
transformation on the regular variation propertgégail quantile functions.

The GPD refers to a two-parameter distribution,thatdistribution can be written

in a generalized 3-parameter GPD form with a lacagiarametey,
_ -1/&
F(x):l—(l+Mj X> U, 0> 0,52 C,
o

o a scale parameter arfdthe shape parameter. The shape parameter is often

important to estimate when working with extremeueal and Pickands (1975)
showed that for large n the tail index over a d¢erlareshold can be estimated by
using the fact that the distribution of the obs&ores over the threshold follows a
generalized Pareto distribution. By rewriting theticbution function, it follows
that

ral
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thus F) has the linear regression forft? (x) = 8, + B, B, = ul o, B,=1l0.

A variation of quantile regression with the obséivas as the dependent variable
was used, but it does not lead to the linear regyadorm without approximating
the distribution (Johnson, Kotz and Balakrishna@894), (Jaggeand Elsner ,
2008). For most applicationg is zero and the simpler form

F@(x) = Bx, B, =1/0 used.

The likelihood will be derived in section 2 and tlesults of a simulation study

given to compare this estimator with the momerntresor.

2 Thelikdihood and simulation results

The stochastic model with an observed vajfé = F“)(x) +u, where u is an
error term assumed to be i.i.d. Laplace distributétd mean zero and variance
2¢. ltis reasonable to assume that the errors Aayenmetric distribution and
the Laplace assumption leads to the correct formgdiantile regression and more

robust estimators. The Laplace density is



pu(u):z—lwexp<—|u—61 19), —w<u<m@>

with variance2¢@. The maximum likelihood estimate ¢f is the mean absolute
deviation calculated about the median of the sarntpldl be assumed that
E(uy=6=0.

Denote a sample of size n observations from the GfPR,...,x,. The empirical
i

distribution values aré(x,.,) = ——
(%) n+1

for the ordered samplg,),...,x,,, Denote

the vector of observations by* , u the vector of errors. Let
1 Xy

X=|: : :
1 X

The Jacobian of the transformation from thej =1,...n to y,,...,y, is

n ou.
[Ju - y)|= rl yi ™, by noting that a—‘ =(1-y, )", i=j and O otherwise.
I= i

By following the same methods as in Zellner (198@hllows that the log-

likelihood simplifies to
n . . 1 n ~ ~

L =const + (£ +1))_log(y, )-nlog@ ¢)), where#(¢) = HZM‘“ =G = Bxg, |
=1 j=1

denotes the mean absolute deviatifbh; [,@0 /3"1]' is such that it is the least
absolute estimators (LAD) g8, 5, for the givené. The maximum likelihood

estimators can be found by finding the valueg aindp for which the log-

likelihood is a maximum. In the case of the 3-patenGPD iteratively re-

weighted least squares (IRLS) can be used forengralue ofé to find the LAD
estimators, the log-likelihood calculated and treximum over all possiblé’'s

yields the estimator. The method involves theatiee procedure:

BU*Y = (X ' WD X)X ' Wiy© W a diagonal matrix with diagonal
elements:

W =y — X B T X i —throw,i=1,...n



The weights of zero or very small residuals capiesqual to a large number.

This procedure is repeated until convergence. Mdmstimators ofs can be used
as a starting value for the iterative procedurec&the least squares estimates are
not very stable for the 3-parameter GPD samplesgtiestimates was not used as
starting values.

The moment estimators ate= %i(i—j +1) and &= %(i—j

The results of a simulation study comparing the mioihestimators and the

-1).

Laplace regression form will be given below. Thaalswo parameter form will

be considered first. It is assumed tdat 0.35,0 = 1. The average estimated

parameters for 500 simulations are given in tatded 2. Note thaﬁl =1/0.

The technique will be called the Box-Cox methothia table.

Sample Size (o =1) Box-Cox Moment Estimator
25 1.0674 (0.0448) 0.8534 (0.0581)
50 1.0432 (0.026)]  0.8322 (0.0275)
150 1.0100 (0.0009) 0.9031 (0.0126)
250 1.0115 (0.0006) 0.9205 (0.0083)

Table 1. Estimate(ﬁ’l's and var(,él)in brackets.

The simulation results fof is shown in table 2.

Sample Size (£ =0.35) Box-Cox Moment Estimator
25 0.3480 (0.0146) 0.1930 (0.0137)
50 0.3488 (0.0043) 0.2212 (0.0117)
150 0.3669 (0.0074) 0.2575 (0.0072)
250 0.3541 (0.0039) 0.2775 (0.0056)

Table 1. Estimatecf 's and var(f )in brackets.

It can be seen that the Box-Cox regression forimesbrs are stable for the

various sample sizes and closer estimates thamongent estimator, especially
4



when estimatingf . It is a nonlinear procedure, but much easieretdégom than

the maximization of the GPD likelihood.

Shown below is a histogram of 5@0sestimated from samples with 250

observations, the GPD parameters &re0.35,0 = 1, = (. The mean of the

f's is 0.3578 and covariance 0.0039.
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Figure 1. Histogram of 500 estimatéds , =250, =0.35,

In the two histograms below, 500 estimajgds, £, 'sfrom sample of size 50 for
the 3-parameter GPD with parametérs 0.40,0 = 2,4 = Zzis shown. Thus

B, =0.5and g, =-1. The averages of thé's, ,30 'sand ,@1 's are 0.3716, -
0.7713 and 0.4315, with covariances 0.0288, 0.H2(0P0.0148 respectively.
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3. Application to the absolute NY SE Compositelog returns

This technique was applied to the 150 largest albsddg returns of the NYSE
Composite index, daily closing values index, far geriod beginning 2000 till the

end of 2009. There were 2514 observations. Thmatgd parameters are:
£=0.19209 = 0.0126j7= 0.024 The index, the absolute log returns and the
fitted cdf of the GPD versus the empirical cdf sihewn in figures 4 - 6.
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figure 4. Daily closing values of the NYSE Compedndex, 2000 - 2009.
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Figure 6. The fitted GPD and empirical cumulativ&ribution function.



The extreme values is clearly well fitted by thelG#howing that the largest
absolute log returns are regularly varying, butitftex is greater than 4, which is

an important condition needed to fit GARCH models.

4 Conclusion

The quantile regression form assuming Laplace groartperforms the method of
moments. Although involving nonlinear LAD estimatjat is much easier than
maximizing the likelihood. The estimators have gasgmptotic properties since
the estimators are maximum likelihood estimatBissible refinements can be

developed to ensure fast convergence of the laHtikod maximization.
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