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1  Introduction 

 

The parameters of the generalized Pareto distribution (GPD) are estimated by 

making use of quantile regression and the Box-Cox form (Zellner ,1996), 

assuming Laplace (double exponential) distributed errors in the regression. This 

assumption leads to the least absolute estimation (LAD) form, often used in 

quantile regression (Kuan (2007), Koenker and Hallock (2001)). DasGupta and 

Mishra (2003) wrote a review on LAD estimation. Some of the aspects of 

importance are the asymptotic normality of LAD estimators, iterative estimation 

procedures and if the disturbances follow a Laplace distribution, likelihood 

estimation is equivalent to LAD estimation.  

 

The properties and a discussion of estimation for the GPD is given in the book of  

Johnson, Kotz and Balakrishnan (1994). The two methods most widely to 

estimate the GPD parameters are the moment estimator (Hosking &Wallis (1987)) 

and maximum likelihood estimation (Zhang, 2007), (Smith, 1985). There are 

complications besides the difficult nonlinear aspect of the maximization of the 

likelihood, and the anamolous behaviour of the likelihood surface is discussed by 

del Castillo and Daoudi (2009). Teugels and Vanroelen (2004) investigated the 
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use of the Box-Cox transformation for heavy-tailed distributions focusing on the 

transformation on the regular variation properties of tail quantile functions.  

 

The GPD refers to a two-parameter distribution, but the distribution can be written 

in a generalized 3-parameter GPD form with a location parameter µ ,  
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σ  a scale parameter and ξ  the shape parameter. The shape parameter is often 

important to estimate when working with extreme values and Pickands (1975) 

showed that for large n the tail index over a certain threshold can be estimated by 

using the fact that the distribution of the observations over the threshold follows a 

generalized Pareto distribution. By rewriting the distribution function, it follows 

that 
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thus ( )F ξ  has the linear regression form ( )
0 1 0 1( ) , / , 1/F x xξ β β β µ σ β σ= + = = . 

A variation of quantile regression with the observations as the dependent variable 

was used, but it does not lead to the linear regression form without approximating 

the distribution  (Johnson, Kotz and Balakrishnan , 1994), (Jagger  and Elsner , 

2008). For most applications µ  is zero and the simpler form  

( )
1 1( ) , 1/F x xξ β β σ= =  used.  

The likelihood will be derived in section 2 and the results of a simulation study 

given to compare this estimator with the moment estimator. 

 

2   The likelihood and simulation results 

The stochastic model with an observed value ( ) ( ) ( )y F x uξ ξ= + , where u is an 

error term assumed to be i.i.d. Laplace distributed with mean zero and variance  

2φ .  It is reasonable to assume that the errors have a symmetric distribution and 

the Laplace assumption leads to the correct form for quantile regression and more 

robust estimators. The Laplace density is  
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with variance 2φ . The maximum likelihood estimate of φ  is the mean absolute 

deviation calculated about the median of the sample It will be assumed that 

( ) 0E u θ= = . 

Denote a sample of size n observations from the GPD by 1,..., nx x . The empirical 

distribution values are ( )( )
1j

j
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+
 for the ordered sample (1) ( ),..., nx x ,  Denote 

the vector of observations by ( )ξy  , u the vector of errors. Let     
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The Jacobian of the transformation from the , 1,...,ju j n=  to 1,..., ny y  is 
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By following the same methods as in Zellner (1996), it follows that the log-

likelihood simplifies to 
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denotes the mean absolute deviation. 0 1
ˆ ˆ ˆ' [ ] 'β β=β  is such that it is the least 

absolute estimators (LAD) of 1 2,β β  for the given ξ . The maximum likelihood 

estimators can be found by finding the values of ξ  and β  for which the log-

likelihood is a maximum. In the case of the 3-parameter GPD iteratively re-

weighted least squares (IRLS) can be used for a given value of ξ  to find the LAD 

estimators, the log-likelihood calculated and the maximum over all possible 'sξ  

yields the estimator.  The method involves the iterative procedure: 

 

   ( 1) ( ) 1 ( ) ( )ˆ ( ' ) 'j j jX W X X W ξ+ −=β y ,  ( )jW  a diagonal matrix with diagonal 

elements:  

    ( ) ( ) ( ) 1| | , , 1,..., .j j
i i i iw y X X i th row i nξ −= − − =β  
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The weights of zero or very small residuals can be put equal to a large number. 

This procedure is repeated until convergence. Moment estimators of β can be used 

as a starting value for the iterative procedure. Since the least squares estimates are 

not very stable for the 3-parameter GPD samples, these estimates was not used as 

starting values. 

The moment estimators are 
2
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The results of a simulation study comparing the moment estimators and the 

Laplace regression form will be given below. The usual two parameter form will 

be considered first. It is assumed that 0.35, 1ξ σ= = . The average estimated 

parameters for 500 simulations are given in table 1 and 2. Note that 1̂ ˆ1/β σ= . 

The technique will be called the Box-Cox method in the table. 

 

Sample Size ( 1)σ =  Box-Cox Moment Estimator 

25 1.0674 (0.0448) 0.8534 (0.0581) 

50 1.0432 (0.026) 0.8322 (0.0275) 

150 1.0100 (0.0009) 0.9031 (0.0126) 

250 1.0115 (0.0006) 0.9205 (0.0083) 

 

Table 1. Estimated 1̂ 'sβ  and 1̂var( )β in brackets. 

 

The simulation results for ξ  is shown in table 2. 

 

Sample Size ( 0.35)ξ =  Box-Cox Moment Estimator 

25 0.3480 (0.0146) 0.1930 (0.0137) 

50 0.3488 (0.0043) 0.2212 (0.0117) 

150 0.3669 (0.0074) 0.2575 (0.0072) 

250 0.3541 (0.0039) 0.2775 (0.0056) 

 

Table 1. Estimated ̂'sξ  and ˆvar( )ξ in brackets. 

 

It can be seen that the Box-Cox regression form estimators are stable for the 

various sample sizes and closer estimates than the moment estimator, especially 
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when estimating ξ . It is a nonlinear procedure, but much easier to perform than 

the maximization of the GPD likelihood. 

 

Shown below is a histogram of 500 ˆ 'sξ estimated from samples with 250 

observations, the GPD parameters are 0.35, 1, 0ξ σ µ= = = . The mean of the 

ˆ 'sξ  is 0.3578 and covariance 0.0039. 

 

Figure 1. Histogram of 500 estimated ˆ 'sξ  , n=250, 0.35.ξ =  

 

In the two histograms below, 500 estimated 0 1' , 's sβ β from sample of size 50 for 

the 3-parameter GPD with parameters 0.40, 2, 2ξ σ µ= = =  is shown. Thus 

1 0.5β =  and 0 1β = − . The averages of the 0 1
ˆ ˆ ˆ' , ' 's s and sξ β β  are 0.3716, -

0.7713 and 0.4315, with covariances 0.0288, 0.1202 and 0.0148 respectively. 
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Figure 2. Histogram of 500 estimated 0 / 1β µ σ= − = −  , n=50, 0.40ξ = . 

 

 

Figure 3. Histogram of 500 estimated 1 1/ 0.5β σ= =  , n=50, 0.40ξ = . 
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3. Application to the absolute NYSE Composite log returns 

This technique was applied to the 150 largest absolute log returns of the NYSE 

Composite index, daily closing values index, for the period beginning 2000 till the 

end of 2009. There were 2514 observations. The estimated parameters are: 

ˆ ˆ ˆ0.1920, 0.0126, 0.0248.ξ σ µ= = =   The index, the absolute log returns and the 

fitted cdf of the GPD versus the empirical cdf are shown in figures 4 - 6. 

 

 

figure 4.  Daily closing values of the NYSE Composite Index, 2000 - 2009. 
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figure 5.  Absolute log returns, NYSE Composite Index. 

 

 

Figure 6. The fitted GPD and empirical cumulative distribution function. 
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The extreme values is clearly well fitted by the GPD showing that the largest 

absolute log returns are regularly varying, but the index is greater than 4, which is 

an important condition needed to fit GARCH models. 

 

4   Conclusion 

 

The quantile regression form assuming Laplace errors, outperforms the method of 

moments. Although involving nonlinear LAD estimation, it is much easier than 

maximizing the likelihood. The estimators have good asymptotic properties since 

the estimators are  maximum likelihood estimators. Possible refinements can be 

developed to ensure fast convergence of the log-likelihood maximization. 
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