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SUMMARY 

 

In this scription, Bayesian statistics is employed to simulate and estimate the 

reciprocal of the coefficient of variation 
µθ
σ

=  . The reciprocal of the coefficient of 

variation is used to compare the returns of three commodities, namely gold, 

platinum and oil. Results indicate that oil has a higher probability to outperform 

the other two commodities but there are no significant differences in the 

reciprocals of the coefficients of variation among the three commodities 

according to the credibility intervals (Bayesian confidence intervals) over the 

period from January 1980 to April 2007.   

 

 Bayesian inference has a number of advantages. A full Bayesian analysis 

provides a natural way of taking into account all sources of uncertainty in the 

estimation of the parameters. Uncertainty about the true value of the reciprocal of 

the coefficient of variation is incorporated into the analysis through the choice of 

a vague prior distribution.  

 

The Bayesian simulation procedure employs the posterior distribution in doing 

the simulations. The procedure can be useful in solving the portfolio selection 

problem. Results show that the Bayesian simulation approach is just as good if 

not better than the standard classical statistical approach in assessing the 

performance of an investment. The added advantage of the Bayesian approach 

is that, from the posterior distribution of the reciprocal of the coefficient of 

variation, we are in a position to obtain quantiles, credible regions and perform 

other inferential tasks.  

 

KEY WORDS: Bayesian analysis, Coefficient of variation, Moments, Monte Carlo 

simulation, Non-informative prior, Pearson’s curve, Portfolio selection, Posterior 

distribution. 

 



 3 

 

TABLE OF CONTENTS 

 

1) INTRODUCTION ……………….........................………………….....4 

2) LITERATURE REVIEW ………………………………………………..5 

3) THE POSTERIOR DISTRIBUTION OF  θ=µ|σ………………………8 

4) METHODOLOGY……………………………………………………...11 

5) EXAMPLE AND DESCRIPTIVE STATISTICS……………………..19 

6) RESULTS….…………………………………………………………...23 

7) CONCLUSION…………………………………………………………32 

8) APPENDIX……………………………………………………………...33 

9) REFERENCE…………………………………………………………..47 

 

 

 
 
 
 
 
 
 
 
  

 

 

 

 

 

 

 

 

 

 

 



 4 

1. Introduction 

Portfolio selection is an important part of investment. It is often of interest to 

compare relative returns of three or more different investments such as gold, 

platinum and oil shares in order to make a choice among the three. Gold is often 

advertised as an inflation hedge, so many investors think that owning the metal 

provides constant insulation from the ravages of inflation (Zigler, 2009). But, what 

is a best inflation hedge; gold, platinum or oil? 

The standard deviation can be used to compare risk among investments that 

have the same expected rate of return. The standard deviation is an absolute 

measure of dispersion of returns. 

 

Another way to compare risk/return is to use the coefficient of variation. Suppose 

an investment has a return r . The return r  is often assumed to be normally 

distributed with mean µ  and variance 2σ . The coefficient of variation is defined 

as  CV
σ
µ

=  where σ  is the standard deviation of return and µ  is the expected 

rate of return. The coefficient of variation is used to compare the relative 

variability of two or more investments if there are major differences in the 

expected rates of return. The coefficient of variation indicates risk per unit of 

expected return. A larger value of the coefficient indicates greater risk 

(dispersion) relative to the mean rate of return (Reilly and Brown, 2003).   

 

The reciprocal the coefficient of variation is defined as
µθ
σ

= . It indicates 

expected return per unit of risk. A larger value of the coefficient indicates greater 

return relative to the risk measure. 

 

In this paper a Bayesian simulation approach and Pearson curve approximations 

are used to asses the relative returns of three investments when there are major 

differences in the values of the risk measure (standard deviation). The reciprocal 
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of the coefficient of variation is used to select among the three investments. This 

paper also investigates an overall testing procedure for testing the equality of 

3N =  investments return (gold, platinum and oil) with differing values of risks. 

The analysis will be done from a Bayesian simulation point of view. The problem 

naturally occurs when comparing three or more investments.  

 

To simplify matters we assume that an investor would like to compare three 

investments and determine which one will give the better performance based on 

relative return. The investor obtains data from each of the investments and 

estimates the coefficient of variation or it’s reciprocal. The objective of this 

problem then consists of identifying the investment that has the highest 

performance based on the observed estimates of the reciprocal of the coefficient 

of variation. 

 

The following hypothesis is specifically of interest and would be considered:  

31 2

1 2 3

:oH
µµ µ

σ σ σ
= =  

1 : i k

i k

H
µ µ
σ σ

≠  for at least at one value of   i k≠ ( 1 2,3i = , 1,2,3)k =  . 

   

iµ  and iσ  are the mean and the standard deviation respectively, of each of the 

investments. 

 

2. Literature review 

 

In Bayesian analysis, we assume that we have prior knowledge or information or 

opinion about parameters of a statistical distribution and very often in practice we 

do. We then attach a distribution to this belief. Parameters do not really have a 

distribution, parameters are constants, and so a prior distribution is a way of 

expressing our belief or opinion on our parameters. A posterior distribution is the 

belief distribution of the parameters after the outcomes of experiments (data) 
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have been observed. There is now an updated belief distribution in light of the 

information from the data (Hoshino, 2008). 

  

To explain it in more detail: The information contained in the prior is combined 

with the likelihood function (distribution of the data) to obtain the posterior 

distribution of the parameters. Inferences about the unknown parameters are 

based on the posterior distribution. If the form of the posterior distribution is 

complicated, Monte Carlo simulation procedures or numerical methods like 

Pearson curves approximations or Cornish–Fisher expansions can be used to 

solve different complex problems such as hypothesis testing, credibility intervals 

(Bayesian confidence intervals) and ranking and selection. 

 

Let ijr  be return for period j  from a random sample of size in  observations from 

the ( 1,2,3)thi i =  investment, and we have 

 

1

in

ij
j

i
i

r

r
n

==
∑

 and  

2

1

( )

1

in

iij
i

i
i

r r
s

n
=

−
=

−

∑
 as estimates of  iµ  and iσ  respectively. 

 

It is assumed that there is no restriction on sample sizes drawn from the 3N =  

investments. A random sample in these cases is assumed to imply that the 

random variables (namely gold, platinum and oil) observed from each of the 

investment are mutually independent and identically distributed. The classical 

estimate of the reciprocal of the coefficient of variationθ  is  

� i
i

i

r

s
θ =  
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2.1 Bayesian model 

 

We assume that ( 1 2,3 1,2 )ij ir i j n= , = ⋯  are independently and identically 

normally distributed with mean iµ  and variance 2
iσ . Since both iµ  and 2

iσ  are 

unknown and only ‘vague’ information is available, the conventional non 

informative prior:  

2 2( )i i iπ µ σ σ −, ∝            (2. 1)  

will be specified for them.  

 

Equation (2.1) is however the reference prior and it is also a probability-matching 

prior. It is also called the independence Jeffreys’ prior because it is obtained from 

the Fisher information matrix for 2
iσ  only, i.e. treating the location parameter iµ  

separately from the variance component 2
iσ  . According to Box and Tiao (1973) 

it is usually appropriate to take location parameters to be distributed 

independently of scale parameters. 

 

Using (2.1), it is well known (see for example Zellner, 1971) and it is proved in 

the Appendix that the conditional posterior density of iµ  is normal:  

 

2
2 i

i i i i
i

r N r
n

σ
µ σ

 
| , ,  

 
∼            (2. 2)  

and the posterior density for the variance component 2
iσ , is given by  

1( 1) 12 2 2 2 212
. 2( ) ( ) exp ( 1) / 0in

i i i i i i ip r C n sσ σ σ σ− − −  
 

 
| = − − >      (2. 3)  

 

 2
.( )i iIG rσ= |  

an inverted gamma density, where . 1 2[ ] '
ii i i inr r r … r= , , , , and the normalizing constant 

is 
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( )
1( 1)2 2

1
2

( 1) 1

2

i

i

n

i i
n

n s
C

−

−

 −= . 
Γ 

         

 

1( , ) exp( )
( )

i

i i
i i

i

IG x x x

β
βα αβ α

β
− −| = −

Γ
         (2.4) 

i.e. the inverted gamma density with positive parameters 21
( 1)

2i i in sβ = −  

and
1

( 1)
2i inα = − . 

 

From (2.3) it follows that 
2

2
( 1)2

( 1)
i

i i
n

i

n s χ
σ −
−

∼ .                                                       (2.5)    

From classical statistics (if 2
is  is considered to be random) it is well known that  

2

2

( 1)i i

i

n s

σ
−

 is also distributed chi-square with ( 1)in −  degrees of freedom. This 

agreement between classical and Bayesian statistics is only true if the prior 

2 2( )i i iπ µ σ σ −, ∝  is used.  If some other prior distributions are used, for example 

2 3( )i i iπ µ σ σ −, ∝  or 2( ) constanti iπ µ σ, ∝  then the posterior distribution of 
2

2

( 1)i i

i

n s

σ
−

 

will still be  a chi-square distribution but the degrees of will be different. 

 

3.  The posterior distribution of  
µθ
σ

=  

 

As mentioned from a Bayesian point of view posterior distributions are of 

importance, in evaluating θ .  One of the aims of this note is therefore to derive 

the exact posterior distribution of 
µθ
σ

=  and also approximated posterior 

distributions of ik i kd θ θ= − ( 1 2,3 1,2,3i k= , =  and )i k≠ .  
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The following theorem can be proved. 

Theorem 3.1  

The posterior distribution of 
µθ
σ

=  is given by 

ɵ( ) ( )
ɵ ( )

ɵ
( )

1
2

1
2

2

2

202

exp
22

2
! 1

l ll

l
l

n
n

n
p

n
l

ν

νν

θ
θθθ θ θ

π ν
θ

ν

+∞

+
=

 
−    Γ = − ∞ < < ∞  Γ    + 

 

∑                      (3.1) 

 where  ɵ

1

1, ,
n

i
j

y
v n y y

s
θ

=

= − = =∑  and 

2

1

( )

1

n

j
j

y y

s
n

=

−
=

−

∑
. 

Proof 

The proof is given in the Appendix. 

 

As far as we know, the derivation of the posterior distribution of 
µθ
σ

= (equation 

3.1) has never been done before. 

 

It is easy to prove (see also Chen and Owen,1989) that the distribution of  

ɵ y

s
θ =   is given by 

ɵ( ) ( )
ɵ ( )

ɵ
( )

1
2

1
2

2

1
2

1
202

exp
22

2
! 1

l ll

l
l

n
n

n
p

n
l

ν

νν

θ
θθθ θ θ

ν π ν
θ

ν

+ +∞

+ +
=

 
−    Γ = − ∞ < < ∞  Γ    + 

 

∑                      (3.2) 

which is a non-central t-distribution with ν  degrees of freedom and the non-

centrality parameter 
2

2
2

n
n

µδ θ
σ

= = . 

The two density functions (equations 3.1 and 3.2) look similar but are infact quite 

different. In equation (3.1) 
µθ
σ

=  is the random variable while in  (3.2) ɵ
y

s
θ =  is 

the random variable. 
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Although it is not the purpose of this note to study the coverage properties of the 

Bayesian confidence or to look at the frequential aspects of the Bayesian 

procedure, the long time (long run) properties of ɵ( )E θ θ  (the expected value of 

the posterior distribution) will be of interest. Indeed some statisticians argue that 

frequency calculations are an important part of applied Bayesian statistics. 

 

From equation (3.2) it follows that: 

 ɵ( ) ( )
( )

1
12 2

22

v
E

ν

ν
θ θ θ

−Γ =   Γ 
                                                                                     (3.3) 

is not an unbiased estimate of θ . Infact ɵ( )E θ θ θ>  

For 10n = , ɵ( ) 1.0942E θ θ θ=  and 

 for 20n = , ɵ( ) 1.0418E θ θ θ=  

From equation (3.1) it can be shown that  

 ɵ( ) ( )
( )
ɵ

1
12 2

22

v
E

ν

ν
θ θ θ

+Γ =   Γ 
                                                                                     (3.3) 

which underestimates ɵθ  

For 10n = , ɵ( ) ɵ0.9727E θ θ θ=  and 

 for 20n = , ɵ( ) ɵ0.9869E θ θ θ=  

Therefore in the long run,  

ɵ
ɵ( ) ( ) ( )

( )

1
1 12 2 2
2

22

v
E E

ν ν

θ ν
θ θ θ

+ −Γ Γ   =     Γ 
 

Which is nearly unbiased and an important improvement on ɵ( )E θ θ . 

For 10n = , ɵ
ɵ( ) ( )( )0.9727 1.0942 1.0643E Eθ θ θ θ θ  = =  
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and for 20n = , ɵ
ɵ( ) ( )( )0.9869 1.0418 1.0282E Eθ θ θ θ θ  = =  

 

This shows that the Bayesian procedure is just as good or even better than the 

classical procedure. 

 

4.  Methodology 

 

Consider the three investments which are suspected to differ widely in return and 

risk (as measured by the standard deviation of returns). From (2.2) and (2.3) it 

follows that: 

2
2, ( , )i

i i i i
i

r N r
n

σ
µ σ| ∼  and 

2
2

2
   

i

i i

i

s
ν

ν χ
σ
∼ for  1,2,3i =   

where ( 1)i inν = −  and 2 2

1

( )
in

ii i ij
j

s r rν
=

= −∑ . 

4.1 Bayesian significance testing of equality of the reciprocal of the 

coefficients of variation. 

 

In this subsection, we show a method of estimating the p-value of the hypothesis 

that all the reciprocal of the coefficients of variation for all the commodities are 

equal. 

2
2

. .
i

i i i i
i

r N r
n

σ
µ σ

 
| , ,  

 
∼ and therefore .

1i i
i

i i i

r
r N

n

µ
σ σ

 
| ,  

 
∼ . 

 

1
1

11 1

22
1 2 3

2 2 2

33

33 3

1
0 0

1
, , , 0 0

1
0 0

r

n

r
N

n

r
n

µ
σσ

µ σ σ σ
σ σ
µ
σ σ

     
     
     
          =  
     
     
     
           
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Therefore for given 1 2,σ σ  and 3σ  

( , )Nθ ξ Σ∼   

where 

1

1
1

2
2

2
3

3

3

µ
σθ
µθ θ
σ

θ
µ
σ

 
 
 

   
   = =   
    

 
  

,     

1

1

2

2

3

3

r

r

r

σ

ξ
σ

σ

 
 
 
 
 =
 
 
 
 
 

 and  

1

2

3

1
0 0

1
0 0

1
0 0

n

n

n

 
 
 
 
 Σ =
 
 
 
 
 

 

The following null hypothesis: 

1 2 3:oH θ θ θ= =   

can be split as: 

1 2: 0oH θ θ= =    

        1 3 0θ θ= =  

to allow us to write the hypothesis in matrix form: 

: 0oH Cθ =   where  
1 1 0

1 0 1
C

− 
=  − 

 

 

Also for given 1 2,σ σ  and 3σ  

( ), 'C N C C Cθ ξ Σ∼  

Therefore we can now use the Chi-square test statistic 

 

( ) 12 2' ' rank CT C C C C C Cθ ξ θ ξ χ−
   = − Σ −    ∼  to test for significant differences 

(Hoshino, 2008). 

 

If oH  is true, then  

 

( ) 12 ' 'T C C C Cξ ξ−
   = Σ     gives a 2

2χ  value. 
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1 2,σ σ  and 3σ  are simulated from the posterior distribution. The p-value is not 

calculated analytically. Monte-carlo simulation is used to calculate the 

approximate p-value of the hypothesis (Hoshino, 2008). 

 

4.2 Simulation of the reciprocal of the coefficient of variation. 

 

The standard routines are used to simulate each of the the reciprocals of the 

coefficient of variation (Berger and Sun, 2008). 

1. Simulation of 2
iσ  can be obtained in  the following way:  

(a) Simulate a 2

iνχ  variate, as a sum of iν  squared independent 

standard normal random variates.  

(b) Calculate   
2

2*
2

i

i i
i

s

ν

νσ
χ

=   where (*) indicates a simulated value. 

(c) 
2

*
2

i

i i
i

s

ν

νσ
χ

=  

2.   By making use of the fact that 
2

2, ( , )i
i i i i

i

r N r
n

σ
µ σ| ∼  ,  where .ir  is data 

 drawn from investment i , simulate iµ  and from the definition of ,iθ it 

 follows that  iθ can be simulated as 

 

2*

*
*

* *

i
i i

ii
i

i i

r Z
n

σ
µθ
σ σ

 
 +

   = =    
   

 
 

 (*) indicates a simulated value. 

2

* 2

1 1 1
i

i i i i
i i i i i

r Z r Z
n s n

νχ
σ ν

  
 = + = +       

 

where (0,1) ( 1,2,3).iZ N i =∼  
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4.3 Approximated distributions of the differences between the reciprocal of 

the coefficients of variation. 

 

As mentioned in section 3, one of the aims of this note  is to derive approximated 

posterior distributions for ik i kd θ θ= − ( 1 2,3 1,2,3i k= , =  and )i k≠  which will be 

used for pair-wise testing. Exact posterior distributions of the differences are 

difficult to derive but they can be approximated by 

 

(I) Monte Carlo simulation 

(II) Pearson curve approximations 

(III) Cornish-Fisher expansions 

 

4.3.1 Simulation of the differences between the reciprocal of the 

coefficients of variation. 

 

Let ik i kd θ θ= − be the difference between the reciprocal of the coefficients of 

variation for any two of the investments. 

i k
ik

i k

d
µ µ
σ σ
   

= −      
   

and ikd can now be simulated as follows 

2 2
*

2 2

1 1
i k

ik i k i k
i i k k i k

d r r Z Z
s s n n
ν νχ χ

ν ν

 
 = − + −
 
 

 

 

where iZ  and kZ  are independently normally distributed with mean 0 and 

variance 1. 2

iνχ  and 2

kνχ  are independent chi-square variables with iν  and kν  

degrees of freedom respectively. 

 

The null hypothesis 0 : i kH θ θ=  is rejected when zero is not included in the 

 100(1 )%α− credible region of the posterior distribution of  ik i kd θ θ= − .  
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4.3.2 Plotting the distribution of the differences between the reciprocal of 

the coefficients of variation using Pearson curves. 

 

To obtain Pearson curves we must first derive the mean, variance, third and 

fourth moments about the mean for ikd . As far as we know, these moments have 

not been derived before. 

 

The distribution of for instance 12d  given 
1 2

2 2,ν νχ χ is the normal distribution and is 

expressed as:  

1 2

1 2

2 2
2 2

12 . 1 22 2
1 1 2 2 1 2

1 1
, , ,id r N r r

s s n n
ν ν

ν ν

χ χ
χ χ

ν ν

  
 | − + 
   

∼  

The following theorem can now be stated. 

 

Theorem 4.1  

For given 
1

2
νχ  and

2

2
νχ , denote the first four posterior moments about the origin for 

12d   by 1 2 3µ µ µ′ ′, ,  and 4µ′  and the central moments by 2 3µ µ,  and 4µ , then: 

 

1 2

2 2

1 21 2 2
1 1 2 2

r r
s s
ν νχ χ

µ
ν ν

′ = −  

1 1 2 2

2 2 2 2 2 2
1 2'

2 1 22 2 2 2
1 2 1 1 1 1 2 2 2 2

( ) ( ) ( ) ( )1 1
2

( ) ( )

r r
r r

n n s s s s
ν ν ν νχ χ χ χ

µ
ν ν ν ν

  
 = + + − + 
    

 

 

1 2 1

3
32 2 2 2

1
1 23 32 2

21 2 1 1 2 2 2
1 1

( )1 1
3

( )

r
r r

n n s s
s

ν ν νχ χ χ
µ

ν ν ν

  
 ′ = + − + 
   

 

1 2 1 2 2

1 1 3
2 2 2 2 2 2 3 22 2 2

1 2 1 2 2

1 1 32 2
2 2 21 1 2 22 2 2

2 2 1 1 2 2

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )
3 3

( ) ( )
( ) ( ) ( )

r r r r r

s s
s s s

ν ν ν ν νχ χ χ χ χ
ν νν ν ν

− + −  
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1 1 2 2

2 2 2 2 2 2 2
1 2

1 24 2 2 2 2
1 2 1 2 1 1 1 1 2 2 2 2

( ) ( ) ( ) ( )1 1 1 1
3 6 2

( ) ( )

r r
r r

n n n n s s s s
ν ν ν νχ χ χ χ

µ
ν ν ν ν

    
 ′ = + + + − +   
     

 

1 1 2 1 2

3
4 2 2 3 2 2 2 2 2 22

1 1 2 1 2

32 2 2 2 2
21 1 2 2 1 1 2 22

1 1

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
4 6

( ) ( )( )
( )

r r r r r

s s s s
s

ν ν ν ν νχ χ χ χ χ
ν ν ν νν

+ + +  

1 2 2

1 3
2 2 4 2 22 2

23
1 2 1 3 2 2

2 2 2 22 2
1 1 2 2

( ) ( ) ( ) ( )
4( )( )

( )
( ) ( )

r
r r

s
s s

ν ν νχ χ χ
νν ν

− +  

 

Proof 

The proof is given in Appendix. 

 

The following theorem can now be stated. 

 

Theorem 4.2  

Denote the first four posterior moments about the origin for 12d  (unconditional) by 

' ' ' '
1 2 3 4, ,m m m and m and also denote the (unconditional) variance, third and 

fourth central moments of the difference 12 1 2d θ θ= −  by 2 3 4,m m and m, then 
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Proof 

The proof is given in Appendix. 

 

If 1 2n n n= =  and ( 1)nν = − , then 

( )
( )

1
2 1 2

12 . 2 2
2 1 2

( ) 2i

r r
E d r

s s

ν

ν ν ν

+  Γ
 | = −
 Γ
 

  

and  
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12 . 2 2 2
1 22
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n s s

ν

ν
ν

ν ν

+  Γ | = + − +  Γ   
 

 

For details of how to determine the parameters of a Pearson curve, given the 

values of its moments, see for example Elderton (1953) or Elderton and Johnson 

(1969). The advantage of the Pearson curve approximation is that the formula of 
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the density can be obtained. A type I Pearson curve can be used to approximate 

the posterior distribution of 12d  for our data set.  

 

The density of a type I curve is given by: 

 
1 2

12 12
12 1 12 2

1 2

( ) 1 1
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d d
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  
 
 
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with  

 
2
3 4

1 23 2
2 2

and
m m

m m
β β= =  

where  2 3,m m  and 4m denote the (unconditional) variance, third and fourth central 

moments of 12d . 
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4.3.3 Cornish-Fisher Expansions 

 

The Cornish–Fisher percentage points can be calculated in the following way:  

The standardised version of the difference in the reciprocal of the coefficient of 

variation  12d  is 112

2

d mT
m

− ′=  and the percentage point of level α  of T  is defined 

as tα . With this definition it follows that a Cornish–Fisher expansion (see Cornish 

and Fisher (1937) and Fisher and Cornish (1960)) for the percentage point tα  of 

T  is given by:  

 2 3 2 3
3 4 3

1 1 1
( 1) ( 3 ) (2 5 )

6 24 36
z z z z z zt α α α α α α α= + − + − − −ɶ ℓ ℓ ℓ  

where zα  is the corresponding percentage point of the standard normal 

distribution,   

2
2

( 3 4)
( )

r
r r

r
κ

κ /= = ,ℓ  and rκ  is the r –th cumulant of 12d . Also  

 2
2 2 3 3 4 4 2and 3m m m mκ κ κ= , = = − .  

The percentage point of level α  of 12d  is then given by   12m mt α + ′ɶ .  

5. Example and descriptive statistics 

Consider the monthly prices of three commodities, gold, platinum and oil for the 

period January 1980 to April 2007. Let tP  be the price of a commodity at time t  

and let  
1

log t
t t

Pr P −

 =  
 

 be the logarithmic return at time t  for each commodity. 

This method of calculating the return inevitably assumes that prices are log 

normally distributed if tr  is then assumed to be normally distributed.  We wish to 

identify the investment that has the highest performance based on the observed 

estimates of the reciprocal of the coefficient of variation of the logarithmic returns 

from a Bayesian point of view. 
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Table 5.1: Summary of the observed commodity data.  

Commodity Gold  Platinum Oil 

Sample size ( )in  327 327 327 

Estimated monthly mean logarithm return ( )ir   
0.000020 

  
 

0.001357 0.001842 
Estimated monthly standard deviation of the 

logarithm return ( )is  

 
0.041477 

 
 

 

  
0.055984 0.080103 

 
 
 

Estimated monthly classical reciprocal of the 

coefficient of variation � 1,2,3i
i

i

r
i

s
θ = = . 0.000482 

 
 

 
 
 
0.024239 
 
 

0.022995 
 

 
Data sources: Gold: London gold price US$: SARB, Oil: Crude oil (petroleum); simple average of three spot prices-Dated 

Brent, West Texas Intermediate and Dubai Fateh US$ per barrel:IMF, Platinum: average of the London PM fix price 

US$:Kitco Bullion Dealers. 

 

The following graphs show the monthly price of the commodities from January 

1980 to April 2007. 
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Figure 5.1: Monthly gold price from January 1980 to April 2007. 
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Figure 5.2: Monthly platinum price from January 1980 to April 2007. 
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Figure 5.3: Monthly oil price from January 1980 to April 2007. 
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The classical estimates of the reciprocals of the coefficients of variation are 

generally very low for all the three commodities and suggest investing in platinum 

rather than gold or oil. The logarithmic return of oil has a standard deviation 

which is about twice that of gold suggesting that investing in oil is very risky when 

compared to investing in gold or platinum. The average monthly return of gold is 

very close to zero over this period giving rise to a very low value of the reciprocal 

of the coefficient of variation. 

 

Figure 5.4 shows the logarithmic returns of the commodities on the same graph. 

The zero line is also indicated. 
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Figure 5.4: Monthly gold, platinum and oil logarithmic returns from February 1980 

to April 2007. 
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The greater volatility in the oil return is apparent. Gold and platinum seem to 

have similar risk as measured by the standard deviation. 

 

6. Results 

 

The procedure in section 3.1 is used to simulate the reciprocal the coefficient of 

variation 1,2,3i
i

i

i
µθ
σ

= =  corresponding to gold, platinum and oil respectively. 

Parts of the simulated values are presented in table 6.1 below. 

 

Table 6.1: Part of the 1000 Bayesian simulated reciprocal of the coefficients of 

variation values from the three commodities.  

ℓ  Gold  

1θ ℓ  

Platinum 

2θ ℓ  
Oil  

3θ ℓ  
1     0.0142       0.0968        -0.0348 
2    -0.0738       0.0632         0.0014 
3     0.0684       0.0112       -0.0249 
4     0.0867       0.0123        -0.0603 
5     0.0582      -0.0364         0.0259 
6    -0.0554      -0.1428        0.0487 
7     0.0341      -0.0248         0.0841 
8   - 0.0064     0.0960       0.0439 

⋮  ⋮   ⋮  

⋮  ⋮   ⋮  
1000  -0.0802   -0.0564      0.0586 

 

The Bayesian based significance testing of equality of the reciprocal of the 

coefficients of variation and pair wise comparison tests among the commodities 

as outlined in section 3.2 and 3.3 is now used to test for equality. In this 

application 10 000 simulations were done. The estimated p-value is 0.9999 

indicating no significant difference in the log returns of the three commodities.  

 

Pair wise comparisons are nonetheless carried out for the three commodities. 
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For the simulated 1,2,3i iθ =  (as illustrated in the columns of table 6.1) define 

( ) ( )
( ) ( )

12 ( ) ( )
gold oil

gold oil

gold oil

d
µ µ

θ θ
σ σ

   
   = − = −
   
   

ℓ ℓ

ℓ ℓ

ℓ ℓ
 for 1:10000.=ℓ   

 

Below is the histogram of simulated 12d  values.  

 

 

 

Figure 6.1: Frequency histograms of 10000 simulated differences 
* * *

12 gold platinumd θ θ= −  values from the two commodities. 
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Below is the histogram of simulated 13d  values.  

 

  

 

Figure 6.2: Frequency histograms of 10000 simulated differences 

* * *
13 gold oild θ θ= −  values from the two commodities. 
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Below is the histogram of simulated 23d  values.  

 

 

 

Figure 6.3: Frequency histograms of 10000 simulated differences 

* * *
23 platinum oild θ θ= −  values from the two commodities. 

 

To construct the percentile credibility interval for the differences 12 gold platinumd θ θ= −  

we sort the *( ) *( ) *( )
12 gold platinumd θ θ= −ℓ ℓ ℓ  values in ascending order so that: 

 

*(1) *(2) *(1000)
12 12 12d d d≤ ≤ ≤⋯   

 

In this application 1000 values of 12d are sorted from least to greatest and the 

critical values are found by selecting the value in the position ( ) 10000
2

α ×   as the 
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lower bound and the value in the position (1 ) 10000
2

α− ×  as the upper bound. The 

credibility interval is then constructed as 12 12( ) 10000 (1 ) 10000
2 2

d d
α α   × − − ×   

   
. 

The 95% credibility interval is 12 12(250) (9750)d d− . The decision rule using these 

intervals to test : gold platinum
o

gold platinum

H
µ µ
σ σ

=  vs. 1 : gold platinum

gold platinum

H
µ µ
σ σ

≠  is as follows: Reject 

oH if zero is not contained in the interval mentioned above, otherwise, accept oH .   

 

A similar procedure is followed for 13d  and 23d . 

 

Table 6.2: Results of the pair-wise comparisons of θ . 

Test Pair Observed 

ikd  

Simulated 

Bayesian 

mean ikd  

95% credibility 

interval 

Gold vs. Platinum -0.023757 -0.02440 (-0.1803;0.1291) 

Gold vs. Oil -0.022513 -0.032080 (-0.1834;0.1227) 

Platinum vs. Oil   0.001244 -0.007680 (-0.16409;0.1427) 

 

The reciprocal of the coefficients of variation of gold and oil do not significantly 

differ from one another as zero is included in the interval. The higher returns in oil 

are offset by the greater volatility. The other comparisons among the 

commodities give similar results. 

 

A Pearson type 1 curve for the difference 12 gold platinumd θ θ= − is given in figure 6. 4. 

As mentioned, the advantage of the Pearson curve is that it’s a formula which 

can then be used to plot the theoretical distribution.  
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Figure 6.4: Pearson type 1 curve for the difference  12 gold platinumd θ θ= −  of the two 

commodities. 
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A Pearson type 1 curve for the difference 13 gold oild θ θ= − is given in figure 6.5.  

 

Figure 6.5: Pearson type 1 curve for the difference  13 gold oild θ θ= −  of the two 

commodities. 
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Figure 6.6: Pearson type 1 curve for the difference  23 platinum oild θ θ= −  of the two 

commodities. 

 

Zero is included in the 95% credibility interval in all three cases indicating that 

there are no significant differences in the reciprocals of the coefficients of 

variation among the three commodities over the stated period. 

 

The problem of selecting the best commodity can also be looked at from a 

ranking and selection perspective. In the past 30 years, beginning with the 

fundamental papers of Bechhofer (1954) and Gupta (1956), ranking and 

selection procedures have been developed to overcome the inadequacy of 

testing procedures. From a Bayesian point of view, ranking and selection is quite 

simple. To calculate the probability that oil, say, performed better than gold, we 

assign a rank to each simulation in a row (table 6.1). The highest of the iθ ℓ in the 

row is assigned a rank of 1, and the lowest value is assigned a rank of 3, the 



 31 

other value necessarily gets the rank of 2. The ranks are shown in table 6.3 

below. 

  

Table 6.3: Part of the 1000 rankings of the Bayesian simulated coefficients of 

variation values from the three commodities.  

ℓ  Gold 
Ranking 

Platinum 
Ranking 

Oil  
Ranking 
 

1 2 1 3 
2 3 1 2 
3 1 2 3 
4 1 2 3 
5 1 3 2 
6 2 3 1 
7 2 3 1 
8 3 1 2 

⋮  ⋮  ⋮  ⋮  

⋮  ⋮  ⋮  ⋮  
1000 3 2 1 

 

The ranking results are now summarized in table 6.4 below. 

 

Table 6.4: Summary of the 1000 rankings of the Bayesian simulated coefficients 

of variation values.  

Frequency 
of  

Gold  

1θ  
Platinum 

2θ  
Oil  

3θ  

1's 205 353 442 
2's 299 369 332 
3's 496 278 226 

 

The required probabilities can now be calculated by dividing the above 

frequencies by 1000. The probabilities are given in table 6.5 below. 
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Table 6.5: Probabilities that a given commodity is ranked 1st, 2nd or 3rd in terms 

of return per unit of risk. 

Probabilities 

Gold  

1θ  
Platinum 

2θ  
Oil  

3θ  

Prob ( 1)irankθ =  0.205 
 
0.353 0.442 

Prob ( 2)irankθ =  0.299 
 
0.369 0.332 

Prob ( 3)irankθ =  0.496 
 
0.278 0.226 

 

Whilst oil has the highest probability (0.442) of being ranked 1st using the 

reciprocal of the coefficient of variation of the logarithmic returns, there is almost 

an equal chance that that it will be outperformed by a portfolio in gold and 

platinum. Platinum has the highest probability (0.369) of being ranked 2nd and 

gold has the highest probability (0.496) of being ranked 3rd. 

 

 

7. Conclusion 

In this paper, the reciprocal of the coefficient of variation 
µθ
σ

=  is used to 

compare the returns of three commodities, namely gold, platinum and oil, using a 

Bayesian approach. Results indicate that oil has a higher probability to 

outperform the other two commodities but there are no significant differences in 

the reciprocals of the coefficients of variation among the three commodities 

according to the credibility intervals (Bayesian confidence intervals) over the 

period from January 1980 to April 2007.   

 

 Bayesian inference has a number of advantages. A full Bayesian analysis 

provides a natural way of taking into account all sources of uncertainty in the 

estimation of the parameters. In the paper, uncertainty about the true value of the 

reciprocal of the coefficient of variation is incorporated into the analysis through 

the choice of a non informative prior distribution.  
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Appendix  

Proof of equation 2.3 

 

The likelihood of in  independent and identically normally distributed random 

variables is: 

 

                    2
.( , )i i il rµ σ 2

.( , )i i ip r µ σ∝  

 

                                      = ( ) ( )
1

22 22

1

1
2 exp

2

in

i ij i i
j

rπ σ µ σ
−

=

 − − 
 

∏  

                                      ( ) ( )222 21
exp

2
in

i ij i i i ir r rσ µ σ
−  = − − + − 

 
∑  

                                      ( ) ( ) ( ){ }2 222 21
exp

2
in

i ij i i i i ir r n rσ µ σ
−  = − − + − 

 
∑  

                                      ( ) ( ){ }222 21
exp

2
in

i i i i i iS n rσ µ σ
−  = − + − 

 
 

where ( )2

i ij iS r r= −∑ . 

It is convenient to define 2

1
i

i
i

S
s

n
=

−
. 

If we take the vague prior, then 

                           2 2 2
. .( , ) ( , ) ( , )i i i i i i i ip r p p rµ σ µ σ µ σ∝   

                                           ( ) ( ) ( ){ }21 22 2 21
exp

2
in

i i i i i iS n rσ σ µ σ
− −  ∝ − + − 

 
 

                                           ( ) ( ){ }22 12 21
exp

2
in

i i i i i iS n rσ µ σ
− −  ∝ − + − 

 
  

For reasons which will appear later it is convenient to set 

                           1i iv n= −  

in the power of 2
iσ , but not in the exponential, so that 
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                        ( ) ( ) ( ){ }21 2 12 2 2
.

1
( , ) exp

2
iv

i i i i i i i i ip r S n rµ σ σ µ σ
− + −  ∝ − + − 

 
 

 

Marginal distribution of the variance 

If knowledge about 2
iσ  rather than iµ  is required, iµ  is integrated out from the 

posterior distribution. 
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2( )2 2 2
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exp exp

2 22
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i i i i i i i iS r n d
n

σ σ µ σ µ
π σ

∞
− +

−∞

   ∝ − − −  
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∫  

                                              

                                       ( ) ( )
1

2( 1)2 2
2exp
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iS
i iσ σ

−− +
∝ −  

                                       ( ) ( )( 2 1)2 2
2exp

i
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v S
i iσ σ

− +
= − , where 1i iv n= −  

as the last integral is that of a normal density. 

 

 It follows that the posterior density of the variance is ( )2 2,i iv SIG . Except for the 

fact that in  is replaced by 1i iv n= −  

 

Conditional density of the mean for given variance 

The joint posterior can be written in the following form 

                           2 2 2
. . .( , ) ( | ) ( | , )i i i i i i i ip r p r p rµ σ σ µ σ=    

Thus                   
2

.2
. 2

.

( , | )
( | , )
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i i i
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µ σ

σ
=   



 35 

                        ( ) ( ) ( ){ }21 2 12 2 2
.

1
( , ) exp

2
iv

i i i i i i i i ip r S n rµ σ σ µ σ
− + −  ∝ − + − 

 
  

                               ( ) 2 12 2 2
.

1
( | ) exp

2
iv

i i i i ip r Sσ σ σ
− −  ∝ − 

 
 

This implies that 
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.

1
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which as the density integrates to unity implies that 
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that is, for given 2
iσ  and .ir , the distribution of the mean iµ  is ( )2,i i iN r nσ . 

 

Proof of theorem 3.1 

Since 
2

2| , ,r N r
n

σµ σ  
 
 

∼  and  

2
2

2
,

vs
νκ χ

σ
= ∼   it follows that 

ɵ 1
, ,N a

n
θ θ κ κ 

 
 

∼  

 where 
ɵ

a
v

θ=  

Therefore 

ɵ( ) �( ) ( )
0

,p p p dθ θ θ θ κ κ κ
∞

= ∫  

( )

1
1

22

02
2

exp
2

exp ( )
2

2 2

v

v d
n n

a
ν

κκ κθ κ
π

− −
∞

   −  
  

= − −
Γ

∫
 

 

 

Now  
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Proof of theorem 4.1 
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Proof of theorem 4.2 
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Fourth moment about zero unconditional 
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Fourth moment about the mean unconditional 
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