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Summary: In this paper the probability matching priors for the product of k Binomial parameters as
well as for a linear combination of Binomial parameters are derived. In the case of two independently
distributed Binomial variables, the Jeffreys’, uniform and probability matching priors for the product of
the parameters (ratios) are compared. The construction of Bayesian confidence intervals for the difference
of two independent Binomial parameters is also discussed. This research is an extension of the work by
Kim (2006) who derived a probability matching prior for the product of k independent Poisson rates.

1. Introduction

The Bayesian paradigm emerges as attractive in many types of statistical problems - especially in Bino-
mial and Poisson problems but the choice of an appropriate non-informative prior distribution has been
controversial. Common non-informative priors in multiparameter problems, such as Jeffreys’ prior can
have features that have an unexpectedly dramatic effect on the posterior distribution. Datta & Ghosh
(1995) derived the differential equation which a prior must satisfy if the posterior probability of a one
sided credibility interval for a parametric function and its frequentist probability agree up to O

(
n−1)

where n is the sample size. They proved that the agreement between the posterior probability and

the frequentist probability holds if and only if
k
∑

i=1

∂
∂ pi

{
ηi
(

p
)

π
(

p
)}

= 0, where π
(

p
)

is the probabil-

ity matching prior for p, the vector of unknown parameters. Let ∇t =
[

∂
∂ p1

t
(

p
)

· · · ∂
∂ pk

t
(

p
) ]′

,

then η
(

p
)
=

F−1(p)∇t(p)√
∇′

t(p)F−1(p)∇t(p)
=
[

η1
(
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· · · ηk
(

p
) ]′

. Where F−1 (p
)

is the inverse of F
(

p
)
, the
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Fisher information matrix of p. Reasons for using the probability matching prior is that it provides a
method of constructing accurate frequentist intervals and it could also be useful for comparative pur-
poses in Bayesian analysis. From Wolpert (2004), Berger states that frequentist reasoning will play an
important role in finally obtaining good general priors for estimation and prediction. Some statisticians
argue that frequency calculations are an important part of applied Bayesian statistics. (See Rubin, 1984)

In the next section the probability matching prior for the product of k Binomial rates is derived and in
Section a weighted Monte Carlo simulation method is described to obtain Bayesian confidence intervals
in the case of the probability matching prior. In Section simulation results and examples are given for

ψ1 = p1 p2 and ψ2 = p1 p2 p3 and in Section the probability matching prior for θ =
k
∑

i=1
αi pi, a linear

combination of Binomial parameters is derived. Simulation results are discussed for θ = p1− p2 and the
Jeffreys’, uniform and probability matching priors are applied to a real problem.

2. Probability Matching Prior for the Product of Different Powers of
k Binomial Parameters

The parameter ψ =
k
∏
i=1

pαi
i , the product of different powers of k Binomial parameters, appears in appli-

cations to system reliability. Assume for example systems that consist of two and three components in
parallel, respectively, then the probabilities of system failure are ψ1 = p1 p2 and ψ2 = p1 p2 p3, the prod-
uct of two and three Binomial proportions. Also assume that a system requires that at least one of each
of two types of components must be employed and that these components in parallel are needed. The
probability of failure of a system is then either ψ3 = p2

1 p2 or ψ4 = p1 p2
2 depending on whether the first

or second component has been replicated, (Kim, 2006).

From a Bayesian perspective a prior is needed for the parameter ψ . As mentioned common non-
informative priors in multiparameter problems such as Jeffreys’ priors can have features that have an
unexpectedly dramatic effect on the posterior distribution. It is for this reason that the probability match-
ing prior for ψ will be derived in Theorem 2.1.

Also as mentioned a probability matching prior is a prior distribution under which the posterior prob-
abilities match their coverage probabilities. The fact that the resulting Bayesian posterior intervals of
level 1−α are also good frequentist confidence intervals at the same level is a very desirable situation.
See also Bayarri & Berger (2004) and Severini et al. (2002) for general discussion. By using the method
of Datta & Ghosh (1995) the following theorem can be proved.

Theorem 2.1 Assume that X1,X2, . . . ,Xk are independent Binomial random variables with X i ∼

Bin(ni, pi) for i = 1,2, . . . ,k. The probability matching prior for ψ =
k
∏
i=1

pαi
i , the product of different

powers of k Binomial rates, is given by
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πs
(

p
)

= πs (p1, p2, . . . , pk) ∝

{
k

∑
i=1

α2
i (1− pi)

pi

} 1
2 k

∏
i=1

(1− pi)
−1 (1)

Proof. The likelihood function is given by

L(p1, p2 . . . , pk) = L
(

p
)
=

k
∏
i=1

(
ni

xi

)
pxi

i (1− pi)
ni−xi .

The Fisher information matrix is well known and for n1 = n2 = . . .= nk = n, n can be ignored for all
practical purposes (i.e. n = 1). The inverse of the Fisher information matrix is then given by

F−1 (p
)

= diag
[

p1 (1− p1) p2 (1− p2) . . . pk (1− pk)
]
.

We are interested in a probability matching prior for t
(

p
)
= ψ =

k
∏
i=1

pαi
i , the product of different

powers of k Binomial parameters.

Now

∇′
t
(

p
)

=
[

∂ t(p)
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∂ t(p)
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· · · ∂ t(p)
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· · · αk
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p
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)
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(

p
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(

p
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(

p
)

η2
(

p
)
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(

p
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where ηi
(

p
)
= αi(1−pi)√

k
∑

i=1

α2
i (1−pi)

pi

(i = 1,2, . . . ,k) .
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The prior π
(

p
)

is a probability matching prior if and only if the differential equation
k
∑

i=1

∂
∂ pi

{
ηi
(

p
)

π
(

p
)}

=

0 is satisfied.

The differential equation will be satisfied if π
(

p
)

is

πs
(

p
)

∝
{

k
∑

i=1

α2
i (1−pi)

pi

} 1
2 k

∏
i=1

(αi (1− pi))
−1 .

When αi = 1, the probability matching prior for ψ =
k
∏
i=1

pi, will be

πs
(

p
)

∝
{

k
∑

i=1

(1−pi)
pi

} 1
2 k

∏
i=1

(1− pi)
−1 .

If k = 1 and α = 1, equation 1 becomes the Jeffreys’ prior. For αi = 1, (i = 1,2, . . . ,k) , the posterior
distribution in the case of the probability matching prior is given by

πs
(

p |data
)

∝

{
k

∑
i=1

(1− pi)

pi

} 1
2 k

∏
i=1

pxi
i (1− pi)

ni−xi−1 (2)

for 0 ≤ pi ≤ 1. �
Theorem 2.2 πs

(
p |data

)
is a proper posterior distribution if xi < ni, for (i = 1,2, . . . ,k) .

Proof.

k

∑
i=1

1− pi

pi
=

k
∑

i=1


k
∏
i=1

pi

pi
−

k
∏
i=1

pi


k
∏
i=1

pi

<

k
∑

i=1

k
∏
i=1

pi

pi

k
∏
i=1

pi

<
k

k
∏
i=1

pi

Therefore√
k
∑

i=1

1−pi
pi

k
∏
i=1

pxi
i (1− pi)

ni−xi−1 <
√

k
k
∏
i=1

p
xi− 1

2
i (1− pi)

ni−xi−1.

Each
´ 1

0 p
xi− 1

2
i (1− pi)

ni−xi−1 d pi =Beta
(
xi +

1
2 ,ni − xi

)
converges if xi < ni (i = 1, . . . ,k) .�

The Jeffreys’ prior on the other hand is proportional to the square root of the determinant of the Fisher
information matrix and is given by
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πu
(

p
)

∝
∣∣F (p

)∣∣ 1
2 =

(
k
∏
i=1

1
pi(1−pi)

) 1
2

.

The joint posterior is

πu
(

p |X1,X2, . . . ,Xk
)

∝
{

k
∏
i=1

B
(
xi +

1
2 ;ni − xi +

1
2

)}−1 k
∏
i=1

p
xi− 1

2
i (1− pi)

ni−xi− 1
2 0 ≤ pi ≤ 1.

3. The Weighted Monte Carlo Method in the Case of ψ =
k

∏
i=1

pi -

Sampling - Importance Resampling

In this section a weighted Monte Carlo method is described which will be used for simulation from the
posterior distribution in the case of the probability matching prior. This method is especially suitable for
computing Bayesian confidence (credibility) intervals. It does not require knowing the closed form of
the marginal posterior distribution of ψ, only the kernel of the posterior distribution of {p1, p2, . . . , pk} is
needed.

As mentioned by Chen & Shao (1999), Kim (2006), Smith & Gelfand (1992), Guttman & Men-
zefrieke (2003), Skare et al. (2003) and Li (2007) the weighted Monte Carlo (sampling - importance
re-sampling (SIR)) algorithm aims at drawing a random sample from a target distribution π, by first
drawing a sample from a proposal distribution q, and from this a smaller sample is drawn with sample
probabilities proportional to the importance ratios π/q. For the algorithm to be efficient, it is important
that q is a good approximation for π. This means that q should not have too light tails when compared to
π. For further details see Skare et al. (2003). In the case of credibility intervals it is not even necessary
to draw the smaller sample. The weights (sample probabilities) are however important.

If a uniform prior is put on p, the posterior (proposal) distribution is

q
(

p |data
)

∝
{

k
∏
i=1

B(xi +1;ni − xi +1)
}−1 k

∏
i=1

pxi
i (1− pi)

ni−xi 0 ≤ pi ≤ 1.

In the case of the probability matching prior, the posterior (target) distribution is (see equation 2)

πs
(

p |data
)

∝
{

k
∑

i=1

(1−pi)
pi

} 1
2
{

k
∏
i=1

(1− pi)
−1
}{

k
∏
i=1

pxi
i (1− pi)

ni−xi

}
0 ≤ pi ≤ 1

The sample probabilities are therefore proportional to

πs
(

p |data
)

q
(

p |data
) =

{
k

∑
i=1

(1− pi)

pi

} 1
2
{

k

∏
i=1

(1− pi)
−1

}
0 ≤ pi ≤ 1

and the normalized weights are
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ωℓ =

{
k
∑

i=1

(
1−p(l)i

)
p(l)i

} 1
2 { k

∏
i=1

(
1− p(l)i

)−1
}

n
∑

l=1

{
k
∑

i=1

(
1−p(l)i

)
p(l)i

} 1
2 { k

∏
i=1

(
1− p(l)i

)−1
} l = 1,2, . . . ,n.

A straightforward way of doing the weighted Monte Carlo (WMC) method was proposed by Chen &
Shao (1999). Details of the Monte Carlo method are as follows:

Step 1

Obtain a Monte Carlo sample
{(

p(l)1 , p(l)2 . . . , p(l)k

)
; l = 1,2, . . . ,n

}
from the proposal distribution

q
(

p |data
)

and calculate ψ(l) =
k
∏
i=1

p(l)i for l = 1,2, . . . ,n.

Step 2

Sort
{

ψ(l),(l = 1,2, . . . ,n)
}

to obtain the ordered values ψ [1] ≤ ψ [2] ≤ ·· · ≤ ψ [n].

Step 3

Each simulated ψ value has an associated weight. Therefore compute the weighted function ω(l)

associated with the lth ordered ψ [l] value.

Step 4

Add the weights up from left to right (from the first on) until one gets
n1
∑

l=1
ω(l) = α/2. Write down the

corresponding ψ [n1] value and denote it as ψ(α/2). Add the weights up from right to left (from the last

back) until one gets
n
∑

l=n2

ω(l) = α/2. Write down the corresponding ψ [n2] value and denote it as ψ(1−α/2).

Step 5

The 100(1−α)% Bayesian confidence interval is:(
ψ(α/2),ψ(1−α/2)

)
.

4. Examples

4.1 Reliability of Independent Parallel Components System Kim (2006)

Consider the following example for the probability of failure of independent parallel components system,
using the observed data values from Harris (1971). One has to assume that the two systems consist of two
and three components in parallel, respectively. The respective probabilities of system failure will then
be ψ1 = p1 p2 and ψ2 = p1 p2 p3. ψ1 is the product of two binomial parameters, and ψ2 is the product
of three binomial parameters. When manufacturing the components system, one may be interested in an
upper bound of the confidence interval on the system failure. The upper bound of the confidence interval,
ψ j,(1−α), for each system failure, which is given by P

(
0 ≤ ψ j ≤ ψ j,(1−α)

)
= 1−α will be estimated for
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j = 1,2. The estimate of ψ j,(1−α) is therefore the upper end point of a one-sided (1−α)100% confidence
interval for ψ j. The methods used to obtain the upper limit of the confidence interval, are: The likelihood
ratio method by Madansky (1965); Randomized limit based method by Harris (1971); Bayesian method
by Kim (2006); The last two columns in Table 1 are obtained from the probability matching prior and
Jeffreys’ prior for the product of k Binomial rates. Kim approximated the Binomial distribution by the

Poisson distribution and obtained a probability matching prior for θ̃ =
k
∏
i=1

λi, the product of k Poisson

rates. The prior is p(λ1,λ2, . . .λk) ∝

√
k
∑

i=1
λ−1

i . A simulated value for ψ is then obtained from the linear

relationship between θ̃ and ψ, namely ψ = θ̃/
k
∏
i=1

ni. Comparisons between these five estimates are made

in Table 1. The values for Madansky’s and Harris’s method are from Harris (1971) and the values for the
Bayesian method are from Kim (2006).

The effectiveness of the comparisons between the five methods in Table 1 is rather restricted, since
the five methods are all approximate and we do not have the exact confidence coefficient.

Table 1. Upper confidence limits for
k
∏
i=1

pi with confidence coefficient 1−α = 0.9

Sample Observed Madansky’s Harris’s Bayesian Probability Jeffreys’
sizes x1,x2 Method Method Method Matching Prior
n1,n2 Prior

100, 100 3, 5 0.00433 0.00416 0.00406 0.00393 0.00355
100, 100 1, 4 0.00188 0.00184 0.00172 0.00167 0.00145
100, 100 2, 2 0.00168 0.00170 0.00157 0.00155 0.00131
150, 150 3, 3 0.00133 0.00128 0.00124 0.00120 0.00107

Sample Observed Madansky’s Harris’s Bayesian Probability Jeffreys’
sizes x1,x2,x3 Method Method Method Matching Prior

n1,n2,n3 Prior
100, 100, 100 1, 2, 1 0.000019 0.000027 0.000021 0.000021 0.000013
100, 100, 100 2, 3, 5 0.000133 0.000145 0.000132 0.000129 0.000102

As mentioned the last two columns are added to Table 2 of Kim (2006) and give ψ(1−α) for the
probability matching and Jeffreys’ priors of ψ1 = p1 p2 and ψ2 = p1 p2 p3. The values of ψ(1−α) in the
case of the probability matching prior compare well with those obtained by the other researcher while it
seems that the Jeffreys’ prior tends to some what under estimate the upper confidence limit.

4.2 Simulation Study Comparing Four Priors

In Tables 2 and 3 comparisons are made between the four priors:
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1. πs
(

p
)

∝
{

k
∑

i=1

(1−pi)
pi

} 1
2 k

∏
i=1

(1− pi)
−1

2. πu
(

p
)

∝
(

k
∏
i=1

1
pi(1−pi)

) 1
2

3. πs (λ ) ∝

√
k
∑

i=1
λ−1

i

4. πu (λ ) ∝
(

k
∏
i=1

λi

)− 1
2

for the following Binomial distributions:

1. n1 = 10, p1 = 0.4 and n2 = 12, p2 = 0.6.

2. n1 = 20, p1 = 0.4 and n2 = 24, p2 = 0.6.

3. n1 = 40, p1 = 0.4 and n2 = 48, p2 = 0.6.

The priors denoted by πs (1 and 3) are probability matching priors while those denoted by πu (2 and 4)
are Jeffreys’ priors. The parameter of interest is ψ = p1 p2. The Poisson parameter λ = np.

Table 2. Frequentist Coverage Probabilities for 0.95 Posterior Quantile of ψ = p1 p2
Binomial Poisson

1−α = 0.95 1 2 3 1 2 3
n1 10 20 40 10 20 40
p1 0.4 0.4 0.4 0.4 0.4 0.4
λ1 4 8 16
n2 12 24 48 12 24 48
p2 0.6 0.6 0.6 0.6 0.6 0.6
λ2 7.2 14.4 28.8
λ0 [4 7.2] [8 14.4] [16 28.8]

# x vectors 1000 1000 1000 1000 1000 1000
# λ ′s 1000 1000 1000

πs 0.953 0.954 0.95 0.933 0.933 0.949
πu 0.926 0.944 0.946 0.913 0.917 0.949

n = 1000

From Tables 2 and 3 it is clear that the priors πs are better than the Jeffreys’ priors πu in most of the
situations. It is surprising that πs (λ ) is better than πu

(
p
)

since πs (λ ) is the probability matching prior
for the Poisson distribution. The latter will be a good approximation to the Binomial distribution if n is
large and p is small. However the values used in Tables 2 and 3 are p1 = 0.4 and p2 = 0.6, which are
quite large. As expected and although this is a limited experiment it seems that πs

(
p
)

is the best prior of
the four.
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Table 3. Frequentist Coverage Probabilities for 0.05 Posterior Quantile of ψ = p1 p2
Binomial Poisson

α = 0.05 1 2 3 1 2 3
n1 10 20 40 10 20 40
p1 0.4 0.4 0.4 0.4 0.4 0.4
λ1 4 8 16
n2 12 24 48 12 24 48
p2 0.6 0.6 0.6 0.6 0.6 0.6
λ2 7.2 14.4 28.8
λ0 [4 7.2] [8 14.4] [16 28.8]

# x vectors 1000 1000 1000 1000 1000 1000
# λ ′s 1000 1000 1000

πs 0.048 0.047 0.052 0.048 0.055 0.064
πu 0.027 0.031 0.042 0.038 0.043 0.054

n = 1000

4.3 A comparison of the Jeffreys’, Uniform and Probability Matching priors for
ψ = p1p2

In this example a more extensive simulation study is done and coverage probabilities are obtained for
ψ = p1 p2, the product of two Binomial parameters. For comparison purposes the following priors will
be used:

1. The Jeffreys’ prior: πu (p1, p2) = πu
(

p
)

∝
2
∏
i=1

p
− 1

2
i (1− pi)

− 1
2 .

2. The Uniform prior: π
(

p
)

∝ constant.

3. The Probability Matching prior: πs
(

p
)

∝
{

2
∑

i=1
(1− pi) p−1

i

} 1
2 2

∏
i=1

(1− pi)
−1 .

The parameter values for the Binomial distribution are n1 = n2 = 10,n1 = n2 = 20 and pi = 0.1,0.2,0.3,0.4,
0.5,0.6,0.7,0.8,0.9 (for i = 1,2) . The average length and standard deviation of the intervals are also
given. The number of X variates are 1000 and n = 1000.

In Table 4 summary statistics (averages over the nine possible values of the parameter p2) are given
for the coverage probabilities, mean lengths and standard deviations for the 90% credibility intervals of
ψ = p1 p2.

From Table 4 it seems that the coverage probabilities for the Jeffreys’ prior is in general somewhat
smaller than 0.9 and that under coverage is larger for n1 = n2 = 20 than for n1 = n2 = 10. The uniform
and probability matching priors on the other hand tend to give coverage probabilities larger than 0.9 and
more so for the uniform prior. As can be expected the interval lengths and standard deviations are smaller
for larger n.
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Table 4. Coverage Rate of the 90% Credibility Intervals for ψ = p1 p2. Exact coverage probabilities (a),
mean lengths (b), standard deviation (c). The values in this Table are averages over the nine possible
values of p2.

n1 = n2 = 10 n1 = n2 = 20
p1 Jeffreys’ Uniform Probability Jeffreys’ Uniform Probability

matching matching
0.1 (a) 0.936 0.932 0.935 0.874 0.926 0.923

(b) 0.156 0.175 0.174 0.111 0.119 0.120
(c) 0.069 0.057 0.057 0.040 0.036 0.036

0.2 (a) 0.882 0.931 0.933 0.890 0.913 0.919
(b) 0.210 0.217 0.218 0.155 0.157 0.158
(c) 0.075 0.063 0.063 0.042 0.038 0.037

0.3 (a) 0.887 0.920 0.916 0.892 0.906 0.907
(b) 0.251 0.252 0.252 0.188 0.187 0.187
(c) 0.074 0.063 0.063 0.041 0.037 0.037

0.4 (a) 0.897 0.914 0.910 0.888 0.914 0.906
(b) 0.288 0.282 0.284 0.214 0.212 0.211
(c) 0.070 0.060 0.060 0.038 0.035 0.035

0.5 (a) 0.894 0.917 0.909 0.891 0.907 0.902
(b) 0.315 0.309 0.307 0.236 0.232 0.232
(c) 0.065 0.056 0.057 0.036 0.033 0.033

0.6 (a) 0.903 0.913 0.910 0.887 0.906 0.901
(b) 0.338 0.329 0.329 0.252 0.249 0.249
(c) 0.060 0.051 0.052 0.033 0.030 0.030

0.7 (a) 0.893 0.909 0.905 0.890 0.906 0.902
(b) 0.357 0.348 0.347 0.267 0.264 0.263
(c) 0.056 0.047 0.048 0.031 0.028 0.028

0.8 (a) 0.897 0.902 0.898 0.887 0.900 0.902
(b) 0.372 0.363 0.363 0.278 0.275 0.275
(c) 0.056 0.044 0.045 0.030 0.027 0.027

0.9 (a) 0.899 0.896 0.900 0.888 0.901 0.898
(b) 0.381 0.375 0.376 0.286 0.284 0.284
(c) 0.057 0.043 0.042 0.033 0.027 0.027

Overall (a) 0.899 0.915 0.913 0.887 0.909 0.907
Mean (b) 0.296 0.295 0.294 0.221 0.220 0.220

(c) 0.065 0.054 0.054 0.036 0.032 0.032

It also seems that the probability matching prior gives the best results for 0.3 ≤ pi ≤ 0.7,(i = 1,2) .
This also explains the good performance of the probability matching priors in Tables 2 and 3. In Table 5
the overall averages are given for n1 = n2 = 10 and n1 = n2 = 20 for pi = 0.3,0.4,0.5,0.6 and 0.7,(i = 1,2) .

From Table 5 it can be seen that the probability matching prior is somewhat better than the uniform
and Jeffreys’ priors. We will conclude by saying that all three priors are doing well for attaining the
nominal coverage probabilities. In general the differences between the priors are quite small.
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Table 5. Average Coverage probabilities of the 90% Credibility Intervals for n1 = n2 = 10 and n1 = n2 =
20 for pi = 0.3,0.4,0.5,0.6 and 0.7,(i = 1,2) .

n1 = n2 = 10 n1 = n2 = 20
Jeffreys’ Uniform Probability Jeffreys’ Uniform Probability

matching matching
0.890 0.910 0.905 0.891 0.907 0.900

5. Bayesian Confidence Interval Estimation for a Linear Function of
Binomial Proportions

Due to its important practical value, confidence interval construction for a linear function of Binomial
proportions has received some attention recently (Price & Bonett, 2004; Tebbs & Roths, 2008). In the
first part of this section the probability matching prior for a linear function of Binomial proportions
will therefore be derived and in the latter part Bayesian confidence intervals will be constructed for the
difference between two Binomial proportions.

Estimating the difference between two binomial proportions is a problem that occurs regularly in
practice. There are some asymptotic procedures available for the construction of confidence intervals
for the difference. A number of authors have studied the performance of these asymptotic procedures
in circumstances where the samples are small. Some of them are Agresti & Caffo (2000), Beal (1987),
Newcombe (1998) and Zhou et al. (2004). According to Roths & Tebbs (2006) asymptotic intervals are
generally preferred to exact intervals. The reason for this, is that asymptotic intervals are often much
easier to calculate than exact intervals and they can also produce acceptable results without wasteful
conservatism. Roths & Tebbs (2006) showed how their intervals can be used adaptively in experiments
conducted in stages over time, they concentrated on samples that are small.

5.1 The Probability Matching Prior for a Linear Combination of Binomial Pro-
portions

The procedure of Datta & Ghosh (1995) will be used to derive the probability matching prior. The
following theorem can be proved.

Theorem 5.1 The probability matching prior for θ =
k
∑

i=1
αi pi a linear combination of Binomial pro-

portions is given by

π̃s (p1, p2, . . . , pk) ∝
{

k
∑

i=1
α2

i pi (1− pi)

} 1
2 2

∏
i=1

p−1
i (1− pi)

−1.

Proof. As in Theorem 2.1, the inverse of the Fisher Information matrix is given by

F−1 (p
)

= diag
[

p1 (1− p1) p2 (1− p2) . . . pk (1− pk)
]
.
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We are interested in a probability matching prior for t
(

p
)
= θ =

k
∑

i=1
αi pi, a linear combination of k

Binomial parameters.

Now

∇′
t
(

p
)

=
[

∂ t(p)
∂ p1

∂ t(p)
∂ p2

· · · ∂ t(p)
∂ pk

]
=

[
α1 α2 · · · αk

]
.

Also

∇′
t
(

p
)

F−1 (p
)
=
[

α1 p1 (1− p1) α2 p2 (1− p2) · · · αk pk (1− pk)
]

and

∇′
t
(

p
)

F−1 (p
)

∇t
(

p
)
=

k
∑

i=1
α2

i pi (1− pi).

Further

η ′ (p
)

=
∇′

t
(

p
)

F−1 (p
)√

∇′
t
(

p
)

F−1
(

p
)

∇t
(

p
)

=
[

η1
(

p
)

η2
(

p
)

· · · ηk
(

p
) ]

where ηi
(

p
)
= αi pi(1−pi)√

k
∑

i=1
α2

i pi(1−pi)

(i = 1, . . . ,k) .

The prior π
(

p
)

is a probability matching prior if and only if the differential equation
k
∑

i=1

∂
∂ pi

{
ηi
(

p
)

π
(

p
)}

=

0 is satisfied.

The differential equation will be satisfied if π
(

p
)

is

π̃s
(

p
)

∝
{

k
∑

i=1
α2

i pi (1− pi)

} 1
2 k

∏
i=1

p−1
i (1− pi)

−1 . �

If k = 2,α1 = 1,α2 =−1 and α3 = α4 = . . .= αk = 0, then θ = p1− p2 and the posterior distribution
in the case of the probability matching prior is

π̃s (p1, p2 |data) ∝
{

2
∑

i=1
pi (1− pi)

} 1
2 2

∏
i=1

pxi−1
i (1− pi)

ni−xi−1 . (3)

for 0 ≤ pi ≤ 1.

If k = 1 and α = 1, π̃s (p) becomes the Jeffreys’ prior.

Theorem 5.2 The posterior distribution defined in equation 3 is a proper distribution if 0 < xi < ni.
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Proof. Since

{
2

∑
i=1

pi (1− pi)

} 1
2

<
2

∑
i=1

p
1
2
i (1− pi)

1
2

it follows that

π̃s (p1, p2 |data) ∝

{
2

∑
i=1

pi (1− pi)

} 1
2 2

∏
i=1

pxi−1
i (1− pi)

ni−xi−1

<

{
2

∑
i=1

p
1
2
i (1− pi)

1
2

}
2

∏
i=1

pxi−1
i (1− pi)

ni−xi−1 .

Now´ 1
0

´ 1
0

{
2
∑

i=1
p

1
2
i (1− pi)

1
2

}{
2
∏
i=1

pxi−1
i (1− pi)

ni−xi−1
}

d p1d p2 will converge if xi > 0 and xi < ni ,(i = 1,2) .�

5.2 Simulation Study

In this section an extensive simulation study will be done and coverage probabilities will be obtained for
θ = p1 − p2. The two Bayesian methods (Jeffreys’ and probability matching priors) will be compared
with known classical procedures. The Jeffreys’ prior is defined as

π̃u
(

p
)
= π̃u (p1, p2)∝

2
∏
i=1

p
− 1

2
i (1− pi)

− 1
2 .

When using the Jeffreys’ prior the joint posterior distribution is the product of independent

Beta
(
xi +

1
2 ,ni + xi +

1
2

)
, (i = 1,2) , variates which is denoted by

π̃u (p1, p2 |data) ∝
{

2

∏
i=1

Beta
(

xi +
1
2
,ni + xi +

1
2

)}−1 2

∏
i=1

p
xi− 1

2
i (1− pi)

ni−xi− 1
2 .

The credibility (Bayesian confidence) intervals for the probability matching are obtained by using an
adapted weighted Monte Carlo method as described in Section . The number of X vectors is again 1000
and n = 1000.

Tables 6 and 7 contain coverage probabilities, mean lengths and conditional mean length ratios for
the six intervals discussed by Roths & Tebbs (2006) as well as the full (real) Bayesian procedures, by
using Jeffreys’ prior (Bayes (J)) and the probability matching prior (Bayes (PMP)), when n1 = n2 = 10
and n1 = n2 = 20, respectively, for a number of choices for p1 and p2. The nominal confidence level
is 1−α = 0.95. The conditional mean length ratio is the ratio of the mean lengths for cases where the
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differences are covered and when they are not covered. A small value of the conditional mean length
ratio is desirable.

Table 6. Exact coverage probabilities (a), mean lengths (b), and conditional mean length ratios (c) for
n1 = n2 = 10. The nominal level is 0.95.WAL, Wald; AGC, Agresti-Caffo; HAL, Haldane; JFP, Jeffreys-
Perks; MLE, Beal-MLE; MOM, Beal-MOM; Bayes (J), Bayesian procedure using Jeffreys’ prior; Bayes
(PMP), Bayesian procedure using the probability matching prior.

p1 p2 WAL AGC HAL JFP MLE MOM Bayes Bayes
(J) (PMP)

0.1 0.1 (a) 0.95000 0.99100 0.99100 0.99100 0.99100 0.99100 0.97000 0.99100
(b) 0.45600 0.57800 0.41900 0.52300 0.47700 0.41900 0.53600 0.56840
(c) 0.77500 0.90000 0.72700 0.86100 0.78200 0.72700 0.93200 0.94473

0.1 0.3 (a) 0.93900 0.96800 0.94300 0.94300 0.94600 0.94300 0.95000 0.97300
(b) 0.63200 0.65700 0.58500 0.62600 0.63600 0.58500 0.63200 0.63854
(c) 1.34800 1.10000 1.35800 1.18300 1.42000 1.35700 1.11900 1.11850

0.1 0.5 (a) 0.91100 0.96300 0.91500 0.93000 0.94900 0.91500 0.93900 0.95400
(b) 0.67800 0.68200 0.64000 0.65700 0.66800 0.64000 0.65300 0.65098
(c) 1.27300 1.02800 1.16900 1.09100 1.10400 1.16500 1.11000 1.01310

0.1 0.7 (a) 0.91500 0.94500 0.94500 0.94500 0.96000 0.94500 0.95600 0.91700
(b) 0.61900 0.65600 0.61800 0.62400 0.62700 0.61900 0.61400 0.61652
(c) 1.74100 0.99000 0.99000 0.99000 0.97600 0.98100 0.95100 0.87559

0.1 0.9 (a) 0.87000 0.95700 0.94900 0.95700 0.95700 0.94900 0.94600 0.87000
(b) 0.41500 0.56800 0.51600 0.51800 0.51800 0.51700 0.48900 0.52713
(c) 9.76600 0.77500 0.73700 0.71900 0.71300 0.73800 0.70900 0.80078

0.3 0.3 (a) 0.90500 0.96300 0.96300 0.96300 0.96300 0.96300 0.90900 0.95400
(b) 0.75600 0.72700 0.69600 0.71400 0.73900 0.69600 0.71900 0.69898
(c) 1.11500 1.08900 1.11800 1.11600 1.15800 1.10800 1.13400 1.11780

0.3 0.5 (a) 0.92200 0.96400 0.94900 0.94900 0.95800 0.94900 0.95400 0.95700
(b) 0.79400 0.75000 0.73400 0.74100 0.75700 0.73500 0.73900 0.71538
(c) 1.16200 1.09000 1.11700 1.11100 1.14700 1.11600 1.13600 1.07780

0.3 0.7 (a) 0.93200 0.95500 0.94100 0.94100 0.95700 0.94100 0.93500 0.95000
(b) 0.75400 0.72700 0.71000 0.71300 0.72000 0.71000 0.70700 0.68957
(c) 1.37700 0.99500 1.06300 1.06000 1.11900 1.06100 1.09700 0.96325

0.5 0.5 (a) 0.91200 0.95800 0.95800 0.95800 0.95800 0.95800 0.94400 0.96100
(b) 0.83000 0.77100 0.76400 0.76800 0.78000 0.76500 0.76300 0.73764
(c) 1.12900 1.10400 1.13300 1.13200 1.14600 1.13400 1.11700 1.11680

Overall (a) 0.917 0.963 0.950 0.953 0.960 0.950 0.945 0.948
Mean (b) 0.659 0.680 0.631 0.654 0.658 0.632 0.650 0.649

(c) 2.187 1.008 1.046 1.029 1.063 1.043 1.034 1.003

The differences among all the intervals are not too large, the only exception to this is the Wald interval.
The results from the Bayesian procedures compare well with the other methods.
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Table 7. Exact coverage probabilities (a), mean lengths (b), and conditional mean length ratios (c) for
n1 = n2 = 20. The nominal level is 0.95.WAL, Wald; AGC, Agresti-Caffo; HAL, Haldane; JFP, Jeffreys-
Perks; MLE, Beal-MLE; MOM, Beal-MOM; Bayes (J), Bayesian procedure using Jeffreys’ prior; Bayes
(PMP), Bayesian procedure using the probability matching prior.

p1 p2 WAL AGC HAL JFP MLE MOM Bayes Bayes
(J) (PMP)

0.1 0.1 (a) 0.96000 0.98800 0.96100 0.98300 0.96100 0.96100 0.94800 0.97400
(b) 0.35200 0.39600 0.33600 0.37000 0.36700 0.33600 0.38000 0.39128
(c) 0.92200 0.93300 0.92500 0.89000 0.96900 0.92500 1.01300 0.96505

0.1 0.3 (a) 0.93500 0.96000 0.95200 0.95200 0.95200 0.95200 0.94100 0.96000
(b) 0.46400 0.47300 0.44600 0.46000 0.46900 0.44600 0.46200 0.46414
(c) 1.08400 1.05400 1.10400 1.08600 1.07200 1.10400 1.05700 1.07410

0.1 0.5 (a) 0.93700 0.95400 0.94300 0.95000 0.95000 0.94300 0.95200 0.95000
(b) 0.49600 0.49600 0.48000 0.48600 0.49200 0.48000 0.48200 0.48345
(c) 1.09900 1.03800 1.04200 1.05300 1.04200 1.03800 1.06500 0.98793

0.1 0.7 (a) 0.91300 0.95500 0.93300 0.93300 0.93700 0.93300 0.94500 0.94200
(b) 0.46400 0.47300 0.45700 0.45900 0.46100 0.45900 0.45700 0.45785
(c) 1.25200 0.93200 1.02000 1.01900 1.00300 1.02300 1.02900 0.90632

0.1 0.9 (a) 0.91300 0.95800 0.94300 0.94300 0.94300 0.94300 0.94100 0.90900
(b) 0.34200 0.39400 0.36800 0.36900 0.36900 0.36900 0.36100 0.37578
(c) 2.41900 0.78100 0.89900 0.89900 0.89800 0.89900 0.87900 0.80140

0.3 0.3 (a) 0.93100 0.95000 0.94700 0.94700 0.95500 0.94700 0.93800 0.94800
(b) 0.55200 0.53800 0.52800 0.53400 0.55000 0.52800 0.53400 0.52510
(c) 1.05900 1.04000 1.05500 1.05300 1.08300 1.05500 1.06600 1.04840

0.3 0.5 (a) 0.94200 0.95200 0.94600 0.94600 0.95100 0.94600 0.94900 0.95800
(b) 0.57900 0.55900 0.55500 0.55600 0.56500 0.55500 0.55600 0.54606
(c) 1.07900 1.04300 1.05500 1.05400 1.06600 1.05500 1.06300 1.03000

0.3 0.7 (a) 0.92800 0.94400 0.94400 0.94400 0.94400 0.94400 0.95000 0.94800
(b) 0.55200 0.53800 0.53300 0.53300 0.53600 0.53300 0.52900 0.52428
(c) 1.15400 1.03300 1.03900 1.03900 1.03700 1.03900 1.01900 1.03680

0.5 0.5 (a) 0.91900 0.95700 0.95700 0.95700 0.96100 0.95700 0.93800 0.95600
(b) 0.60400 0.57800 0.57800 0.57800 0.58300 0.57800 0.57700 0.56406
(c) 1.05600 1.06000 1.06800 1.06800 1.07200 1.06800 1.07300 1.06860

Overall (a) 0.931 0.958 0.947 0.951 0.950 0.947 0.945 0.949
Mean (b) 0.489 0.494 0.476 0.483 0.488 0.476 0.482 0.481

(c) 1.236 0.990 1.023 1.018 1.027 1.023 1.029 0.991

5.3 Example

In this section the adaptability of the intervals are shown in situations where data are collected in multiple
stages. To illustrate this consider the data from Ornaghi et al. (1999) given in Table 8. The stages
correspond to different dates on which insects were collected during maize planting season in Argentina
(from October to November). The goal of this experiment was to assess if male and female insects
transmit the Mal de Rio Cuarto virus to susceptible maize plants at similar rates.
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Table 8. Number of test plants and numbers of virus-infected plants collected on five different dates
during the maize plant season.

Stage Gender Number of test plants Number infected
1 M 29 9

F 31 5
2 M 57 4

F 57 7
3 M 57 8

F 57 16
4 M 24 2

F 24 3
5 M 24 3

F 24 2

Assume that, at a specific stage, the researchers want to estimate the difference p1 − p2, where p1

is equal to the proportion infected plants for male insects and p2 is the proportion infected plants for
female insects. In Table 9 the 95% confidence intervals for θ = p1 − p2 are given for the six methods
described by Roths & Tebbs (2006) and in Table 10 the 95% Bayesian confidence intervals are given for
the Jeffreys’ prior, uniform prior and probability matching prior.

Table 9. 95% Confidence intervals for the difference in disease transmission probabilities among male
and female insects.

Stage Interval Lower limit Upper limit Length
1 WAL -0.063 0.361 0.425

AGC -0.070 0.351 0.421
HAL -0.065 0.347 0.412
JFP -0.067 0.350 0.417
MLE -0.072 0.354 0.427
MOM -0.065 0.347 0.412

2 WAL -0.161 0.055 0.216
AGC -0.163 0.062 0.225
HAL -0.157 0.055 0.212
JFP -0.160 0.059 0.219
MLE -0.163 0.061 0.224
MOM -0.157 0.055 0.212

3 WAL -0.288 0.007 0.295
AGC -0.283 0.012 0.295
HAL -0.281 0.009 0.290
JFP -0.282 0.011 0.293
MLE -0.283 0.012 0.295
MOM -0.281 0.009 0.290

According to Roths & Tebbs (2006) if suitable computing facilities are available, they would recom-
mend either the Jeffreys-Perks or Beal-MLE interval, because their coverage probabilities are closer to
the nominal level than those for the Haldane and Beal-MOM intervals and are not as conservative as the
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Agresti-Caffo interval.

Table 10. 95% Bayesian Confidence intervals for the difference in disease transmission probabilities
among male and female insects. Using the Jeffreys’ prior, uniform prior and probability matching prior.

Stage Interval Lower limit Upper limit Length
1 Jeffreys’ -0.073 0.366 0.439

Uniform -0.057 0.348 0.405
PMP -0.078 0.346 0.423

2 Jeffreys’ -0.175 0.056 0.231
Uniform -0.177 0.071 0.248
PMP -0.163 0.071 0.234

3 Jeffreys’ -0.293 0.004 0.297
Uniform -0.267 0.016 0.284
PMP -0.280 0.011 0.290

4 Jeffreys’ -0.227 0.138 0.365
Uniform -0.225 0.156 0.381
PMP -0.219 0.144 0.363

5 Jeffreys’ -0.138 0.223 0.361
Uniform -0.136 0.232 0.369
PMP -0.141 0.228 0.368

From Table 10 it can be seen that the Bayesian confidence intervals when using the Jeffreys’ prior
compares well with the other methods. The lower limits of the intervals are however in general somewhat
smaller and the interval lengths somewhat larger than those of the methods suggested by Roths & Tebbs
(2006). From our simulation studies (Tables 6 and 7) it was clear that there is not much to choose between
the Jeffreys’ and probability matching priors.

6. Conclusion

In this paper probability matching priors for the product of k independent Binomial rates, i.e. ψ =
k
∏
i=1

pαi
i

and also for a linear combination of Binomial rates, θ =
k
∑

i=1
αi pi , were derived. Limited simulation

studies have shown that the probability matching prior achieves its sample frequentist coverage results
somewhat better than in the case of the Jeffreys’ prior.
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