
1 
 

A METHOD FOR CHOOSING AN OPTIMUM THRESHOLD IF THE UNDERLYING 

DISTRIBUTION IS GENERALIZED BURR-GAMMA. 

A. VERSTER AND D.J. DE WAAL 

Department of Mathematical Statistics and Actuarial Science, University of the Free 

State, Bloemfontein, RSA 

e-mail: verstera@ufs.ac.za 

 

Key Words: GBG, GP-type, threshold, tail probabilities, posterior risk, extreme value. 

 

Summary: In this paper the Generalized Burr-Gamma (GBG) distribution is considered to 

model data that includes extreme values. Very often in extreme value theory the tail of the 

distribution is the only interest and therefore the selection of an optimum threshold plays an 

important role. This paper shows that the tail of the Generalized Burr-Gamma (GBG) above 

an optimum threshold can be approximated by a type of Generalized Pareto distribution (GP) 

which is dependent on the threshold value. Our GP-type of distribution discuss here differs 

from the usual GP distribution because it depends on the chosen threshold value and it only 

has one parameter known as the extreme value index (EVI) and not two as is usually the case. 

This paper makes a valuable contribution in choosing the best threshold if the underlying 

distribution is GBG. We assume throughout the paper that the GBG parameters ,  and  

are known. A method for choosing the optimum threshold is by considering the posterior risk 

function as will be explained. The selection of a threshold is illustrated through a simulation 

study and in the case of a real data set.  

 

1. Introduction 

In extreme value analysis, the Peaks over Threshold method became a popular method in 

predicting high quantiles or estimating tail probabilities. Although parametric models exist to 

model all the data such as the Burr, Frechét, t, F and others, the generalized Burr-Gamma 

class is another class of distributions to fit the whole data set, Beirlant et al. (1999). The 
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Generalized Burr-Gamma distribution is fairly flexible since it consists of four parameters and 

is therefore a popular extreme value distribution to fit to extreme data. If we assume that the 

data is Generalized Burr-Gamma distributed we can show that the distribution of the tail, 

above an optimum threshold, can be approximated with a Generalized Pareto-type of 

distribution consisting of only one parameter, the EVI. This is a useful approximation since 

the tail of the distribution is often the only interest. This approximated GP-type of distribution 

is dependent on the threshold t and therefore a valuable contribution can be made in selecting 

an optimum threshold. The best threshold is chosen in this paper by considering the posterior 

risk function. Throughout the paper we will assume the four parameters of the GBG are know, 

if the parameters are not know it should first be estimated, Verster and De Waal (2009).  

The layout of this paper is as follows: Section 2 gives a brief introduction on the Generalized 

Burr-Gamma distribution. Section 3 gives a theorem on the approximation of the tail of the 

GBG. Section 4 gives a theorem on how to estimate tail probabilities from the approximated 

GP-type. In Section 5 we discuss a method for selecting the best threshold and Section 6 gives 

a practical application on how to select an optimum threshold by considering a real data set.   

 

2. The Generalized Burr-Gamma Distribution (GBG) 

The GBG is a fairly flexible distribution which contains four parameters, , , ,k    , where   

is known as the extreme value index. If  then  is the mean of , where  

is GBG distributed.  Similarly if  then  is the standard deviation of . 

The GBG distribution models all the data, also the data in the tail and is given as follows: 

(Beirlant et al. 1999).  A random variable X is GBG( , , ,k    ) distributed when the 

distribution function is given by 
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 represent the digamma and trigamma functions 

respectively.   

The parameter space is defined as  , 0, 0,k              . 

A very important characteristic shown by Beirlant et al. (1999, p. 115) is that  ~ Gam ,1V k .   

 

3 Approximating the tail of the GBG 

Because the tail is often the only interest in extreme value theory the following theorem 

shows an approximation of the GBG tail. The theorem proves that the tail of the GBG above a 

reasonable high threshold can be approximated though a Generalized Pareto-type of 

distribution.  

Theorem 1. 

If  then for a large threshold value (t), 
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as a Generalized Pareto-type of distribution with survival function given by  
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Where tv is the threshold in terms of V and Nt is the number of observations above the 

threshold.  

Proof. 

From (2), 
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can be expressed as a ratio of two incomplete Gamma functions. The incomplete Gamma 

functions are given by the integrals 
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The following equations are approximations of the incomplete gamma functions for large 

values of a and b, Amore (2005) 
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Thus equation (4) can be expressed as follows 
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When using L’Hospital’s rule, Salas et al. (1999), 

 

 

1
1

1 ln 1

1
1

1 ln 1

k

v

v

t









 
    

  
      
 

, as vt    

Therefore we conclude that for large t, 
 

 

,

,

k a

k b





1

( )
1

1

v

v

v t

t







 
 

 
 = ,which is the distribution 

function of the Generalized Pareto distribution with parameter   on the exceedances above t.  

Therefore, for large values of the threshold the tail of the GBG distribution can be 

approximated with a Generalized Pareto-type of distribution with extreme value index . To 

avoid confusion we will now refer to the extreme value index of the Generalized Pareto-type 

of distribution as . 

 

The following figures show how the approximated Generalized Pareto-type of distribution (3) 

fits the data above the threshold when compared to the ratio of the incomplete gamma 

distributions (8).  In Figure 1 a threshold is chosen at t = 10,  is chosen as 0.95 and k takes on 

different values between 0.5 and 1.3. In Figure 2 a threshold is again chosen at t = 10, but now 

 is chosen as  and k is again chosen as different values between 0,5 and 1,3. In Figure 

3 a threshold is chosen at a larger value t = 30,  is chosen again as  and k is chosen 

again as different values between 0,5 and 1,3. 
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Figure 1 Comparison between the approximated GP-type and the incomplete gamma ratio 

given in equation 8 

 

Figure 2 Comparison between the approximated GP-type and the incomplete gamma ratio 

given in equation 8 with a smaller value of  
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Figure 3 Comparison between the approximated GP-type and the incomplete gamma ratio 

given in equation 8 with a larger value of t 

 

From the above figures it can be seen that, for small values of , the approximated 

Generalized Pareto-type of distribution follows the ratio of the incomplete gamma 

distributions more closely.  If  becomes large, close to 1, a higher threshold should be chosen 

to make sure that the second term of equation (8) strives to 1.  

 

4 Estimating tail probabilities  

In this section we estimate an approximation for tail probabilities when the data is GBG 

distributed and the tail of the GBG is approximated with a GP-type of distribution.  

Theorem 2. 

If  and  then the tail probability  is estimated by 

.                     (9 
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Proof. 

 

 

 

 

therefore 

 

 

 

 

The  can be estimated by  and from Theorem 1 

, therefore an estimate of  is 

 

 

 is simulated from the posterior of the approximated GP-type of distribution. The posterior 

distribution is given by   

         (13) 

where 

 .             (14)  



9 
 

is the maximal data information (MDI) prior. The MDI prior is derived in Appendix B. 

Equation (12) shows the estimated approximated tail probability of , the true tail 

probability however can be obtained explicitly by the following equation 

 

 

  

where . We expect that the two tail probabilities (equations 12 and 15) 

should be close to one another at the optimum threshold level. Thus, at the optimum threshold 

level the difference between the two tail probabilities should be close to zero. 

 

5 Selecting an optimum threshold  

Under ideal circumstances with an optimum threshold level, we would expect that the values 

of  and  should be close or the difference between them should be close to zero. At different 

threshold values the posterior risk function, the expected squared difference between the 

simulated  values and fixed GBG parameter , can be calculated. The threshold value that 

minimizes the posterior risk function (Rice, 1995) will be considered as the best threshold to 

choose. The posterior risk function for a specific threshold is given in the following equation  

 

            (16) 

 

where  is the simulated values from the posterior at a certain threshold and  is the know 

EVI of the GBG.  cannot be solved explicitly but can be estimated as 

 

                  (17)  
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where m is the number of simulated  values from the posterior at a certain threshold. 

The selection of a threshold is illustrated next through a simulation study. 

Simulate 1000 observations from a GBG with the following parameters: 

. Figure 4 shows the simulated values. Different threshold values are now 

chosen from the smallest observation to some large observation in small steps. For this 

simulation the smallest observation is 2.5379 and a large observation of 5 is chosen. The 

threshold is chosen now as different values from 2.5379 to 5 in steps of 0.01. At each 

threshold value a vector of ’s are simulated from the posterior distribution and the posterior 

risk function is calculated. Figure 5 shows a plot of the different Rt values at the 

corresponding threshold values. From Figure 5 it can be seen that the posterior risk is a 

minimum at a threshold of 3.2679. Therefore we consider 3.2679 to be the best threshold to 

choose. 3.2679 is the 80.5
th

 percentile. In Figure 6 the chosen threshold is indicated through a 

solid line in the graph of the simulated data. Assume it is of interest to know . If 

3.2679 is an appropriate threshold value, then the mean squared difference between the true 

tail probability  given in (12) and the approximated tail probability (15) should be 

very small. The mean squared difference between the tail probabilities at t = 4 is calculated as 

0.00384, which is small as we expected.  
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Figure 4 1000 simulated observations from a GBG(  

 

Figure 5 The posterior risk plotted against the thresholds 
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Figure 6 The chosen threshold at t = 3.2679 

 

6    Choosing an optimum threshold in a real data set  

The data considered here is the total annual water spillage at the Gariep Dam during 1971 to 

2006.  The Gariep Dam is the largest reservoir in South Africa and lies in the upper Orange 

River. At full supply it stores 5943 million cubic meters of water. ESKOM, the main supplier 

of electricity in South Africa, has a hydro power station at the dam wall consisting of four 

turbines, each turbine can let through 162 cubic meters per second. If all 4 turbines are 

operating, the total release of water through the turbines is 648 3 /m s .  Spillage over the wall 

will occur if the dam is 100% full with all 4 turbines running and the inflow into the dam 

exceeds 648 3 /m s .  The total loss observed at Gariep due to spillage during 1971 to 2006 is 

1.7693x1010  million cubic meters and in terms of South African Rand it was calculated as 

R76, 950, 708 which is a major loss. It is however important to note that out of the 36 years, 

23 appeared without losses.  Figure 7 shows the spillage during this period. 
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Figure 7  Spillage at Gariep Dam during 1971-2006 

 

It is shown by Verster and De Waal (2009) that the water spillage data set can be considered 

to be Generalized Burr-Gamma (GBG) distributed with the following set of parameters, 

. Different threshold values are now chosen 

from the smallest observation to the largest observation. For this simulation the smallest 

observation is 2.2371x10
7
 and the largest observation is 5.7889x10

9
, the threshold is taken in 

steps of 10x10
7
. At each threshold value a vector of ’s are simulated from the posterior 

distribution and the posterior risk function is calculated. Figure 8 shows a plot of the different 

Rt values at the corresponding threshold values. From Figure 8 it can be seen that the posterior 

risk is a minimum at 0.8524x10
9
.  
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Figure 8  The posterior risk plotted against the thresholds 

 

7  Conclusion  

This study shows that the tail of a GBG distribution can be approximated with an Generalized 

Pareto-type of distribution which is more convenient to work with since it only has one 

parameter . 

The problem around choosing an optimum threshold is addressed here by considering the 

posterior risk function at different threshold level. The threshold at which the posterior risk 

becomes a minimum is then chosen as the best threshold. As shown in this paper, our method 

for choosing an optimum threshold is simple to work with and effective. 
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Appendix A 

Three more simulation examples are shown. 

Simulation 1 

Simulate 1000 observations from a GBG with the following parameters: 

. 
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Figure 9  Simulated observations 

 

Figure 10  A minimum posterior risk is obtained at t = 0.9753 
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Figure 11  Simulated observations 

 

Figure 12  A minimum posterior risk is obtained at t = 0.9290 
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Simulation 3 

Simulate 1000 observations from a GBG with the following parameters: 

. 

 

 

Figure 13  Simulated observations 

 

Figure 14  A minimum posterior risk is obtained at t = 1.4408 
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Appendix B 

The MDI prior for  is defined at , Beirlant et al. (2004). 
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