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Abstract:  The Pareto distribution model assumption in the peaks over threshold 

method, will be tested by making using of the Kolmogorov-Smirnov goodness of 

fit method. Pareto distributed variables can be transformed to exponential, and the 

test will be for exponentiality. It was found that the statistic can be used as an 

indication of where to choose the threshold and to check the Pareto model 

assumption. 
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1. Introduction.  

The Kolmogorov-Smirnov test (K-S test) is a nonparametric test  which 

can be modified to test goodness of fit. A Pareto distributed random 

variable can be transformed to an exponential distributed variable. The 

specific case of testing for an exponential distribution using the K-S test 

has been thoroughly investigated also when the parameter is unknown 

and estimated.  

In the peak over threshold (POT) method (Davidson and Smith, 1990), the 

Pareto model is often used. It is assumed that for x larger than a threshold 

c,  

                    1 ( ) ( / ) , 0, 0F x x c x cα α−− = > > ≥ , 

where α  is called the index of the distribution and the parameter of 

interest to estimate. The largest m values in a sample of size n, will be 

transformed to exponential observations.  The K-S test will be applied to 
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check the Pareto model assumption and also to choose a threshold. It was 

found that the transformation from Pareto to exponential is good when 

using estimated parameters to perform the transformation, even in small 

samples. 

The K-S test is then used to test if the transformed observations, based on 

the maximum likelihood estimators are exponential, and thus the original 

observations Pareto distributed. The choice of the threshold using the K-S 

statistic will be investigated. The m largest observations which distribution 

is closest to the Pareto distribution with respect to the K-S test, will be 

used to estimate the threshold and the index. 

Graphical methods are often used to identify the threshold, for example 

the QQ and the Hill plot (Drees, de Haan, Resnick, 2000). The K-S test 

has the advantage of not only giving an indication of in which region to 

choose the threshold, but also to check if the largest observations exhibit 

Pareto type behaviour.  

The Kolmogorov-Smirnov statistic is defined as  

                    ˆsup | ( ) ( ) |n n
x

d n F x F xα= − ,   

 

 the empirical distribution function is denoted by ( )nF x , and the estimated 

distribution function, based on the maximum likelihood estimators, in a 

sample of size n, denoted by ˆ ( )F xα . The large sample properties of testing 

for an exponential distribution, using the K-S statistic is given by Haywood 

and Khmaladze (2008). The large sample distribution function of nd  under 

the null hypothesis of exponentiality, when the parameters are estimated 

is ( ) 2 ( ) 1n nF d d= Φ − , where Φ  denotes the standard normal distribution. 

 

A distribution F is heavy tailed  when the distribution has the behaviour  

that for large x, L(x) a slowly varying function, if 

                       

                     1 ( ) ( ), 0,F x x L x xα α−− > → ∞∼ . 
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The Pareto model assumes that  

                          

                    1 ( ) ( / ) , 0, 0F x x c x cα α−− = > > ≥ ,  

 

where the extreme value index is denoted by 1γ α −= .  The parameter α  

will be referred to as the index. Applications to financial data can be found, 

for example in the paper by Rytgaard (1990). The Pareto density function 

is  

 

                    ( 1)( ) ,f x c x x cα αα − += ≥ . 

 

The Pareto distribution has the property that log( / )x c  is exponentially 

distributed with expected value 1/α . The maximum likelihood estimators 

of c and α  in a sample of size n+1 Pareto distributed observations, 

denoted by (1) ( 1)... nx x +≤ ≤ , is   

 

                 
1

( )
2

ˆ ˆ/ log( / )
n

j
j

n x cα
+

=

= ∑ . 

 

The maximum likelihood estimator of c is (1)ĉ x=  and 
1

( )
2

ˆ ˆ/ log( / )
n

j
j

n x cα
+

=
= ∑ , 

ĉ and α̂  was shown to be consistent estimators of  c and α  (Johnson, 

Kotz, Balakrishnan, 1994, p582). 

 

The assumption will be made that if the observations in the tail are Pareto 

distributed with unknown parameters, that ( ) ˆlog( / ), 2,..., 1jx c j n= + , is 

approximately exponentially distributed with expected value 1/α .  

Assuming that the transformed observations are exponentially distributed, 

it follows that the maximum likelihood estimator of the parameter is 

( )
2

ˆ ˆ/ log( / )
n

j
j

n x cα
=

= ∑ , as in the Pareto model. Using the properties of the 

Pareto likelihood estimators it follows that asymptotically 
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( )
1

ˆ( log( / ) / ) 1/
n

j
j

E x c n α
=

=∑  and 2
( )

1

ˆvar( log( / )) /
n

j
j

x c n α
=

=∑ , which shows that 

the first two moments are similar to that of an exponential distribution. A 

simulation study shows that even for small samples the distribution of the 

transformed Pareto observations is very close to exponential. 

 

The choice of the threshold is made where the estimated exponential 

distribution function is closest to the empirical distribution function with 

respect to the K-S statistic. The distribution function is estimated by 

making use of  the maximum likelihood estimators for a sample size m out 

of n.  Thus when the K-S statistic of the transformed observations 

( ) ˆlog( / )jx c , j=1,…,m is a minimum with respect to the K-S statistic when 

testing for exponentiality. The K-S statistic can be plotted for various 

values of m,  ˆsup | ( ) ( ) |m m
x

d m F x F xα= −  and the smallest value of md  

corresponding to the threshold ( 1)n mx − +  is used. The p-value for the 

exponential hypothesis is ( ) 2 ( ) 1m mF d d= Φ −  and can be used to test if the 

Pareto model is valid. 

 

The most popular estimator used in peak-over-threshold problems is the 

Hill estimator which is estimating  1α γ− = . Suppose the largest m in a 

sample of size n is used, the the Hill estimator is 

 

                
1

( ) (1) ( )
1

1
ˆ ˆ ˆlog( / ), min( ,..., ), ( 1/ )

1

m

j m
j

x c c x x
m

γ γ α
−

=

= = =
− ∑ . 

 

This estimator is consistent but can be biased (Pictet, Dacorogna, Müller, 

1998). It can be derived without assuming the strict Pareto model. It is the 

inverse of the maximum likelihood estimator of α after transforming to 

exponentially distributed observations and assuming c is unknown.  
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2. Checking the Pareto assumption and choosing the threshold  

Plots were made for various sample sizes n. Between m=50 and m=250 

largest observations were chosen. The absolute values of negative 

observations which are symmetrically distributed around zero were used. 

Shown are results from  t-distributed samples, stable distribution with 

index 1 (Cauchy) and index 1.5.  

            

In the figure 1 the p-value for the null hypothesis of exponentiality and the 

K-S statistic in a sample of size n=1000 is shown. It can be seen that for 

large m, the hypothesis of exponentiality and thus the Pareto model would 

be rejected.   

 

Figure 1. The p-value and estimated index as a function of m, n=1000, 

4t distribution. Best estimate when m=110. 
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Figure 2.  The empirical and estimated cdf of the transformed tail 

observations, n=1000, 4t distribution. Best estimate at m=119, estimated 

3.5998. Index is 4. 

In the following figures the K-S statistic is plotted for various values of m, 

and the estimated index at those points. The tails of the 6t  distribution is 

not very heavy and it can be seen that the Pareto model is only valid in the 

largest values. The K-S statistic lead to a reasonable choice of the 

threshold. 

 

Figure 3. K-S statistic and p-value as a function of m, n=2500 

6t distribution. Best estimate with m=63, estimated 5.2897. Index is 6. 

Solid line the estimated index and dashed line K-S statistic. 
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Figure 4. K-S statistic and p-value as a function of m, n=500, stable 

distribution, index is 1. Best estimate with m=166, estimated index 1.0078.  

Solid line the estimated index and dashed line K-S statistic. 

 

 

  

Figure 5. K-S statistic and p-value as a function of m, n=1000, stable 

distribution, 1.5α = . Best estimate at m=134, estimated 1.5937. Solid line 

the estimated index and dashed line K-S statistic. 

 

It can be seen that in this heavy tailed distribution Cauchy distribution,  the 

Pareto model is valid for large values of m, even in small sample size of 
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n=500. The estimate of the index is not very sensitive to the choice of the 

threshold, confirmed by the K-S statistic. A lighter tail, and even for the 

larger sample size of n=1000, the Pareto model is only valid in the largest 

few vales, or a small value of m. 

2.  Simulation study results 

The exponential approximation using estimated parameters to transform 

Pareto observations will be considered first. For various sample sizes n, 

Pareto observations simulated and transformed to exponential ( ) ˆlog( / )jx c , 

j=2,…,n, where ĉ  is the smallest value in the Pareto distributed sample. 

The transformed sample was tested for exponentiality, using the K-S test 

and ( )
1

ˆ ˆ/ log( / )
n

j
j

n x cα
=

= ∑ . The expected value of the transformed variables 

should be 1/α  and with variance 21/α . The results of 5000 repetitions, is 

given in table 1. The RMSE is calculated with respect to the true 

parameter, 2α = .  The results give an indication that the transformation 

works well, even for small sample and could be used when n>25.  

 

n 
Sample mean 

(1/α =0.5) 

Sample variance 
2(1/ 0.25)α =  

Mean K-S 

Statistic 

Mean 

p-value 
RMSE 

15 0.4991 0.2431 0.00006 0.5943 1.7647 

25 0.4978 0.2466 0.0001 0.5940 1.7685 

50 0.4986 0.2491 0.0001 0.5356 1.5763 

100 0.5009 0.2512 0.0001 0.5164 1.5315 

250 0.5000 0.2499 0.0001 0.5000 1.5133 

 

Table 1.  Estimated parameters and average values of the K-S test in 5000 repetitions. 

Data transformed using estimated parameters. 

  

The estimate when using the K-S threshold was compared with the 

estimates when using a constant m=50 and m=100 highest observations.  

The RMSE is calculated with respect to the index or ˆ ˆ1/α γ= . The 

minimum number of largest observations included was 30 with a maximum 
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of m=200. The study was conducted for 4 6 10, ,t t t  , Cauchy and from a 

Generalized Pareto distribution with 1/ 0.3333, 1/ 0.25α α= = . The index 

and threshold was calculated from samples of sizes n=500 and the results 

is the RMSE of 500 repetitions. 

 

Distribution 
Mean m 

K-S method 

RMSE 

K-S method 

RSMSE 

fixed 

m=50 

RMSE 

fixed 

m=100 

4t  59.3100 1.0814 1.4193 1.8073 

6t  54.7240 2.4046 3.0318 3.5586 

8t  53 4.0311 4.8484 5.4241 

Cauchy 80.4440 1.1573 1.1081 0.0854 

GPD ( 3α = ) 65.6160 0.6985 0.8332 0.9846 

GPD ( 4α = ) 68.3580 1.3235 1.5414 1.7600 

  

Table 2.   Comparison of the various the RMSE’s with the K-S method. Sample size 

n=500, 500 repetitions. 

 

Distribution 
Mean m 

K-S method 

RMSE 

K-S method 

RSMSE 

fixed 

m=50 

RMSE 

Fixed 

m=100 

4t  58.9080 1.0869 1.4153 1.8047 

6t  54.2370 2.4108 3.0337 3.5633 

8t  53.5430 4.0162 4.8196 5.4368 

Cauchy 77.8500 1.1747 1.1174 0.0924 

GPD ( 3α = ) 69.9050 0.7163 0.8273 0.9778 

GPD ( 4α = ) 66.9350 1.3268 1.5517 1.7596 

 

Table 3.   Comparison of the various the RMSE’s with the K-S method. Sample size 

n=1000, 500 repetitions. 

The K-S method gives a good choice of a  threshold, but performs weaker 

in the Cauchy data sample. For the t-distribution with 6 and 8 degrees of 

freedom, this method performs well. Overall it seems the method 

performed better with smaller sample sizes and where the tails are heavy, 
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but say with 4.α >  In such problems the K-S statistic is a good method to 

choose an threshold. 

3. Conclusions 

The Kolmogorov-Smirnov statistic can be used as an indication of whether 

the Pareto model is valid in the largest values of a sample, when 

estimating the index. It also gives a good indication where the Hill 

estimator is best, and can thus be used to get an indication of where to 

choose the threshold. The rate of convergence to a Pareto distribution of 

the complement of the distribution function in the tails is dependent on the 

distribution involved, and in the case of unknown distribution it would be 

important to check the Pareto principle. 

 

An interesting aspect that in many cases an excellent fit to the tails was 

found using the Pareto assumption, but the estimated index was very 

biased, which can show that for a given distribution, the estimation method 

may be good, but the index is a function of n, m and x, and only reaches 

the true value of the index in the limit. 
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