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ABSTRACT 

ESKOM has a hydropower station at the Gariep dam. Predictions of the inflows are necessary for ESKOM to 
manage the water level. In this paper we consider three possible distributions to model the annual and monthly 
inflows. 

1. INTRODUCTION 

Spillage at the Gariep Dam in the Orange river in South Africa causes financial losses to ESKOM, the main 
supplier of electricity in Southern Africa. De Waal and Verster (2009) have shown that if the loss due to spillage 
is taken as approximately R4,35/1000m3 then the total financial loss from 1970 to 2006, of which 13 years 
recorded spillage, amounts to R 76 950 708. ESKOM manage the outlet of water through 4 hydro turbines each 
having an outlet capacity of 200 m3/s (Department of water affairs website). The aim is to manage the outlet of 
water through the turbines such that the risk of spillage is minimized given the constraints specified by the 
Department of Water Affairs and Forestry (DWAF). The DWAF formulated a curve on the water level of the 
dam such that there is water available for irrigation purposes downstream. ESKOM is free to use water above 
the curve, but if it gets below the curve, restrictions are imposed on the amount of water let out (De Waal and 
Verster, 2009). The inflows into the dam are usually high in the summer months, October to April, when heavy 
rains can occur in the catchment areas, while the demand for electricity is usually high in the winter months, 
June to August. Furthermore, it has been shown by De Waal (2009) that the Southern Oscillation Index (SOI) 
has a significant correlation with the rainfall in the catchment areas of the Gariep dam and therefore also with 
the inflows into the Gariep dam.  

To place the problem of spillage into perspective, consider that the Gariep dam has a total capacity of 
approximately 5 500 million m3 (Department of water affairs website). Therefore, in the event of a flood as was 
recorded in 1988, when the inflows for February and March was 4147.5 million m3 and 4886.7 million m3 
respectively, ESKOM stand to lose a significant amount of money in the form of lost electricity that could have 
been generated. 

We will consider three possible distributions to model the inflow into the Gariep dam while incorporating the 
effect of the SOI. In Section 2 we will consider the LogNormal model as it was discussed by de Waal (2009) as 
a starting point in predicting the total inflow for each month. In Section 3 we will consider the effect of using 
the SOI of different months in predicting the inflow for each month separately. In Section 4 the Beta Type 2 
distribution is considered as a possibility to model the inflow of separate months. Another approach, the Weibull 
distribution will be considered in Section 5. 

2. MONTHLY PREDICTIONS USING THE LOGNORMAL MODEL 

De Waal (2009) introduced the LogNormal model with posterior predictive density to predict the total inflow 
for a year given the observed value of the previous year’s October SOI.  The LogNormal distribution is used 
because by the Central Limit Theorem totals will always tend to a Normal distribution but the inflow data is 
always positive and skewed to the right. 

De Waal (2009) showed that if we let Y be equal to the log of the annual inflows, expressed in millions, then Y 
follows a Normal distribution. Expressing the mean as a linear combination of the observed SOI for October of 
the previous year. 

� �  �� �  �� � 	      ,  	 is used to represent the observed SOI value 

Estimating � by linear regression: �� � 8.63216 & �� � 0.033108 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Real and predicted annual inflows with the 1st and 3rd quartiles shown 
 
Using �� to represent the expected inflow for 2010 and 	� to represent the observed SOI value for October 2009 
of -14.7, the posterior predictive density of ��|	� is ����̂�, ���
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� �  �� �  �� �  14.7 � 8.14547 , so that the prediction for 2010 can be obtained as 

,�-�./01����� �  3447.733715 23//30� 24 

By adjusting a standard �-distribution the 1st and 3rd quartiles can be obtained: 
5� � 2275.465782 23//30� 24 
54 � 5223.902203 23//30� 24 

By using this model a correlation of approximately 0.54 can be obtained. 

However, ESKOM needs the predictions to be made for each month separately and not the year as a whole.  In 
order to do this we fitted an 11th degree polynomial to the monthly inflow data of 1971 – 2008 and calculated 
the weight given to each month. By using these weights, given in Table 1, the expected annual inflow can then 
be subdivided into the expected inflow for each month. Figure 2 shows the best fit 11th degree curve that can be 
obtained by using the data. 

Table 1: Weights assigned to each month and the expected inflow for 2010 

Month January February March April 
Weight 0.126049 0.180328 0.160997 0.088928 
Inflow (m3) 434.581977 621.722299 555.074134 306.599189 
Month May June July August 
Weight 0.046610 0.027112 0.014139 0.026830 
Inflow (m3) 160.697673 93.475253 48.748080 92.501124 
Month September October November December 
Weight 0.043741 0.079946 0.101756 0.103566 
Inflow (m3) 150.806877 275.631342 350.828080 357.067688 
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Figure 2: Best fit 11th degree polynomial 

3. USING THE SOI OF DIFFERENT MONTHS 

Table 2 shows the correlation of the observed SOI of different months of the previous year with the inflow of 
each month. It can be seen that even though the SOI for October is the best to use when predicting the total 
inflow for a given year it is not necessarily the best when predicting the inflow for each month separately. 

Table 2: Correlation of previous year’s SOI with monthly inflows 

 
However, the extra difficulty in predicting all the extra SOI values is considerable and the results obtained when 
this was done were not worthwhile, so for this paper we only consider the use of the October SOI values in all 
the models discussed. 

4. THE BETA TYPE 2 DISTRIBUTION 

If the monthly inflow data is assumed to follow a Beta Type 2 distribution it can be transformed to a Beta Type 
1 distribution by performing the following transformation: 

A QQ-plot and histogram with a pdf overlay can then be drawn to assess the fit of the data to the Beta Type 1 
distribution. This has been done for each month and the resulting graphs for January are shown in Figures 3 and 
4.  From the histogram (Figure 3) it can clearly be seen that the pdf of the Beta Type 1 distribution does not fit 
the transformed data very well. The QQ-plot (Figure 4) indicates that the Beta Type 1 distribution has problems 
in the upper extremes. Due to the bad fit, the Beta Type 2 distribution cannot be used to model the monthly 
inflows and it will not be discussed further in this paper. 

 

J F M A M J J A S O N D

J -0.10786 -0.01634 0.097161 0.019078 -0.00842 0.130112 0.30067 0.119562 0.183825 -0.03067 0.088766 0.056822

F 0.007331 -0.13746 0.052967 0.068914 -0.02025 0.000724 -0.0455 -0.25085 -0.06901 -0.14719 0.07961 -0.01268

M 0.207012 0.162363 0.259955 0.092075 0.284699 0.219934 0.294779 0.103223 0.071286 0.132212 0.231581 -0.05689

A 0.211532 0.009135 0.121671 0.153531 0.33601 0.148348 0.28642 -0.03721 0.032671 0.182905 0.305574 -0.01435

M 0.203586 0.018229 -0.02571 -0.02899 0.195836 0.054142 0.269736 -0.01513 -0.19326 0.131004 0.063541 -0.15315

J 0.277537 0.072216 0.114244 0.098009 0.360758 0.27153 0.296696 0.268812 0.072998 0.345438 0.005456 -0.22738

J 0.397783 0.23228 0.196007 0.106126 0.350775 0.330896 0.409552 0.14253 -0.05865 0.26848 0.199176 -0.12969

A 0.475379 0.292549 0.248289 0.165798 0.465124 0.350596 0.22769 0.048502 -0.10292 0.18176 0.303956 -0.07177

S 0.494792 0.302105 0.239705 0.252096 0.579682 0.39841 0.385287 0.130748 -0.04473 0.141961 0.254266 -0.01699

O 0.450802 0.385429 0.39836 0.247993 0.61092 0.4062 0.398565 0.131292 0.123508 0.2377 0.247888 -0.08567

N 0.446409 0.379765 0.295524 0.146357 0.516379 0.356877 0.194494 0.190871 0.01055 -0.01851 0.206714 0.03237

D 0.526294 0.352744 0.305237 0.261966 0.573484 0.35358 0.230601 0.017379 -0.16432 0.097686 0.160524 -0.00404
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Figure 3: Histogram of transformed inflow data for January plotted with the pdf of the Beta Type 1 distribution. 

 

 

 

 

 

 

 

 

 

Figure 4: QQ-plot of the inflow data for January and the Beta Type 1 distribution. 

5. THE WEIBULL DISTRIBUTION 

Assuming that the monthly inflow data follows a Weibull distribution instead of a Beta Type 2 distribution as in 
Section 4, a histogram and a QQ-plot can be drawn for each month to assess the fit. From Figures 5 and 6 it can 
be seen that the Weibull distribution is a good candidate when trying to model the monthly inflows. 

 

 

 

 

 

 

 

 

 
Figure 5: Weibull pdf plotted on the histogram on the monthly inflows for January 
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Figure 6: QQ-plot of the Weibull distribution against the monthly inflow data for January. 
 

Let � �  log�$0��:/; -�./01<� then �~>?>��, �, @, A�, where GBG stands for the Generalized Burr 
Gamma distribution (Beirlant, et. al., 1999). If @ � 1 and A � 0 then �~BC3DE//��, �� where � denotes the 
mean of � and � denotes the standard deviation of �, which is assumed to stay constant. Therefore � and � can 
easily be determined. In order to incorporate the impact of SOI it is necessary to express � as a linear function of 

the observed SOI value of the previous October: � � �� � �� � "F-. Now let G � H%I
J  then B � K�1�  G �

LKM�1� ~,NO�1� where K�N�, also known as the digamma function, denotes the logarithmic derivative of the 

gamma function. Therefore K�1� �  0.57722 and KM�1� � PQ

R . Thus .�1� � exp� 1� and using Jeffrey’s 

prior ( �
J � the posterior of � can be determined as exp� Σ1� � W�

JX
YZ�

� KM�1�
[
Q, where � is the length of Y. 

The Gibbs sampling method can then be used to estimate the values of �� and �� so that the expected inflow for 
any month can be determined as exp \ ��� � �� � "F-�] for a given October SOI value. This process was 
repeated for each month. The expected annual inflow can then be obtained by summing over all the months. 
Figure 7 shows the expected annual inflow for different values of the SOI. 

 

 

 

 

 

 

 

 

 

Figure 7: Expected annual inflow at a given previous October SOI value with an exponential curve fitted 

Using the Weibull model, a table has been constructed of the expected inflow for each month at all possible 
values of the October SOI, a part of which is shown in Table 3. It is also possible to fit an exponential curve to 
the predictions that will make it easier to obtain a rough estimate of the prediction at a given SOI value, this 
curve is also shown in Figure 7. 

  



Table 3: Expected inflows for specific October SOI of the previous year 

J F ... J A ... N D TOTAL
-35 38.39 42.58 ... 45.77 43.94 ... 42.57 46.44 259.70

-34.9 36.65 47.64 ... 46.23 48.40 ... 47.98 47.33 274.22
-34.8 45.77 43.00 ... 47.38 43.18 ... 42.07 43.25 264.65

... ... ...
-0.1 952.31 916.01 ... 908.24 1081.94 ... 964.03 931.89 5754.41

0 1031.93 1040.30 ... 975.54 935.61 ... 958.59 889.55 5831.53
0.1 1014.21 903.00 ... 938.38 963.24 ... 941.31 1031.50 5791.65
... ... ...

34.8 21700.20 25940.24 ... 22042.40 25159.04 ... 22265.70 21779.07 277235.38
34.9 23275.42 24241.28 ... 21955.24 20884.89 ... 21937.41 22808.52 275684.61
35 23199.61 23837.65 ... 24545.93 23899.46 ... 25499.38 22564.28 290128.31

EXPECTED INFLOW
SOI

 

6. CONCLUSION AND RECOMMENDATIONS 

Using the LogNormal model discussed in Section 2 a correlation of 0.5408, between the real and expected 
annual inflows, can be obtained. The Weibull model discussed in Section 5 can be used to predict the monthly 
and annual inflows given the observed value of the previous October’s SOI, using this method a correlation of 
0.5735 has been obtained. It may also be of interest to consider the effect of other ecological covariates on the 
inflows and to build a model that takes this into account. 
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