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Abstract  The metallurgical recovery processes in diamond mining may under certain 

circumstances cause an under recovery of large diamonds. In order to predict high 

quantiles or tail probabilities we use a Bayesian approach to fit a truncated Generalized 

Pareto Type distribution to the tail of the data consisting of the weights of individual 

diamonds. Based on the estimated tail probability, the expected number of diamonds 

larger than a specified weight can be estimated. The difference between the expected 

and observed frequencies of diamond weights above an upper threshold provides an 

estimate of the number of diamonds lost during the recovery process. 
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1 Introduction 

The nature of metallurgical recovery processes in diamond mining may cause under 

recovery of large diamonds (that is, for diamonds above a certain large carat value, say 

between 30 and 60cts per stone). Diamonds not recovered by the mining process end 

up on the dumps, together with the tailings. Because of the potentially large monetary 

value of even a small number of large diamonds the question arises whether re-mining 

of a mine dump can be made more profitable by the recovery of such diamonds. To 

answer this question, estimation of the expected number of large diamonds is of 

interest.  

 

In early, unpublished work done in the 1980’s, Sichel, Kleingeld and Ravencroft (1980) 

(unpublished handwritten notes not available to us; personal communication) used the 

Double Truncated Pareto distribution to model the distribution of diamond weights. In 

the present paper we use a Bayesian approach to fit a truncated Generalized Pareto 

Type distribution to the tail of the data consisting of the weights of individual diamonds 

from a specific mine. The difference between the expected and observed frequencies of 

diamonds above an upper threshold provides an estimate of the number of diamonds 

lost during the recovery process. The method is applied to an observed data set from a 

diamond mine.  

 

 

 

 



2 Generalized Pareto model 

The cumulative distribution function (cdf) F(x) of the Generalized Pareto Type (PT) 

distribution for a random variable  (in our application: diamond weights exceeding 

a lower threshold ) is given by  

 –                                           (1) 

The Generalized Pareto Type distribution is fitted to data exceeding a lower threshold . 

It has the advantage that, given the lower threshold, it has only one parameter, ,  

which is the shape parameter or extreme value index of the distribution (Verster and De 

Waal 2009). 

 

Any tail probability  of the distribution can be 

estimated once  is estimated. In the present work we estimate  through a Bayesian 

approach, namely as the mode of the posterior distribution of , given a lower threshold 

 and an ordered random sample  above the threshold. 

 

The posterior distribution of  is derived using the maximal data information (MDI) prior 

(Zellner 1977) 

         (2) 

The proof that [Eq. (2)] is the MDI prior uses the fact that , and 

that , where  denotes the density function of . 

 

Given a random sample  above the threshold , the likelihood function is  



                                          (3)     

so that the posterior density can be written as    

                 (4) 

The mode of the posterior distribution is taken as the estimate of . 

 

To validate the choice of lower threshold  we draw a quantile-quantile plot (QQ-plot) of 

the observed data against the estimated data at the empirical cdf probabilities 

(Beirlant et al. 2004). For given , the estimated quantiles from (1) 

become 

 .                                                          (5) 

A plot of  against ,  yields the QQ-plot which is used to judge model fit: 

The graph should follow the 45o line if the model fits well, and the correlation coefficient 

 is a goodness of fit statistic (Beirlant et al. 2004). 

 

Example 

The Generalized Pareto Type distribution was fitted to diamond size data from a 

diamond mine. To maintain confidentiality of the data a small lognormal error was 

added to data points, and a number of data values were randomly removed from the 

data set to veil the sample size. All conclusions made from the data remained 

unaffected by these modifications of the sample.  

 



The modified sample contained  diamond weights of 11cts or more. The lower 

threshold for fitting the Pareto Type of distribution was chosen as . With this 

threshold, the Bayesian estimate of  is . Figure 1 shows the posterior 

distribution of  with a mode of 0.44. 

 

Figure 1 Generalized Pareto model: Posterior distribution of    

    (lower threshold ) 

 

Figure 2 shows the QQ-plot which has a correlation coefficient of 0.9488. Inspection of 

the QQ-plot suggests that the Generalized Pareto Type distribution fits the data well up 

to diamond weights of about 45 to 50 cts. Thus the lower threshold  seems 

appropriate, but above a weight of 50 cts the expected weights of diamonds are larger 

than the observed weights. The latter observation is a first indication of potential under 
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recovery of large diamonds. This aspect of the data set is explored further in the next 

section. 

 

Figure 2 Generalized Pareto model: QQ-plot of observed vs. expected 

quantiles 

 

The expected number of diamonds greater than a certain weight  can be estimated by 

multiplying the tail probability  with the sample size, , which is the 

number of observations larger than the lower threshold . Based on the estimate 

for  of , the expected number of diamonds greater than 30cts and 60cts is 

estimated as 56.2 and 12.6 respectively.  In contrast, the observed numbers of 

diamonds greater than 30cts and 60cts in the sample are 56 and 7 respectively.  

 

3 Truncated Generalized Pareto model  
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As pointed out in section 2, the QQ-plot (Fig. 2) suggests that the Generalized Pareto 

Type distribution fits the data well for weights below 45 to 50 cts, but the fit is not good 

for weights above this range. Furthermore, based on the fit of the Generalized Pareto 

Type distribution to the whole data set above the lower threshold of  the expected 

number of diamonds greater than 60cts is estimated as 12.6, while the observed 

number of diamonds greater than 60cts is only 7. This confirms our expectation that 

there is a certain loss of large diamonds in the recovery process. Therefore, only the 

first part of the data (diamonds with weights below a certain upper threshold) may be 

reliable, while diamonds weights above a certain upper threshold may constitute 

unreliable data in the sense that an unknown number of diamond weights are missing 

from the sample. This characteristic of the data suggests that the model should be fitted 

only to the range of diamonds weights representing reliable data. 

 

In earlier work, Sichel, Kleingeld and Ravencroft (1980; personal communication) 

considered the Double Truncated Pareto model with the following probability density 

function 

           (6) 

Here  and  are parameters of the distribution estimated from the double truncated 

data, and  and  are the lower and upper limit of truncation respectively. In the same 

spirit, we now adapt the Generalized Pareto Type model, presented in Section 2: We 

incorporate both a lower and an upper threshold for the data, and then fit the truncated 

Generalized Pareto distribution to the data between the thresholds.  

 



Considering data truncated in the interval , where  is the lower and  

the upper threshold, the truncated distribution function is 

  ,                                                           (7) 

Thus the posterior distribution for , from [Eq. (3)] above, is 

                 (8)                                                

 follows from [Eq. (1)] by replacing  with . An estimate of  is now obtained 

from the mode of (8).  The quantile function from (7) becomes  

                        (9)                     

 

Example (continued) 

Considering the same data set as in the example of section 2, the lower threshold again 

is chosen as , and the upper threshold as . We therefore cater for under 

recovery of diamonds larger than 49cts. Under the truncated model, the Bayesian 

estimate of  is . Figure 3 shows the posterior distribution of  with mode 

0.481. 

 

 

 

 

 

 

 



Figure 3  Truncated Generalized Pareto model: Log of Posterior distribution 

for  (lower threshold ; upper threshold )     

 

The QQ-plot of the observed against the expected quantiles (Figure 4) indicates good 

model fit over the range of data to which the truncated Pareto Type model was fitted 

(between the lower threshold  and the upper threshold  ). 
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Figure 4 Truncated Generalized Pareto model: QQ-plot of observed vs. 

expected quantiles 

 

Figure 5 shows a plot of the estimated  values for different choice of upper threshold  

. Figure 5 suggests that  starts to stabilize around 0.48 for upper thresholds of 49 

and greater. Therefore, choosing an upper threshold of 49 in this case seems 

appropriate.  
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Figure 5 Truncated Generalized Pareto model: Estimates of  as a function 

of upper threshold   

 

 

4 Estimating the number of diamonds not recovered 

The expected number of diamonds larger than the upper threshold   can be estimated 

either through a “plug-in” method, or though a prediction method, as discussed below in 

Section 4.1 and 4.2 respectively. The number of unrecovered diamonds above the 

upper threshold is then estimated as the difference between the expected and the 

observed number of diamonds. 

 

4.1 Plug-in estimate 

Let  be the probability of a diamond weight  being less than or 

equal to ,Furthermore,  is the number of observed values in the sample below  
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(but greater than ) and  is the number of observed values above , so that 

 is the total sample size. Since  is unreliable (too small) because of 

potential under recovery of large diamonds, the total observed sample size  

is also unreliable (too small). The objective is to estimate the true  as . Of course, if 

we have an estimate  for , the estimate for  is given as . The problem 

therefore reduces to the problem of estimating the total sample size  of a binomial 

variate. 

 

The number  of diamonds below the upper threshold  follows a Binomial distribution 

. Thus  for given  and , but for a given estimate  we can 

estimate  as . Thus an estimate for  is given by       

      (10) 

In Equation (10),  is estimated as follows: first, we estimate  from the data between 

the lower and upper thresholds using the truncated Generalized Pareto model, as 

described in section 3. The estimate  for  is then plugged into Equation (1), to obtain 

the estimate  for . Finally, the estimate  is plugged into Equation (10) to obtain . 

We refer to [Eq. (10)] as the “plug-in” estimate of . 

 

Using [Eq. (10)] the estimated number of diamonds greater than 49cts is  while 

the observed number of diamonds greater than 49cts is only . Therefore, the 

plug-in estimate suggests that there are about 8 more diamonds greater than 49cts to 

be recovered.  



 

4.2 Predictive estimate 

In this section the posterior prediction quantile function is used to predict the quantile, 

that is, the weight of a diamond, for a given small tail probability.  

 

The posterior quantile function is given by 

       (11) 

where  denotes the tail probability and  the quantile function [Eq. (5)]. Since integral 

[Eq. (11)] is impossible to evaluate analytically,  is estimated as  

                                                              (12) 

Eq. (12) is evaluated by simulating  values  of  from its posterior distribution 

[Eq. (8)]. Note that the first and second moments of the Generalized Pareto Type 

distribution are only defined for  and  respectively. Therefore, values 

of  are simulated from the truncated posterior distribution, where (upper) truncation 

limit is less than or equal to 1. Figure 6 shows the predicted quantiles for various tail 

probabilities, estimated from 10 000 simulations where  was simulated with an upper 

truncation limit of the posterior distribution of 1.  

 

 

 

 

 



Figure 6  Truncated Generalized Pareto model: Predicted quantiles at 

various tail probabilities 

 

Similarly, by simulating  values from its posterior distribution [Eq. (8)], we can estimate 

the predicted tail probability  for a future diamond weight  as 

   .    (14) 

Based on the data set used in sections 3 and 4 the posterior predicted tail probability of 

observing a diamond 49cts or larger is estimated as 0.0618 (10 000 simulations of  

with an upper truncation limit of the posterior distribution of 0.8). 

 

As pointed out in section 4.1, in order to estimate the number of diamonds above the 

upper threshold, the total sample size  needs to be estimated. Again this becomes a 

Binomial estimation problem where the probability of success, , obtained from [Eq. 
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(14)], is 1 – 0.0618 = 0.9382, and the number of successes is  for the 

example data set. If a non-informative uniform prior for  defined on the parameter 

space  is chosen, the posterior for  is  

       (15) 

Figure 7 shows the plot of the posterior of  for  and . From 

this posterior, the estimate of , taken as the mode, is  . Thus the estimated 

number of diamonds greater than 49cts is , while only 17 of these 

diamonds were recovered. Therefore we estimate that another 9 diamonds could be 

mined which is consistent with the conclusion of Section 4.1. 

 

Figure 7 Truncated Generalized Pareto model: Log of posterior of  given  

     and         
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We note that the predicted tail probability [Eq. (14)] is very sensitive to the chosen upper 

truncation limit for the posterior of . For example, if the upper bound is chosen as 1 

instead of 0.8 the predicted tail probability is 0.0952 and the estimated number of 

diamonds greater than 49cts is 42. Table 1 shows the predicted tail probabilities and the 

estimated sample sizes greater than  for different upper truncation limits for the 

posterior of  .  

                   

Table 1 Estimated tail probability and total sample size for different upper  

truncation limits for the posterior of    

 upper bound   

0.3 0.0038 410 

0.5 0.0211 414 

0.8 0.0621 431 

1 0.0954 448 

 

Conclusions 

The distribution of the weights of large diamonds can be modelled through a 

Generalized Pareto Type distribution fitted to the tail of the data.  When it is known, or 

suspect, that large diamonds above a certain weight are under recovered in the mining 

process, the number of diamonds lost to tailings can be estimated by fitting a truncated 

Generalized Pareto Type distribution. In the latter case, both a lower threshold and an 

upper threshold for the distribution can relatively easily be incorporated into the model. 

The posterior predictive quantile function can be used to predict quantiles at various tail 

probabilities. The number of diamonds greater than the upper threshold can be 

estimated either through a plug-in or a prediction method.    



References 

Beirlant J, Goedgebeur Y, Segers J, Teugels J (2004) Statistics of extremes. Theory 

and applications. Wiley, Chichester 

Verster A, De Waal DJ (2009) Approximating the Generalized Burr-Gamma with a 

Generalized Pareto-type of distribution. Technical Report 2/97, University of the 

Free State, Bloemfontein 

http://www.uovs.ac.za/faculties/documents/04/117/TechnicalReports/Teg397.pdf 

Zellner A (1977) Bayesian analysis in econometrics and statistics. Edward Elgar, Lyme 

US. 

 

 

 

 

 

 

 

 

 

Table 1 Estimated tail probability and estimated total sample size for different 

upper truncation limits for the posterior of    
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Truncation limit for     

0.5 0.0205 414 

0.6 0.0335 420 

0.7 0.0469 425 

0.8 

0.9 

1 

0.0620 

0.0785 

0.0952 

432 

440 

448 

 

 

 

 

 

 

 

 

 

 


