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Abstract: Least squares regression based on probabilitg,méto called rank regression, can be
used to estimate the parameters of some distritmiti®egression is performed between a function
of the empirical distribution function and the ardéatistic as the independent variable. Using
large sample properties of the empirical distritiunction and order statistics, weights to
stabilize the variance in order to perform weigHesbt squares regression are derived. Weighted
least squares regression is then applied to tiveasin of the parameters of the Weibull, the
exponential and the Gumbel (extreme value typéstyidutions. The weights are independent of
the parameters of the distributions considered. t¥@arlo simulation shows that the weighted
least-squares estimators outperform the usuattepstres estimators with respect to the mean

square error, especially in small samples.
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1. Introduction

Least squares regression methods based on themslap between the empirical
cumulative distribution function (cdf) and the ordgatistics are frequently used
to estimate parameters of distributions. In thisgrave propose a weighted least
squares regression method, where the weights apeftional to the inverse of
the large sample variances of a function of thewosthatistics. The weighted least
squares method will be applied to the problem tifreging the parameters of the
Weibull, exponential and Gumbel distributions. Weights are of a simple form

and independent of the parameters of the distahuimulation results show that



the weighted least squares method outperformsdihal unweighted least squares

regression with respect to the mean square error.

As a motivating example for our methodology, wesider the two-parameter

Weibull distribution with cumulative distributiomfiction
X
F(x;a,ﬁ)=1—exp6§f),xa,82 0 (1)

whereqa is the scale parameter aptithe shape parameter.

Methods for estimating the parametersand Sinclude the method of moments

and maximum likelihood. A simple method of estiroat{see Zhang, Xie and

Tang, 2007) exploits the linearization of equafiby) namely
log(-log(1-F x;a.8))= B logk )~ B logé | )

Now let x;,...,X, denote a sample of size n with corresponding cstiistics

Xy < ...< X, . For the sample, equation (2) becomes

log(~log(1-F (x,, i@ ,8))= B logk,, ) B loger . 3)

where r is the order number aRds some non-parametric estimate of

F(X.a,B), such asm =r/(n+1) or Bernard's median rank estimator (Bernard

and Bosi-Levenbach, 1953)° = (r —0.3)/(n+ 0.4).
Settingy, =log(-log(1- Ifr ), % =log(%,,),r =1,...n equation (3) becomes

Yy, =B loglr } Bx (4)

Zhang, Xie and Tang (2007) consider simple leasassp regression of Y against
X (as suggested by equation (4)), as well as siheplst squares regression of X
against Y . Zhang, Xie and Tang (2007) give a tkdaieview and Monte Carlo

study of the performance of these estimation tepes. The form where the
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logarithm of the order statistics are the indepehdariables (based on equation
(4)), called regression of Y on X by Zhang, Xie drahg (2007), will be further

investigated in the present paper.

The order statisticg,,, <...< X,,,do not have constant variance, nor do the log

transformed order statistics X, so that the regoassiodel (4) is heteroscedastic.
In this paper we derive approximate weights toibibthe variances and we
show by Monte Carlo simulation that the weightegression outperforms the

unweighted least-squares method.

2. Derivation of weightsfor least-squares from large sample variances

The weights for the regression will be derivedhasihverse of the approximate
variance of a scalar functioft of an order statistic will be derived. It is assuime

that the derivative of\ is continuous at the expected value of the ordeissc.

Let x,...,x, denote a sample of size n from a distribution thworresponding

order statisticsx,, <...< x,,. The weighted least squares expression to minimize
with respect to the parametersi%wr [E(/\(x(,))) —/\(x(r))]z, where the weight
r=1

for the r-th squared residuaf =[A(X ) =A(X,))] *is
w, =1/var(\ (%,,)), r = 1,...n. The function/A need not be a linear function of

the order statistics.

The statistics= (X)), ...,F (X, ) are beta distributed with
F(X.) ~ Beta(r,n—r +1). E(F(X,))=m =r/(n+1),

r(n-r+1) _m(-m)
(n+2)(n+17  n+2

var(F (x,,))=



Let X, be such thaF ™*(X,) =r/(n+1). Asymptotically

Jnlx,, = X/] : N(0, o7) with o :%,r =1,...,n, provided

F'(m)= f(m)exists (DasGupta, 2008 p. 93). The delta methachcav be
applied to obtain the approximate variance of dasaalued function\ of the

order statistics, where we assume that the finsvatéve of Ais continuous afX,

andA'(X,)#0. Then

AO%Q-AOQ)iN vam”{éﬁg&ﬁj ,r=1,...,n.

It follows that

- dA(x,,) )
var(/\ (X(r) )): rnr(l rnr) ( (X(r))j (5)

(n+2)(FOF (o ),

Furthermore ifA(x,)is of the form as\(x,) = A(F(X,,)) it can be seen that

(d/\(x(r»I :(d/\(F(X(r))) dF(xm)Jz
dX(r) dF(X(r)) dx(r)

X=X,

d/\(F(x(r)»Jz
dF (%) ’

=(f(Xr))2(

r)=Xr

so that the tern f (X, ))*cancels in approximation (6). It can be noted that

weights in such a case are not a function of tmampaters of the distribution
under consideration, and it is possible to apply tiethod with an explicit
expression for the cdf, if a functioh can be constructed which gives a
relationship between the parameters and the diffeoflistribution. This need not

be a linear function of the order statistics.



The weights calculated using Bernard’s median estimator for E(x_(r)),

namelyny = (r -0.3)/(n+ 0.4, (Bernard and Bosi-Levenbach, 1953) instead of

m =r/(n+1), were also tested.

Order statistics and thus also functions of ordeitics are asymptotically
independently distributed (Kendall, Stuart and Qi@B7 p. 462). In this work we

treat the residuals), =A(x,) —A(X,) of the least squares regression as if they

were independent.

An approximation for the bias teri(X, ) —E(A (X)) can be found by using the

second order term of the Taylor expansiorFgk ) . Let h =x,, - X

r

E(h) =0, the Taylor expansion ok(x ) up to the second order term is

Ak ) = ACK) +RATX, ) +2 FEAX, ) +0, (D).

®

and A(X,) ~E(A (¢, )= =5 A"(X, DELVar(A () )

Application 1: Weibull distribution

Consider a sample of size n from a two-parametabWedistribution with

parametersr and 3. The relationship
log(-log(1-F (x;a ,8))= £ logk - £ log@ ) is used to perform rank regression.
The approximate variance afg(-log(1-F (x,,;a,8)) is

m@-m) dlog(-log(1-F (x, ;a.5))) j
(n+2)(f (X,))* dx,

_ m@-m)
(n+2)(log(1-m )f (&-m ¥

_ m
(n+2)(log(1-m, ) (I-m, )

var(log(-log(1-F(x, )=

r

= : (6)
n-r+l.,

(n+2)(logC~ =) (-1 +1)
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The weighted least-squares regression equatiaivsdby letting

1 log (X )
y'=(log(-log(l-m),...,log¢ log(xm, )) X =|: : ,
1 log(X )
W =diag(w,...,.w, ),w, = (n-r +1)(Iog(n_r +1)j ,r=1,..n.
r n+1

0=(X"WX)X'Wy, 0'=(-Blogd,B3).d = exptb, I3)3=6,. Let
X"=(log(Xy ), -, 109k, )), then it follows that

. ij(xj _7)()’] _7) ~ ~

6, == n G =Y -0X.
2 W (% =%)?
=1

Application 2: Exponential distribution

For the exponential distribution with c@(x; A1) =1-expAx), the regression

equation is— log@F XA )¥ Ax, and

r r
(n+2)(n-r+1) (-r+1)

var(-log(1-F&,, A )))=

By solving the least squares regression equatiofmlows that

n

E -w. X, log(1-m.) .
177 ]

> _ = _n—| +1 .

A= W, =————01/var(- log(:-F &, 4))).

; j
Z WX,
i1




Application 3: Gumbel distribution

The Gumbel or extreme value distribution type Itfee maximum has

x=p)!

cdfE(x) =" and the relationship-log(~log(F (x;,8))= X /8~ I3 is

used to perform rank regression. The approximatermnee for the transformation

is
var(- 1og- 10gF (&, 1 /8 )))= (n+2)(To_ng - Smilar o thatof the
Weibull.

3. Simulation study.

3.1 Variance approximation

For the Weibull distribution, the variance approaiion (7) was compared to the

true variance by simulation. Residuals

u, =log(-log(1-m ))- (B logk, )- B logl ))r = 1,..n,

were calculated for 5000 simulation samples andpipFoximated and true
variances plotted against r. The approximatioro@dgeven for a relatively small

sample size of n=30 (Figure 1). Bathp =r /(n+1) and the Bernard median ranks

were used in the approximation of the variance.
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Figure 1. Variance of 5000 residuals, r=1,...,ra sample of size n=30, from a Weibull
distribution witha = 1,,8 = 0.5. The solid line denotes the observed variancegddisbed line the

estimated variances using the Bernard method andabhdot line the usual estimated variances.

For the exponential distribution let =log(1-m )-A log(x,, ).,r = 1,...n, where

sample size used in the simulation is n=15. The &nd approximate variances

are shown in figure 2.
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Figure 2. Variance of 5000 residuals, r=1,...,ra sample of size n=15, from an exponential

distribution with A = 0.5. The solid line denotes the observed varianceg#sted line the

estimated variances using the Bernard method andabhdot line the usual estimated variances.



For the Gumbel distribution with parameterss, let
u, =—log(-log(m ))—-x/G+ulpB. The true and approximated variances

calculated from 5000 samples of size 15 are showviigure 3.
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Figure 3. Variance of 5000 residuals, r=1,...,ra sample of size n=15, from a Gumbel
distribution with £ =0.5,8 = 2.C. The solid line denotes the observed varianceg#stdot

line the estimated variances using the Bernard odedéimd the dashed line the usual estimated

variances.

It can be seen that the variance approximatioaasanable even for relatively
small sample sizes, and that Barnard’s median reggdt in better
approximations of the variances for the Weibull &wmbel distributions than the

usual expected ranks.

3.2 Performance of weighted least squar es estimator s

In tables 1 and 2 the performance (MSESs) of theghted least squares and the
usual unweighted least squares method for estig#tm parameters of the

Weibull distribution are compared.



MSE LS MSE LS MSE MSE MSE MSE
£=05 (B) (@) Weighted| Weighted| Weighted | Weighted LS
a=1.0 (Bernard) | (Bernard) | LS (8) | LS (a) LS (B) (B)

(Bernard) (Bernard)
_ 0.8838 0.0273 0.7870 0.0226 0.6529 0.0214
n=10 (0.4875) (1.2900) (0.4341) | (1.2550) | (0.4759) (1.2912)
_ 0.5432 0.0178 0.4736 0.0145 0.3991 0.0128
n=1s (0.4846) (1.2310) | (0.4472) | (1.1913) | (0.4788) (1.2120)
1230 0.2199 0.0084 0.1882 0.0064 0.1686 0.0060

(0.4818) (1.1221) (0.4656) | (1.0861) | (0.4803) (1.1143)
12100 0.0568 0.0027 0.0511 0.0018 0.0491 0.0018

(0.4880) (1.0506) | (0.0027) | (1.0309) | (0.4881) (1.0408)

Table 1. MSE (and Mean) of estimated parametetiseo¥Veibull distribution
with a =1.0,4 = 0.£ (5000 simulated samples).

MSE LS MSE LS MSE MSE MSE MSE
£=15 (B) (a) Weighted | Weighted | Weighted | Weighted
a=1.0| (Bemard) | (Bernard) | LS () LS (a) LS (B) LS (B)
(Bernard) (Bernard)

10 0.0550 0.2364 0.0519 0.1978 0.0520 0.1856
(1.4517) | (1.0416) | (1.2952) | (1.0333) | (1.4487) | (1.0321)
e 0.0383 0.1265 0.0351 0.1262 0.0347 0.1178
(1.4233) | (1.0126) | (1.3364) | (1.0191) | (1.4414) | (1.0359)
a0 0.0188 0.0777 0.0170 0.0585 0.0170 0.0529
(1.4366) | (1.0200) | (1.3887) | (1.0091) | (1.4388) | (1.0233)
100 0.0053 0.0250 0.0049 0.0165 0.0052 0.0159

(1.4695) | (1.0102) | (1.4648) | (1.0042) | (1.4674) | (1.0093)

Table 2. MSE of estimated parameters of the Wedistribution with
a =1.0,4 = 1.k Estimated using weighted least squares and the usgigssion

method based on 5000 simulated samples.

For the samples sizes investigated, the MSE ofvighted methods outperforms
the usual least squares method with respect to Mt the use of the Bernard
weights decreased the bias too.
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Results for the exponential distribution are givetable 3 and 4.

MSE MSE

A=0.5 MSE MLE Weighted LS | Weighted LS

(Bernard)
n=10 | 0.0399 (0.5532) 0.0285 (0.4592) 0.0292 (0.%608
n=15 | 0.0231 (0.5358) 0.0189 (0.4673) 0.0195 (0.}688
n=30 | 0.0098 (0.5165) 0.0094 (0.4792) 0.0097 (0.%801
n=50 | 0.0056 (0.5104) 0.0058 (0.4875) 0.0059 (0.}881
n=100 | 0.0027 (0.5051) 0.0029 (0.4935) 0.0030 (O7%93

Table 3. MSE (and mean) of estimates of the patemoé the exponential

distribution with A =0.5 (25000 simulated samples).

MSE
MSE )
A=15 MSE MLE ) Weighted LS
Weighted LS
(Bernard)
n=10 0.3795 (1.6693) 0.2654 (1.3851) 0.2722 (1.39
n=15 0.2121 (1.6084) 0.1709 (1.4032) 0.1756 (1.4
n=30 0.0885 (1.5517) 0.0846 (1.4398) 0.0867 (1.34
n=50 0.0503 (1.5319) 0.0516 (1.4628) 0.0525 (1.%6
n=100 | 0.0233(1.5162) 0.0257 (1.48037) 0.0260 (12%¢

00
80
26
43

Table 4. MSE (and mean) of estimates of the paiemoé the exponential

distribution with A =1.5 (25000 simulated samples).

The weighted estimate outperforms the MLE estimat@maller samples sizes

but in this case the Bernard estimate of expe@sH is not the best performer,

and the usual estimate of expected rank shouldée 1o derive the weights.

Results for the Gumbel distribution are given iplés5 and 6.
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MSE LS MSE LS MSE MSE MSE MSE
£=2.0 (B) (u) Weighted| Weighted| Weighted | Weighted LS
(=05 | (Berard) | (Bernard) | LS (B) | LS(¥) Ls (B) 2)

(Bernard) (Bernard)
_ 0.9672 0.4906 0.7333 0.4675 0.4724 0.4755
n=10 (2.5459) | (0.3960) | (2.5128) | (0.4808) | (2.2902) | (0.5404)
_ 0.6340 0.3187 0.4223 0.3038 0.2909 0.3085
n=1s (2.4407) | (0.4129) | (2.3823)| (0.4908) | (2.2252) | (0.5312)
B 0.2766 0.1553 0.1526 0.1444 0.1186 0.1455
n=30 (2.2742) | (0.4298) | (2.2011) | (0.4890) | (2.1167) | (0.5098)
12100 0.0694 0.0495 0.0340 0.0465 0.0309 0.0467
(2.1277) (0.4675 | (2.0644) | (0.5015) | (2.0375) | (0.5081)

Table 5. MSE (and mean) of estimates of paramefai®e Gumbel distribution
with ¢ =0.5,4= 2.C(5000 simulated samples).

MSE LS MSE LS MSE MSE MSE MSE
£=4.0 (B) (1) Weighted| Weighted| Weighted | Weighted LS
4=0.5 | (Berard) | (Bernard) | LS (B) | LS(K) LS (B) )

(Bernard) (Bernard)

_ 4.2569 1.8820 3.1528 1.7819 2.0452 1.8134
n=10 (5.1190) (0.2898) | (5.0409) | (0.4655) | (4.5980) (0.5853)
=15 2.5688 1.3531 1.6485 1.2625 1.1341 1.2799
(4.8731) (0.3144) | (4.7417) | (0.4750) | (4.4267) (0.5554)

1230 1.0968 0.6447 0.6066 0.6064 0.4711 0.6106
(4.5495) (0.3569) | (4.3989) | (0.4748) | (4.2301) (0.5163)

12100 0.2762 0.1978 0.1381 0.1819 0.1259 0.1822
(4.2518) (0.4189) | (4.1263) | (0.4856) | (4.0725) (0.4987)

Table 6. MSE (and mean) of estimates of paramefeise Gumbel distribution
with ¢ =0.5,4= 4.C(5000 simulated samples).

The weighted estimate outperforms the usual lepsires estimator and

Bernard’s median ranks are best to use when céloglitne weights.
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4. Discussion

The weighted least squares method outperformsahal unweighted least
squares method, especially for small sample s@#sthe weights are very easy
to calculate.
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