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Parameter estimation through weighted least-squares rank 

regression with specific reference to the Weibull and 

Gumbel distributions  

 

J.M. van Zyl and R. Schall 

 

Abstract: Least squares regression based on probability plots, also called rank regression, can be 

used to estimate the parameters of some distributions.  Regression is performed between a function 

of the empirical distribution function and the order statistic as the independent variable. Using 

large sample properties of the empirical distribution function and order statistics, weights to 

stabilize the variance in order to perform weighted least squares regression are derived. Weighted 

least squares regression is then applied to the estimation of the parameters of the Weibull, the 

exponential and the Gumbel (extreme value type I) distributions. The weights are independent of 

the parameters of the distributions considered. Monte Carlo simulation shows that the weighted 

least-squares estimators outperform the usual least-squares estimators with respect to the  mean 

square error, especially in small samples.  

 

Keywords: Probability plot, Weighted Least-squares regression, Rank Regression, 

Weibull Distribution, Gumbel Distribution, Estimation. 

 

1. Introduction  

 

Least squares regression methods based on the relationship between the empirical 

cumulative distribution function (cdf) and the order statistics are frequently used 

to estimate parameters of distributions. In this paper we propose a weighted least 

squares regression method, where the weights are proportional to the inverse of 

the large sample variances of a function of the order statistics. The weighted least 

squares method will be applied to the problem of estimating the parameters of the 

Weibull, exponential and Gumbel distributions. The weights are of a simple form 

and independent of the parameters of the distribution. Simulation results show that 
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the weighted least squares method outperforms the usual unweighted least squares 

regression with respect to the mean square error. 

 

As a motivating example for our methodology, we consider the two-parameter 

Weibull distribution with cumulative distribution function 

           ( ; , ) 1 exp( ( ) ), , , 0,
x

F x xβα β α β
α

= − − ≥                                           (1) 

where α  is the scale parameter and β  the shape parameter. 

 

Methods for estimating the parameters α  and β include the method of moments 

and maximum likelihood. A simple method of estimation (see Zhang, Xie and 

Tang, 2007) exploits the linearization of equation (1), namely 

 

log( log(1 ( ; , )) log( ) log( )F x xα β β β α− − = −                                  (2) 

 

Now let 1,..., nx x  denote a sample of size n with corresponding order statistics 

(1) ( )... nx x≤ ≤ . For the sample, equation (2) becomes 

 

( ) ( )
ˆlog( log(1 ( ; , )) log( ) log( )r rF x xα β β β α− − = −                           (3) 

 

where r is the order number andr̂F is some non-parametric estimate of 

( )( ; , )rF x α β , such as  /( 1)rm r n= +  or Bernard’s median rank estimator (Bernard 

and Bosi-Levenbach, 1953) ( 0.3) /( 0.4)b
rm r n= − + . 

 

Setting ˆlog( log(1 ))r ry F= − − , ( )log( ), 1,...,r rx x r n= =  equation (3) becomes 

 

          log( )r ry xβ α β= − +                                                                          (4) 

 

Zhang, Xie and Tang (2007) consider simple least squares regression of Y against 

X (as suggested by equation (4)), as well as simple least squares regression of X 

against Y . Zhang, Xie and Tang (2007) give a detailed review and Monte Carlo 

study of the performance of these estimation techniques. The form where the 
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logarithm of the order statistics are the independent variables (based on equation 

(4)), called regression of Y on X by Zhang, Xie and Tang (2007), will be further 

investigated in the present paper. 

 

The order statistics (1) ( )... nx x≤ ≤ do not have constant variance, nor do the log 

transformed order statistics X, so that the regression model (4) is heteroscedastic. 

In this paper we derive approximate weights to stabilize the variances and we 

show by Monte Carlo simulation that the weighted regression outperforms the 

unweighted least-squares method. 

 

2. Derivation of weights for least-squares from large sample variances 

 

The weights for the regression will be derived as the inverse of the approximate 

variance of a scalar function Λ of an order statistic will be derived. It is assumed 

that the derivative of Λ is continuous at the expected value of the order statistic.  

 

Let 1,..., nx x  denote a sample of size n from a distribution F with corresponding 

order statistics (1) ( )... nx x≤ ≤ . The weighted least squares expression to minimize 

with respect to the parameters is 
2

( ) ( )
1

( ( )) ( )
r

n

r r
r

w E x x
=

 Λ − Λ ∑ , where the weight 

for the r-th squared residual 2 2
r ( )[ (X ) ( )]r ru x= Λ − Λ is 

( )1/ var( ( )), 1,...,r rw x r n= Λ = . The function Λ need not be a linear function of 

the order statistics. 

 

The statistics (1) ( )( ),..., ( )nF x F x  are beta distributed with 

( )( ) ( , 1)rF x Beta r n r− +∼ . ( )( ( )) /( 1)r rE F x m r n= = + ,  

( ) 2

(1 )( 1)
var( ( ))

( 2)( 1) 2
r r

r

m mr n r
F x

n n n

−− += =
+ + +

.  
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Let rX be such that 1( ) /( 1)rF X r n− = + . Asymptotically 

2
( )[ ] (0, )

d

r r rn x X N σ− →  with 2
2

(1 )
, 1,...,

( '( ))r

r r

r

m m
r n

F X
σ −= = , provided 

'( ) ( )r rF m f m= exists (DasGupta, 2008 p. 93).  The delta method can now be 

applied to obtain the approximate variance of a scalar valued functionΛ of the 

order statistics, where we assume that the first derivative of Λ is continuous at rX  

and '( ) 0rXΛ ≠ . Then 

 

   

( )

2

( )
( ) ( )

( )

( )
( ) ( ) 0, var( )

r Xr

d
r

r r r
r x

d x
x X N x

dx
=

  Λ Λ − Λ →      

, r=1,…,n. 

 

It follows that 

 

( )

2

( )
( ) 2

( )

( )(1 )
var( ( ))

( 2)( ( ))
r Xr

rr r
r

r r x

d xm m
x

n f X dx
=

 Λ−Λ ≈   +  
     (5) 

 

Furthermore if (r)(x )Λ is of the form as (r) ( )(x ) ( ( ))rF xΛ = Λ  it can be seen that 

( ) ( )

2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ( )) ( )

( )
r X r Xr r

r r r

r r rx x

d x d F x dF x

dx dF x dx
= =

   Λ Λ
=      

   
 

                           

( )

2

( )2

( )

( ( ))
( ( ))

( )
r Xr

r
r

r x

d F x
f X

dF x
=

 Λ
=   

 
, 

 

so that the term 2( ( ))rf X cancels in approximation (6).  It can be noted that the 

weights in such a case are not a function of the parameters of the distribution 

under consideration, and it is possible to apply this method with an explicit 

expression for the cdf, if a function Λ  can be constructed which gives a 

relationship between the parameters and the cdf of the distribution. This need not 

be a linear function of the order statistics. 
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The weights calculated using Bernard’s median rank estimator for E(x_(r)), 

namely ( 0.3) /( 0.4)b
rm r n= − +  (Bernard and Bosi-Levenbach, 1953) instead of 

/( 1)rm r n= + , were also tested. 

 

Order statistics and thus also functions of order statistics are asymptotically 

independently distributed (Kendall, Stuart and Ord, 1987 p. 462). In this work we 

treat the residuals, (r)(x ) ( )r ru X= Λ − Λ  of the least squares regression as if they 

were independent. 

 

An approximation for the bias term (r)( ) E( (x ))rXΛ − Λ  can be found by using the 

second order term of the Taylor expansion of ( )( )rF x . Let ( )r r rh x X= − ,  

( ) 0rE h = , the Taylor expansion of (r)(x )Λ up to the second order term is 

2
(r)

1
(x ) ( ) '( ) ''( ) (1)

2r r r r pX h X h X oΛ ≈ Λ + Λ + Λ + .  

 and (r) ( )

1
( ) E( (x )) ''( )) [(var( ( ))]

2r r rX X E xΛ − Λ ≈ − Λ Λ . 

 

Application 1: Weibull distribution 

 

Consider a sample of size n from a two-parameter Weibull distribution with 

parameters α  and β .  The relationship 

log( log(1 ( ; , )) log( ) log( )F x xα β β β α− − = −  is used to perform rank regression. 

The approximate variance of ( )log( log(1 ( ; , ))rF x α β− −  is 

 

( )

( ) 2
(r) 2

( )

log( log(1 ( ; , )))(1 )
var(log(-log(1-F(x )))) ( )

( 2)( ( )) r Xr

rr r
x

r r

d F xm m

n f X dx

α β
=

− −−≈
+

 

                                        =
2 2

(1 )

( 2)(log(1 )) (1 )
r r

r r

m m

n m m

−
+ − −

 

                                        =
2( 2)(log(1 )) (1 )

r

r r

m

n m m+ − −
 

                                        =
21

( 2)(log( )) ( 1)
1

r
n r

n n r
n

− ++ − +
+

.  (6) 
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The weighted least-squares regression equation is solved by letting  

 

1' (log( log(1 ),..., log( log(1 )),nm m= − − − −y  
(1)

( )

1 log( )

1 log( )n

x

X

x

 
 =  
 
 

⋮ ⋮ ,  

2

1

( 1) 1
( ,..., ), log( ) , 1,...,

1n r

n r n r
W diag w w w r n

r n

− + − + = = = + 
. 

1ˆ ( ' ) 'X WX X W−=θ y , 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ' ( log , ), exp( / ),β α β α θ β β θ= − = − =θ . Let 

(1) ( )' (log( ),..., log( ))nx x=x , then it follows that  

 

                   1
2 1 2

2

1

( )( )
ˆ ˆ ˆ,

( )

n

j j j
j

n

j j
j

w x x y y

y x
w x x

θ θ θ=

=

− −
= = −

−

∑

∑
. 

 

Application 2: Exponential distribution 

 

For the exponential distribution with cdf ( ; ) 1 exp( )F x xλ λ= − − , the regression 

equation is log(1 ( ; ))F x xλ λ− − = , and 

 

         ( )var(-log(1-F( ; )))
( 2)( 1) ( 1)r

r r
x

n n r n r
λ ≈ ∝

+ − + − +
. 

 

By solving the least squares regression equations, it follows that 

 1
( )

2
( )

1

log(1 )
1ˆ , 1/ var( log(1 ( ; )))

n

j j j
j

j rn

j j
j

w x m
n j

w F x
j

w x
λ λ=

=

− −
− += = ∝ − −

∑

∑
 . 
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Application 3: Gumbel distribution 

 

The Gumbel or extreme value distribution type I for the maximum has 

cdf
( ) /

( )
xeF x e

µ β− −−= and the relationship log( log( ( ; , )) / /F x xµ β β µ β− − = −  is 

used to perform rank regression. The approximate variance for the transformation 

is 

 ( ) 2

1
var( log( log( ( ; , )))

( 2)(log( ))
r

r
r r

m
F x

n m m
µ β −− − ≈

+
 , similar to that of the 

Weibull. 

 

3.  Simulation study. 

 

3.1 Variance approximation  

 

For the Weibull distribution, the variance approximation (7) was compared to the 

true variance by simulation. Residuals  

 

( )log( log(1 )) ( log( ) log( )), 1,...,r r ru m x r nβ β α= − − − − = ,  

 

were calculated for 5000 simulation samples and the approximated and true 

variances plotted against r. The approximation is good even for a relatively small 

sample size of n=30 (Figure 1). Both /( 1)rm r n= +  and the Bernard median ranks 

were used in the approximation of the variance.  
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Figure 1.  Variance of 5000 residuals, r=1,…,n, in a sample of size n=30, from a Weibull 

distribution with 1, 0.5α β= = . The solid line denotes the observed variance, the dashed line the 

estimated variances using the Bernard method and the dashdot line the usual estimated variances. 

 

For the exponential distribution let ( )log(1 ) log( ), 1,...,r r ru m x r nλ= − − = , where 

sample size used in the simulation is n=15.  The true and approximate variances 

are shown in figure 2. 
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Figure 2.  Variance of 5000 residuals, r=1,…,n, in a sample of size n=15, from an exponential 

distribution with 0.5λ = . The solid line denotes the observed variance, the dashed line the 

estimated variances using the Bernard method and the dashdot line the usual estimated variances. 
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For the Gumbel distribution with parameters ,µ β , let 

log( log( )) / /r ru m x β µ β= − − − + . The true and approximated variances 

calculated from 5000 samples of size 15 are shown in figure 3. 
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Figure 3.  Variance of 5000 residuals, r=1,…,n, in a sample of size n=15, from a Gumbel 

distribution with  0.5, 2.0µ β= = . The solid line denotes the observed variance, the dashdot 

line the estimated variances using the Bernard method and the dashed line the usual estimated 

variances. 

 

It can be seen that the variance approximation is reasonable even for relatively 

small sample sizes, and that Barnard’s median ranks result in better 

approximations of the variances for the Weibull and Gumbel distributions than the 

usual expected ranks. 

 

 

 

3.2 Performance of weighted least squares estimators 

 

In tables 1 and 2 the performance (MSEs) of the weighted least squares and the 

usual unweighted least squares method for estimating the parameters of the 

Weibull distribution are compared. 
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0.5β =  

1.0α =  

MSE LS 

( )β  

(Bernard) 

 

MSE LS 

( )α  

(Bernard) 

 

MSE 

Weighted 

LS ( )β  

 

MSE 

Weighted 

LS ( )α  

 

MSE 

Weighted 

LS ( )β  

(Bernard) 

MSE 

Weighted LS 

( )β  

(Bernard) 

n=10 
0.8838 

(0.4875) 

0.0273 

(1.2900) 

0.7870 

(0.4341) 

0.0226  

(1.2550) 

0.6529 

(0.4759) 

0.0214 

(1.2912) 

n=15 
0.5432 

(0.4846) 

0.0178 

(1.2310) 

0.4736 

(0.4472) 

0.0145 

(1.1913) 

0.3991 

(0.4788) 

0.0128 

(1.2120) 

n=30 
0.2199 

(0.4818) 

0.0084 

(1.1221) 

0.1882 

(0.4656) 

0.0064 

(1.0861) 

0.1686 

(0.4803) 

0.0060 

(1.1143) 

n=100 
0.0568 

(0.4880) 

0.0027 

(1.0506) 

0.0511 

(0.0027) 

0.0018 

(1.0309) 

0.0491 

(0.4881) 

0.0018 

(1.0408) 

 

Table 1.  MSE (and Mean) of estimated parameters of the Weibull distribution 

with  1.0, 0.5α β= =  (5000 simulated samples).  

 

1.5β =  

1.0α =  

MSE LS 

( )β  

(Bernard) 

 

MSE LS 

( )α  

(Bernard) 

 

MSE 

Weighted 

LS ( )β  

 

MSE 

Weighted 

LS ( )α  

 

MSE 

Weighted 

LS ( )β  

(Bernard) 

MSE 

Weighted 

LS ( )β  

(Bernard) 

n=10 
0.0550 

(1.4517) 

0.2364 

(1.0416) 

0.0519 

(1.2952) 

0.1978 

(1.0333) 

0.0520 

(1.4487) 

0.1856 

(1.0321) 

n=15 
0.0383 

(1.4233) 

0.1265 

(1.0126) 

0.0351 

(1.3364) 

0.1262 

(1.0191) 

0.0347 

(1.4414) 

0.1178 

(1.0359) 

n=30 
0.0188 

(1.4366) 

0.0777 

(1.0200) 

0.0170 

(1.3887) 

0.0585 

(1.0091) 

0.0170 

(1.4388) 

0.0529 

(1.0233) 

n=100 
0.0053 

(1.4695) 

0.0250 

(1.0102) 

0.0049 

(1.4648) 

0.0165 

(1.0042) 

0.0052 

(1.4674) 

0.0159 

(1.0093) 

 

Table 2.  MSE of estimated parameters of the Weibull distribution with  

1.0, 1.5α β= = .  Estimated using weighted least squares and the usual regression 

method based on 5000 simulated samples.  

 

For the samples sizes investigated, the MSE of the weighted methods outperforms 

the usual least squares method with respect to MSE, and the use of the Bernard 

weights decreased the bias too. 
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Results for the exponential distribution are given in table 3 and 4. 

 

0.5λ =  MSE MLE 

MSE 

Weighted LS 

 

MSE 

Weighted LS 

(Bernard) 

n=10 0.0399 (0.5532) 0.0285 (0.4592) 0.0292 (0.4608) 

n=15 0.0231 (0.5358) 0.0189 (0.4673) 0.0195 (0.4688) 

n=30 0.0098 (0.5165) 0.0094 (0.4792) 0.0097 (0.4801) 

n=50 0.0056 (0.5104) 0.0058 (0.4875) 0.0059 (0.4881) 

n=100 0.0027 (0.5051) 0.0029 (0.4935) 0.0030 (0.4937) 

 

Table 3.  MSE (and mean) of estimates of the parameter of the exponential 

distribution with  0.5λ =  (25000 simulated samples).  

 

1.5λ =  MSE MLE 
MSE 

Weighted LS 

MSE 

Weighted LS 

(Bernard) 

n=10 0.3795 (1.6693) 0.2654 (1.3851) 0.2722 (1.3900) 

n=15 0.2121 (1.6084) 0.1709 (1.4032) 0.1756 (1.4080) 

n=30 0.0885 (1.5517) 0.0846 (1.4398) 0.0867 (1.4426) 

n=50 0.0503 (1.5319) 0.0516 (1.4628) 0.0525 (1.4643) 

n=100 0.0233 (1.5162) 0.0257 (1.4807) 0.0260 (1.4812) 

 

Table 4.  MSE (and mean) of estimates of the parameter of the exponential 

distribution with  1.5λ =  (25000 simulated samples).  

 

The weighted estimate outperforms the MLE estimator in smaller samples sizes 

but in this case the Bernard estimate of expected rank is not the best performer, 

and the usual estimate of expected rank should be used to derive the weights. 

 

Results for the Gumbel distribution are given in table 5 and 6. 
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2.0β =  

0.5µ =  

MSE LS 

( )β  

(Bernard) 

 

MSE LS 

( )µ  

(Bernard) 

 

MSE 

Weighted 

LS ( )β  

 

MSE 

Weighted 

LS ( )µ   

 

MSE 

Weighted 

LS ( )β  

(Bernard) 

MSE 

Weighted LS 

( )µ  

(Bernard) 

n=10 
0.9672 

(2.5459) 

0.4906 

(0.3960) 

0.7333 

(2.5128) 

0.4675 

(0.4808) 

0.4724 

(2.2902) 

0.4755 

(0.5404) 

n=15 
0.6340 

(2.4407) 

0.3187 

(0.4129) 

0.4223 

(2.3823) 

0.3038 

(0.4908) 

0.2909 

(2.2252) 

0.3085 

(0.5312) 

n=30 
0.2766 

(2.2742) 

0.1553 

(0.4298) 

0.1526 

(2.2011) 

0.1444 

(0.4890) 

0.1186 

(2.1167) 

0.1455 

(0.5098) 

n=100 
0.0694 

(2.1277) 

0.0495 

(0.4675 

0.0340 

(2.0644) 

0.0465 

(0.5015) 

0.0309 

(2.0375) 

0.0467 

(0.5081) 

 

Table 5.  MSE (and mean) of estimates of parameters of the Gumbel distribution 

with  0.5, 2.0µ β= =  (5000 simulated samples).  

 

4.0β =  

0.5µ =  

MSE LS 

( )β  

(Bernard) 

 

MSE LS 

( )µ  

(Bernard) 

 

MSE 

Weighted 

LS ( )β  

 

MSE 

Weighted 

LS ( )µ   

 

MSE 

Weighted 

LS ( )β  

(Bernard) 

MSE 

Weighted LS 

( )µ  

(Bernard) 

n=10 
4.2569 

(5.1190) 

1.8820 

(0.2898) 

3.1528 

(5.0409) 

1.7819 

(0.4655) 

2.0452 

(4.5980) 

1.8134 

(0.5853) 

n=15 
2.5688 

(4.8731) 

1.3531 

(0.3144) 

1.6485 

(4.7417) 

1.2625 

(0.4750) 

1.1341 

(4.4267) 

1.2799 

(0.5554) 

n=30 
1.0968 

(4.5495) 

0.6447 

(0.3569) 

0.6066 

(4.3989) 

0.6064 

(0.4748) 

0.4711 

(4.2301) 

0.6106 

(0.5163) 

n=100 
0.2762 

(4.2518) 

0.1978 

(0.4189) 

0.1381 

(4.1263) 

0.1819 

(0.4856) 

0.1259 

(4.0725) 

0.1822 

(0.4987) 

 

Table 6.  MSE (and mean) of estimates of parameters of the Gumbel distribution 

with  0.5, 4.0µ β= =  (5000 simulated samples).  

 

The weighted estimate outperforms the usual least squares estimator and 

Bernard’s median ranks are best to use when calculating the weights.  
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4. Discussion 

 

The weighted least squares method outperforms the usual unweighted least 

squares method, especially for small sample sizes, and the weights are very easy 

to calculate.  
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