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ABSTRACT

The objective of this paper is to simultaneously compare the performance of six methods for constructing approximate
confidence intervals on the among-group variance component in a simulation study by using their ability to maintain the
stated confidence coefficient as criteria. Results suggest that the generalized confidence interval performs well in all designs
considered.

1. INTRODUCTION

The estimation of variance components serves as an integral part of the evaluation of variation, and is of interest and required
in a variety of applications. Estimation of the among-group variance components is often desired for quantifying the
variability and effectively understanding these measurements. Much research has been conducted to develop confidence
intervals on variance components and articles concerning the topic are spread throughout the literature. However, an exact
confidence interval on the among-groups variance component in unbalanced one-factor random models has yet to be reported
in statistical literature. A variety of approximate intervals have been reported, discussed and compared in recent years.

In this paper we focus on comparing six confidence intervals on the among-groups variance component in the unbalanced
one-factor random model. In section 2 we present the model and introduce notation. Approximate intervals as proposed by
Thomas and Hultquist (1978), Khuri (1999), Burdick and Graybill (1992), Burdick and Eickman (1986), Ting et al. (1990),
and a generalized confidence interval method proposed by Park and Burdick (2003) are presented in section 3. A simulation
study is employed to compare the proposed methods in section 4.

2. MODELS AND NOTATION

The model considered is the normal based random effects one-factor design. Although notationally simple, this model has
proven useful to practitioners in a variety of fields and results can be generalized to any mixed model with two random error
terms. The unbalanced random model is written as

Yij = µ + Ai + Eij (2.1)

Where i = 1,….,g, j = 1, …,ni, µ is an unknown constant, Ai and Eij are mutually independent normal random variables,

where the Ai's are distributed N(0, 2
A ), and the Eij's are distributed N(0, 2

E ).

The analysis of variance for the model given in (2.1) is shown in Table 2.1.

1
Corresponding and presenting author



Table 2.1 Analysis of variance for unbalanced one-factor model
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The statistics { .1Y , .Y2 ,..., .gY , 2
ES } are sufficient statistics. The mean squares 2

AS and 2
ES are independent and 2

E/SSE  has

a chi-square distribution with N-g degrees of freedom. Thus, the confidence interval on 2
E for the balanced model remains

valid. However, design unbalancedness creates a problem concerning the distribution of A/SSA  . For the unbalanced model

it can be shown that SSA/θA follows a chi-square distribution with g-1 degrees of freedom if and only if 02
A  . Thus,

intervals concerning 2
AS for the balanced model are not strictly valid in the unbalanced case.

Formulas in this paper will be presented in a general form such that values of αL and αU may be selected according to the
confidence interval of interest, i.e. one-sided, two-sided with equal tails or two-sided with unequal tails. For any
predetermined value of α, the values of αL and αU will be such that equation αL + αU = α will hold. For the one-sided upper
confidence interval αL=α; αU=0, for the 1 - α one-sided lower confidence interval αU = α; αL = 0, and for equal tails two-sided
confidence intervals αL = αU = α/2. Formulas may also be implemented for unequal tails two-sided confidence intervals where
αL + αU = α, and values for αL and αU may be different.

A confidence interval [L, U] that satisfies P[L θ U] = 1 - α is called an exact 1 - α confidence interval. Often exact 1 - α
confidence intervals do not exist and P[L θ U] is only approximately equal to 1 - α. These intervals are referred to as
approximate intervals. An approximate interval is conservative if P[L θ U] > 1 - α and liberal if P[L θ U] < 1 - α. As a
general rule, conservative intervals are preferred when only approximate intervals are available. However, if it is known that
the actual confidence coefficient of a liberal interval is not much below 1 - α, the liberal interval can be recommended.
Burdick and Graybill (1992) defined a "good" confidence interval to be one that has a confidence coefficient equal to or close
to a specified 1 - α value and thus provides useful information about the parameter of interest.

3. CONFIDENCE INTERVALS ON 2
A

Six methods for constructing approximate confidence intervals for the among-group variance component for the unbalanced
random one-way model will be discussed and compared.

3.1 The Method by Thomas and Hultquist

Thomas and Hultquist (1978) proposed a confidence interval for the among-group variance in the unbalanced case. The

unweighted sum of squares associated with Ai in the unbalanced random model (2.1) is  
i
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. g/YY , and  iH n/1/gn is the harmonic mean of ni's. Thomas and Hultquist (1978) showed that

)n/(SSU 2
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AH  has approximately a chi-squared distribution with g-1 degrees of freedom. Using this fact they proposed

the following approximate 100(1 - αL)% and 100(1 - αU)% lower and upper confidence bounds for 2
A :
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We refer to this interval as the TH confidence interval on 2

A
 . Thomas and Hultquist (1978) found that the approximation

with the interval in (3.1) is adequate except in cases where the ratio of the among- and within-group variance )/( 2
E

2
AA 

is small (less than 0.25) and the design is extremely unbalanced. In designs that have a few group sizes of either 1 or 2, TH

performs poorly for both small and moderate values of
A

 . This occurs because the exact distribution of 2
US)1g(  is a

weighted sum of (g-1) independent chi-square random variables. As discussed by Burdick and Graybill (1984), these weights
are reciprocals of the sample sizes and intermediate values of the sample sizes. Thus, if a few samples of size 1 or 2 are
included in the design, the weights on the sum of chi-squared variables will be very unequal, while the TH method assumes

equal weights and approximates )S(E/S)1g( 2
U

2
U with a chi-square distribution. Hence, when the weights are very unequal,

the approximation will not perform well.

3.2 The Modified Harmonic Mean Method

Khuri (1999) proposed an alternative value to the harmonic mean, nH, used in the TH confidence interval on 2
A . This value,

denoted my nM , is given by
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matrix, )1/n,...,1/n,diag(1/n g21 .

Using nM instead of nH in the TH confidence interval, we obtain
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This interval is referred to as the modified harmonic mean (MHM) confidence interval on 2
A . According to Lee and Khuri

(2002) using nM instead of nH can provide a slightly better approximation of the distribution of 2
US as a scaled chi-squared

variate, particularly in cases where the design is extremely unbalanced.

3.3 The Modified Large Sample Interval

It is known that 2
AS)1g(SSA  is distributed as a scaled chi-squared variate if the data set is balanced. If, however, the data

set is unbalanced, then SSA is distributed as a scaled chi-squared variate if and only if 02
A  . Thus if 2

A is expected to be

close to zero, then it would be appropriate to treat SSA as an approximate scaled chi-squared variate.

Burdick and Graybill (1992) used this idea to construct an approximate confidence interval for 2
A by modifying the

corresponding balanced confidence interval. The resulting approximate 100(1 - αL)% and 100(1 - αU)% lower and upper

confidence bounds for 2

A
 are then given as
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The lower bound in (3.3) is considered equal to zero if gN,1g,
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FS/S  . We refer to the interval in (3.3) as the modified large sample (MLS) confidence interval for 2
A . If 2

A

is far from zero, this procedure might result in very liberal intervals.

3.4 The Method by Burdick and Eickman

Burdick, Maqsood and Graybill (1986) suggested an interval for the ratio )/( 2
E

2
A  which overcomes the problem associated

with small ratios in the TH procedure. Using this interval, Burdick and Eickman (1986) developed approximate 100(1 - αL)%

and 100(1 - αU)% lower and upper confidence bounds for 2

A
 given by
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We refer to this interval as the BE confidence interval for 2

A
 . Burdick and Eickman used computer simulation to show that

(3.4) had a confidence coefficient that was generally at least as great as the stated level. Moreover, although (3.4) was
generally known to be more conservative than the TH (3.1) interval, the average interval lengths of the two methods never
differed by more than 5% in their simulation study.

3.5 The Method by Ting et al.

Another confidence interval proposed for H
2
E

2
M
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MS and 2
ES . Although this method, proposed

by Ting et al. (1990), requires two independent mean squares that follow scaled chi-square distributions, 2
MS and 2

ES closely

mimic these conditions.

The Ting et al. (1990) 100(1 - αL)% and 100(1 - αU)% lower and upper confidence bounds for 2
A are given by
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If negative lower bounds are obtained, these negative bounds are increased to zero. Given the distributional assumptions of
the model, the interval in (3.5) is expected to perform well for large values of ρA.

Park and Burdick (2003) tested the performance of (3.5) on its ability to maintain the stated confidence coefficient. The
method of Ting provided a confidence coefficient less than the stated level when ρA was small for very unbalanced designs.
Thus, in situation where ρA is thought to be small, the Ting method was not recommended for extremely unbalanced datasets.
In other situations however, this method performed well.

3.6 Generalized Pivotal Quantity for 2

A


Park and Burdick (2003) proposed a generalized pivotal quantity for constructing a generalized confidence interval on 2
A

using results provided by Olsen et al. (1976). Olsen proved that the random variables SSE, Q1,…,Qm are mutually
independent, where
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has a chi-square distribution with (g-1) degrees of freedom.

To construct a generalized confidence interval for 2
A define T as the solution for 2

A in the non-linear equation
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where

ql and sse are observed values of Ql and SSE, respectively, and EE /SSER  and   l
2
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2
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independent observable chi-square variables with N-g and g-1 degrees of freedom respectively.

Note that the distribution of T is completely determined by the joint distribution of RE and U and is free of parameters
contained in the model. We simulate 10 000 (or more) values of T and sort them from least to greatest. The simulation is

performed by simulating RE and U. If  l lE q)SSE/R(U , then let T=0, since 02
A  . If  l lE q)SSE/R(U , then the

bisection method can be used to solve the non-linear equation in (3.6.1). The approximate 100(1 - αL)% and 100(1 - αU)%
lower and upper confidence bounds for the parameters are

L =
L

T and U =
U1T  (3.6)

where

L
T is the value of T in position 10 000 x αL, and

U1T  is the value of T in position 10 000 x (1 - αU).

Park and Burdick (2003) compared the performance of (3.6) and (3.5) on their ability to maintain the stated confidence
coefficient and the average length of the two-sided confidence intervals. The generalized method maintained the stated
confidence coefficient across all values of ρA. In contrast the method of Ting (3.5) provided a confidence coefficient less than
the stated level when ρA was small. The average interval lengths for both methods however, were very similar. A
disadvantage of the generalized confidence interval proposed by Park and Burdick (2003) may be that it requires the
numerical solutions of non-linear equations to be computed, which is relatively difficult to carry out.

4. SIMULATION STUDY

In order to compare the methods described in section 3 for constructing a confidence interval for 2
A in the unbalanced one-

way random effects model, a simulation study was performed. The criteria for analyzing the performance of the methods are
the ability to maintain the stated confidence coefficient, and the average length of the two-sided confidence intervals.
Although shorter average interval lengths are preferable, it is necessary that the methods first maintain the stated confidence
coefficient. In order to test the methods, three unbalanced patterns were selected for investigation and are shown in Table 4.1.



Table 4.1 Unbalanced designs used for the simulation study
Pattern g N ni Degree of Imbalance ( )

1 3 30 3, 7, 20 0.6550
2 6 35 5, 2, 7, 5, 7, 9 0.8763
3 10 60 1,1, 4, 5, 6, 6, 8, 8, 9, 12 0.7692

Note that patterns were selected to be similar to patterns used by Burdick and Eickman (1986) and Park and Burdick (2003),
with slight adjustments to the ni's in order to represent a wider spectrum of degree of imbalance.

These unbalanced patterns were used to simulate Y values using the definitions of an unbalanced one-factor random model as
given in equation (2.1). The same procedure as proposed by Park and Burdick (2003) was followed. Without the loss of

generality, 2
A was set to 2

E1  so that 2
AA  and 2

EA1  . Random variables Ai and Eij were independently generated

from normal populations with zero means and variances A and A1  respectively. Selected values for A were 0.001, 0.1,

0.2,…, 0.9, 0.999. For each value of A , 1000 data sets were simulated in each pattern. The generalized confidence interval

is based on 10 000 simulated values for each data set. The stated confidence coefficient for all intervals is 90%. Matlab was
used to perform all simulations.

Two-sided intervals were computed for each proposed method. Confidence coefficients were determined by counting the

number of intervals that contained A
2
A  . Using the normal approximation to the binomial, if the true confidence

coefficient is 90%, there is a less than 2.5% chance that an estimated confidence coefficient based on 1000 replications will
be less than 88.1%. The average lengths of the two-sided intervals were also calculated.

5. RESULTS

The results presented in Figures 5.1-5.6 are the simulated confidence coefficients and average interval lengths obtained using
the six proposed methods for the three patterns mentioned in Table 4.1.

It is apparent from Figures 5.1-5.3 that the Burdick-Eickman (BE) procedure provides too conservative intervals (that is, the
coverage probabilities are larger than the nominal 90% value) when A is small. The estimated confidence coefficient of this

interval declines if A becomes larger and lies near the nominal value if A is large. For large values of A , coverage is as

good as some of the other procedures. This result is consistent with results found by Burdick and Graybill (1992), Hartung
and Knapp (2000) and Lee and Khuri (2002).

The modified large sample (MLS) procedure provides liberal confidence intervals (that is, the coverage probabilities are
smaller than the nominal 0.90 value) when A is far away from zero. This result is most evident for pattern 3 (Figure 5.3).

The estimated confidence coefficient of this interval increases if A becomes smaller. For patterns 1 and 2 (Figures 5.1 & 5.2)

true coverage probabilities do not differ severely from the nominal value. This result is also consistent with results found by
Burdick and Graybill (1992), and Lee and Khuri (2002). The reason for this is because the MLS interval is based on the

assumption that A
2
A /S)1g(  has a chi-squared distribution with (g­1) degrees of freedom. In the unbalanced design

however, this is true if and only if 02
A  . For this reason the MLS interval cannot generally be recommended, unless it is

known that 2
A is close to zero.

The TH, MHM and Tin procedures behave similarly for pattern 1 and 2 (Figures 5.1 & 5.2), by maintaining their coverage
probabilities close to the nominal value and never dropping below the 88.1% level. For pattern 3 (Figure 5.3), the TH and
Tin procedures still behave similarly but they produce somewhat liberal intervals for small values of A . The MHM

procedure, on the other hand, provides extremely liberal confidence intervals for small A , particularly for this pattern. For all

three procedures, the estimated confidence coefficient increased as A became larger. This is due to the fact that U
2
U /S)1g( 

has an exact chi-square distribution only when 1A  . Thus, in situations where A is thought to be small ( 4.0A  , say)



TH, MHM and Tin procedures are not recommended for extremely unbalanced datasets. These results are mostly consistent
with results found by Lee and Khuri (2002) and Park and Burdick (2003).

Using the above-mentioned normal approximation criterion, it is clear that the generalized confidence interval (GEN) method
maintains the stated confidence coefficient across all values of A for all three patterns. This result is consistent with results

found Park and Burdick (2003).

It is apparent from Figures 5.4-5.6 that the MLS procedure provides the shortest interval length. As mentioned by Burdick
and Graybill (1992), this is typically the case, but this interval can have a confidence coefficient much less than the stated
level. Minor differences in interval lengths of the other procedures may occur because some negative bounds have been
increased to zero, but in general the average lengths do not vary much between methods. For pattern 3 (Figure 5.6) there is a
greater variation in interval lengths than for the other two patterns.

6. CONCLUSIONS

The simulation study confirm results by Burdick and Graybill (1992), and Lee and Khuri (2002) that the Burdick-Eickman
(BE) method provides conservative intervals when A is small, while the TH, MHM and Tin procedures liberal intervals for

small values of A and the modified large sample (MLS) procedure provides liberal confidence intervals when A is far away

from zero. The generalized confidence interval (GEN) is the only method that maintains the stated confidence coefficient
across all values of A for all three patterns and is therefore recommended.
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Fig.5.1 Simulated confidence coefficients for 90%

intervals on 2
A for pattern 1.

Fig.5.4 Simulated average interval lengths for 90%

intervals on 2
A for pattern 1.

Fig.5.2 Simulated confidence coefficients for 90%

intervals on 2
A for pattern 2.

Fig.5.3 Simulated confidence coefficients for 90%

intervals on 2
A for pattern 3.

Fig.5.5 Simulated average interval lengths for 90%

intervals on 2
A for pattern 2.

Fig.5.6 Simulated average interval lengths for 90%

intervals on 2
A for pattern 3.


