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Abstract 
 
Daily peak electricity demand forecasting in South Africa using a seasonal autoregressive integrated 
moving average (SARIMA) model, a SARIMA model with generalized autoregressive conditional 
heteroskedastic errors (SARIMA-GARCH) and a regression-SARIMA-GARCH (Reg-SARIMA-
GARCH) model are presented in this paper. The GARCH modelling methodology is introduced to 
accommodate the possibility of serial correlation in volatility since the daily peak demand data exhibits 
non-constant mean and variance, and multiple seasonality corresponding to weekly and monthly 
periodicity. The proposed Reg-SARIMA- GARCH model is designed in such a way that the predictor 
variables are initially selected using a multivariate adaptive regression splines algorithm. The developed 
models are used for out of sample prediction of daily peak demand. A comparative analysis is done with a 
piecewise linear regression model. Results from the study show that the Reg-SARIMA-GARCH model 
produces better forecast accuracy with a mean absolute percent error (MAPE) of 1.42%.  
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1. Introduction 
 
Prediction of daily peak load demand is very important for decision making processes in the 
electricity sector. Decision making in this sector involves planning under uncertainty. This 
involves for example finding the optimal day to day operation of a power plant and even 
strategic planning for capacity expansion.  The demand of electricity forms the basis for power 
system planning, power security and supply reliability (Ismail et al., 2009). It is important 
therefore to produce very accurate forecasts as the consequences of underestimation or 
overestimation can be costly. As noted by Taylor (2008), accurate short-term forecasts are 
needed by both generators and consumers of electricity particularly during periods of abnormal 
peak load demand. 
 
In this paper seasonal autoregressive integrated moving average (SARIMA) model, a SARIMA 
with generalized autoregressive conditional heteroskedastic errors (SARIMA-GARCH) model 
and a regression-SARIMA-GARCH (Reg-SARIMA-GARCH) model are developed and used for 
out of sample predictions of daily peak demand (DPD) using South African data. The models are 
designed for short term forecasting, up to seven days ahead. The Reg-SARIMA-GARCH model 
captures factors such as day of the week, holiday and temperature effects including multiple 
seasonality.  
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The major challenge in most conventional Reg-SARIMA models is that of selecting a minimum 
number of predictor variables and ranking them in order of their importance. The proposed Reg-
SARIMA-GARCH model developed in this paper is designed in such a way that the predictor 
variables are initially selected using a multivariate adaptive regression splines algorithm 
(Friedman, 1991). 
 
Accurate prediction of daily peak load demand helps in the determination of consistent and 
reliable supply schedules during peak periods. Accurate short term daily peak load forecasts will 
enable effective load shifting between transmission substations, scheduling of startup times of 
peak stations, load flow analysis and power system security studies.   
 
The rest of the paper is organized as follows, in Section 2 the data used is described and a 
preliminary analysis carried out. The models are presented in Section 3 and a detailed discussion 
of the results is covered in Section 4. A comparative analysis of the developed models is done 
with a piecewise linear regression model in Section 5. The summary and conclusion of the paper 
are covered in Section 6. 
 
2. Data and Definitions  
 
The data used in this paper is on net energy sent out (NESO) from distribution in response to 
some demand of electrical power. NESO (measured in megawatts) is defined as the rate at which 
electrical energy is delivered to customers. In this paper NESO is used as a proxy of electrical 
demand after adjusting for energy losses. This definition of electrical demand has its weakness. 
Electrical demand is bounded by the power plants available to provide supply at any time of the 
day including the need for reserve capacity.  Demand cannot exceed supply and there are no 
market forces acting to influence electricity prices and hence reducing demand in the short run. 
Prices are generally fixed in the short run. If demand were to exceed supply, intervention takes 
place in the form of for example, load shedding. Load shedding is the last resort used to prevent 
a system-wide blackout. This NESO definition excludes the demand from households, 
companies etc, who are willing and able to pay for electricity but currently do not have access to 
electrical power. Despite the weakness in the NESO definition of electrical demand, it is still a 
good and measurable proxy of electricity demand. 
 
The data is on daily peak demand (DPD) from 1 January 1996 to 14 December 2009 (n =5097 
daily peak demand observations)2. Since demand is normally recorded on an hourly basis, DPD 
is the maximum hourly demand in a 24-hour period. Daily peak demand modeling is important 
as it provides short term forecasts which will assist in economic planning and dispatching of 
electric energy. Aggregated DPD data is collected for the industrial, commercial and domestic 
sectors of South Africa.  
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2.1 Preliminary Analysis 
 
The time series plot of DPD in Figure 1 shows a positive linear trend and a strong seasonal 
fluctuation with DPD high in winter and low in summer. The trend is mainly due to economic 
development of the country. The winter peaks in the Southern Hemisphere are around June/July 
of each year. A casual inspection of the graph also shows that the variance is not constant.  

 
Figure 1: Time series plot for DPD (in Megawatts) for the period 1/1/1996-14/12/2009 
 
A test for a stochastic trend in the DPD series using the Augmented Dickey Fuller test shows that 
the series is not stationary. The null hypothesis of a stochastic trend was accepted showing that 
there is a unit root. Stationarity was achieved by a first difference of the data.  
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Figure 2: Spectral density of DPD 
 
A spectral analysis revealed periodicity in the data. Figure 2 shows the spectral density of DPD. 
The first major peak in the spectral density is around 0.14 indicating the presence of a periodic 
movement of seven days.  
 
 
3.  The Models 
 
SARIMA, SARIMA-GARCH and Reg-SARIMA-GARCH models are presented in this section. 
The developed models are then used for out of sample predictions of DPD. In all models DPD is 
taken as the dependent variable. The data is transformed by taking natural logarithms to reduce 
the impact of heteroskedasticity that may be present because of the large data set (Hekkenberg et 
al., 2009).   
 
3.1 Seasonal ARIMA Model (SARIMA) 
 
Load demand forecasting has been studied extensively over the years using time series, 
regression based methods and artificial and computational intelligence (Ramanathan et al., 1997; 
Mirasgedis et al., 2006; Amaral et al., 2008; Amin-Naseri and Soroush, 2008; Gosh, 2008; 
Soares and Medeiros, 2008; Taylor, 2008; Truong et al., 2008; Goia et al., 2010, among others). 
Updated review of different methods can be found in (Feinberg and Genethliou, 2005; Hahn et 
al., 2009). The general multiplicative SARIMA sQDPqdp ),,(),,( ×  model used in this paper is 

given in equation (1) and the derivation is done in appendix A1. 
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where ty represents daily peak demand (in megawatts) observed on day t ( nt ,...,2,1= ) and tε  

represents the error term at time t  with variance 2
tσ  and potentially subject to conditional 

heteroskedasticity, s is the seasonal length and B is a backshift operator defined as 1−= tt yBy , 

 ,)( ,)( ),( ,)( s
Qq

s
Pp BBBB ΘΦ θφ are backshift operator polynomials of orders QqPp  ,  , ,  

respectively, modeling the regular and weekly autoregressive and mean average effects  
respectively. D

s
d ∇∇  and are difference operators defined as tt

d yy dB)1( −=∇  and  

tt
D
s yy Ds)B1( −=∇ , and c is a constant term. 

 
3.2 Volatility Forecasting Models 
 
In conventional SARIMA models, the variance of the disturbance term is assumed to be 
constant. Causal inspection of the electricity demand time series plot shown in Figure 1 suggests 
that the series does not have a constant variance. The series exhibits phases of high demand (in 
winter) followed by periods of low demand (in summer). The assumption of homoskedasticity 
(constant variance) seems inappropriate, since the data exhibits non-constant mean and variance, 
and multiple seasonality corresponding to weekly and monthly periodicity. The GARCH 
modelling methodology is introduced to accommodate the possibility of serial correlation in 
volatility. Models for volatility forecasting were first developed by Engle (1982). These models 
known as the autoregressive conditional heteroskedasticity (ARCH) models were developed to 
capture the non constant variance. ARCH models were later extended to generalized ARCH 
(GARCH) models by Bollerslev (1986) and Nelson (1991). Modelling volatility in time series 
data using GARCH – type models has been studied extensively over the past three decades, 
(Engle, 1982; Bollerslev, 1986; Nelson, 1991; Taylor, 2006; Aknouche and Bentarzi, 2008; 
Mulera and Yohaib, 2008; Doornik and Ooms, 2008; Ghahramani and Thavaneswaran, 2008; 
Horv´ath et al., 2008; Ismail et al., 2009; He and Maheu, 2010; Kim et al., 2010, among others). 
Work closely related to ours is that of Taylor (2006) who investigated methods for Net 
Imbalance Volume density forecasting. The author decomposed the problem into point 
forecasting and volatility forecasting. A seasonal ARMA model and a periodic AR model with 
simplistic volatility forecasting gave good results. 
 
3.2.1 SARIMA-GARCH Model 
 
The SARIMA-GARCH model is one in which the variance of the error term of the SARIMA 
model follows a GARCH process. The model used for the DPD series can be written as: 
 

t
s

Qqt
Dsds

Pp BBcyBBBB εθφ )()()1()1)(()( Θ+=−−Φ  

ttt z σε = , 
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where ty represents the time series as defined in (1), p is the order of GARCH process;q  is the 

order of ARCH process;0a , ia and jb are constants; tε is the error term; 2
tσ is the conditional 

variance of tε ; 2
it−ε is the news about the volatility from the thi lag period  and 2

jt−σ is the thj lag 

period forecast error variance, tz is a standardized error term.  

 
3.2.2  Reg-SARIMA-GARCH Model 
 
There are various factors that influence electricity load demand. Some of these factors are 
temperature, day of the week, holidays, daily and monthly seasonality. In this section, a Reg-
SARIMA-GARCH model is developed which will capture the day of the week, holiday and 
monthly seasonality effects. Temperature is not included in the Reg-SARIMA-GARCH model. 
The authors are aware that the inclusion of this factor could have a significant improvement on 
prediction particularly in winter when heating systems are used and also in summer when air 
conditioning appliances are used. It should be noted that it is easy to include weather variables 
such as temperature in the model. The influence of temperature on energy demand will studied 
elsewhere. Several papers in literature have adopted the same strategy of not including 
temperature (Carpinteiro et al., 2004; Taylor et al., 2006; Sores and Souza, 2006; Soares and 
Medeiros, 2008).  
 
The Reg-SARIMA-GARCH model is a regression seasonal ARIMA model with error terms 
following a GARCH process. The model can be written as: 
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where gtx is the thg  regression variable at time t , gβ  is the thg  regression parameter and the 

other variables and parameters are as defined in sections 3.1 and 3.2.1 respectively. 
The derivation of the Reg-SARIMA-GARCH model in equation (3) is given in appendix A2. 
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4. Results and Discussion 
 
This section presents the results of estimating the parameters of the SARIMA, SARIMA-
GARCH and Reg-SARIMA-GARCH models represented by equations (1)-(3) along with their 
diagnostic tests. These results are compared with a piecewise linear regression model. The 
SARIMA model presented in Table 1 can be written as: 

cBBBBBBBB ttt +Θ−Θ−Θ−−=−−−− εθωφφφφ )1)(1()1( 42
6

14
2

7
1

2
2

6
6

4
4

2
21                         (4)      

                       
where 1D and 7s  0,d with ,ln)1()1( ===−−= t

Dsd
t yBBω . The coefficients of the auto 

regressive parameters 1φ , 2φ and 6φ are all positive implying that there will be an increase in 

DPD when there is an increase in the corresponding lagged DPD and the rest are negative 
meaning a decrease in DPD. The seasonal moving average parameters at lags 7, 14 and 42 are an 
indication of strong seasonality effects. 
 
The model parameters were estimated using the maximum likelihood method. The best model 
has a root mean square error (RMSE) of 565 and a mean absolute percentage error (MAPE) of 
1.44%. The parameter estimates of the best SARIMA model developed for the DPD series are 
presented in Table 1 with the p-values shown in parentheses.  
 
Table 1: Parameter estimates of the SARIMA Model 
Par c  

1φ  2φ  4φ  6φ  2θ  1Θ  2Θ  6Θ  

Coef 0.000364 
(0.0366) 

0.839 
(0.000) 

0.110 
(0.000) 

-0.066 
(0.000) 

0.068 
(0.000) 

-0.161 
(0.000) 

-0.826 
(0.000) 

-0.087 
(0.000) 

-0.056 
(0.000) 

 
 
Residual analysis shows hetreskedasticity with a mean around zero. A  graphical plot of the 
residuals is shown in Figure 3.  
 

Figure 3: Graphical plot of standardized residuals from the SARIMA model. 
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The residuals were further investigated for heteroskedasticity. The graphical plot of the squared 
residuals is shown in figure 4. Since the residual variance, 2

tσ , is unobservable, the squared 

residuals  serve as a proxy. Figure 4 suggests heteroskedasticity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Graphical plot of squared residuals from the SARIMA model 
 
The Ljung-Box  Q-statistics on standardardized residuals with various lag values up to lag 40 
with their p-values shown in parentheses are Q(10) = 3.7 (0.158), Q(20) = 10.2 (0.601), Q(30) = 
14.9 (0.867) and Q(40) = 35.7 (0.297). All the Q statistics were insignificant up to lag 40 at the 
5% level indicating that there is no excessive autocorrelation left in the residuals. The Ljung-Box 
Q-Statistics on squared standardardized residuals were Q2(10) = 425.4 (0.000), Q2(20) = 433.6 
(0.000), Q2(30) = 443.2 (0.000) and Q2(40) =  453.9 (0.000). All the Ljung-Box Q statistics were 
significant up to lag 40 at the 5% level indicating that there is heteroskedasticity. Engle’s LM 
test was carried out and the  null hypothesis that there are no GARCH effects in the residuals is 
rejected at the 5% level. This suggests that there can be some improvement on the current model 
through volatility  modelling. 
 
 
Several SARIMA–GARCH models were considered and the best model is selected based on the 
Akaike information criterion (AIC). The model parameters are estimated using the maximum 
likelihood method. The estimates are obtained by the Berndt et al. (1974) algorithm using 
numerical derivatives. The parameter estimates of the best model along with their p-values in 
parentheses are presented in table 2. 
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Table 2: Parameter estimates of the SARIMA-GARCH Model 
Parameter 

1φ  6φ  1Φ  2θ  1Θ  

Coefficient 0.8668 
(0.0000) 

0.1048 
(0.0001) 

0.1511  
(0.0000) 

-0.0755 
(0.0000) 

-0.9708  
(0.0009) 

Variance Equation  
Parameter c  

1α  2α  1β  
Coefficient 0.0000264  

(0.0003) 
0.5550 

(0.0000) 
-0.4069  
(0.0000) 

0.8164  
(0.0000) 

 

The best model has an RMSE of 553 and a MAPE of 1.41%. The positivity conditions imposed 
on the GARCH model parameters are relaxed in line with Nelson and Cao (1992) where the sum 
of the parameters in the model should be less than one. Volatility shocks are persistent in the 
time series data since the sum of the ARCH and GARCH terms (which is 0.9645) in the variance 
equation are close to one. The Ljung-Box  Q-statistics on squared standardardized residuals with 
various lag values up to lag 40 with their p-values shown in parentheses are Q2(6) = 1.2947 
(0.255),  Q2(10) = 5.2 (0.392), Q2(20) = 13.9 (0.531), Q2(30) = 18.7 (0.812) and Q2(40) = 20.3 
(0.977). All the Ljung-Box Q statistics are insignificant up to lag 40 at the 5% level indicating 
that there is no excessive serial autocorrelation left in the residuals. Engle’s LM test was carried 
out and the  null hypothesis that there are no GARCH effects in the residuals is accepted at the 
5% level. 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 5: Graphical plot of squared standardized residuals from the SARIMA-GARCH model 
 
 
Figure 5 shows the graphical plot of the squared standardized residuals (residuals squared 
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shows that the SARIMA-GARCH model has accommodated much of the heteroskedasticity in 
the residuals as we now have smaller spikes. Other SARIMA-GARCH models were considered 
but the authors were not able to improve results on the squared standardized residuals.  This led 
to the development of Reg-SARIMA-GARCH models in an effort to further improve the 
SARIMA-GARCH model. Table 3 shows a summary of the estimates of the parameters of the 
Reg-SARIMA-GARCH model developed along with their p-values shown in parentheses. The 
predictor variables shown in Table 3 are initially selected from a total of 23 predictor variables 
using a multivariate adaptive regression splines algorithm (Friedman, 1991). The model 
parameters are then estimated using the maximum likelihood method. The estimates are obtained 
by the Berndt et al. (1974) algorithm using numerical derivatives.  
 
The Ljung-Box  Q-statistics on squared standardardized residuals with various lag values up to 
lag 40 with their p-values shown in parentheses are Q2(10) = 8.9 (0.113), Q2 (20) = 11.8 (0.692), 
Q2(30) = 13.9 (0.963) and Q2(40) =17.3(0.995). All the Ljung-Box Q statistics were insignificant 
up to lag 40 at the 5% level indicating that there is no serial autocorrelation left in the residuals. 
The Engle’s LM test is carried out and the  null hypothesis that there are no GARCH effects in 
the residuals is accepted at the 5% level. 
 
The best model has an RMSE of 549 and a MAPE of 1.40%. Volatility shocks are persistent in 
the time series data since the sum of the GARCH terms (which is 0.928914) in the variance 
equation are close to one. The developed model shown in table 3 can be written as: 

cBBB
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with the variance equation written as .2
11

2
110

2
−− ++= ttt σβεαασ Table 3 shows the estimated 

parameters. 
 
Table 3: Parameter estimates of the Reg – SARIMA – GARCH Model 
Par c  1−hH  

hH  1+hH  Friday Saturday Sunday 

Coef 0.00085 
(0.0041) 

-0.00715 
(0.0003) 

-0.00451 
(0.0041) 

-0.00148 
 (0.0372) 

-0.00022 
(0.0014) 

-0.00024 
(0.0033) 

-0.00025 
(0.0258) 

Par -February July 
1φ  2φ  1Θ  2Θ  6Θ  

Coef 0.00240 
(0.5632) 

0.00138 
(0.3013) 

0.85805 
(0.0000) 

0.08301 
(0.0025) 

-0.80683 
(0.0000) 

-0.09244 
(0.0048) 

-0.03281 
(0.0524) 

Variance Equation  
Par c  α  β  

Coef 0.00007 
(0.0000) 

0.47206 
 (0.0000) 

0.45578  
(0.0000) 

 
 
From Table 3 all the coefficients of the dummy variables representing holiday, day before a 
holiday, day after a holiday, Friday, Saturday and Sunday are negative meaning that DPD 
decreases during these days. This is due to the fact that most companies will be closed during 
these days. The dummy variable for month of July is positive meaning that DPD increases. This 
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month is in winter when heating appliances are used. The dummy variable for February is 
negative, meaning that there will be a decrease in DPD. This is possibly due to the fact that 
February is in summer. In South Africa DPD is more sensitive to winter periods than summer 
periods (Sigauke and Chikobvu, 2010).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Graphical plot of squared standardized residuals from the Reg-SARIMA–GARCH 
model 
 
Figure 6 shows the graphical plot of the squared standardized residuals. A comparison of Figure 
6 with Figure 5 shows that the Reg-SARIMA-GARCH model has accommodated much of the 
heteroskedasticity in the residuals. Other Reg-SARIMA-GARCH models were considered but 
the authours were not able to improve further on the heteroskedasticity problem revealed by the 
squared standardized residuals. 
 
5. Evaluating the predictive abilities of the models 
 

In short term load forecasting RMSE and MAPE are generally used to present load forecasting 
error (Munoz et al., 2010). These accuracy measures are used for the evaluation of the developed 
models for peak load demand forecasting in the out of sample predictions for the period 1 July to 
14 December 2009. The training period was 1 January 1996 to 30 June 2009. The paper 
concentrated on daily peak demand modeling which is important for providing short term 
forecasts which will assist in optimal dispatching of electrical energy.  
 
The performance of the developed models is evaluated by comparing them with a naïve simple 
piecewise linear regression model. The piecewise linear regression model is found in appendix 
A3. A detailed discussion of the piecewise linear regression model is found in (Sigauke and 
Chikobvu, 2010). Table 4 presents the comparative analysis of the models. The developed 
models outperformed the piecewise linear regression model. 
Table 4: Out-of-sample forecast evaluation for the period 01/07/2009-14/12/2009 
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MAPE  RMSE 
Piecewise Linear Regression 2.77 941 
SARIMA 1.47 571 
SARIMA-GARCH 1.43 556 
RegSARIMA-GARCH 1.42 554 

 
SARIMA models work well when the data exhibits a linear trend and are only good for short 
term forecasting. The Reg-SARIMA-GARCH model has the least MAPE, showing that it is the 
best fitting model. The Reg-SARIMA-GARCH model is simple to implement, reliable and 
provides information about the importance of each predictor variable. The results from using the 
Reg-SARIMA-GARCH model are relatively robust.  
 
6. Conclusion 
 
This paper has investigated some hybrid models for daily peak load demand forecasting. The 
problem is decomposed into point and volatility forecasting. Results show that the regression- 
seasonal autoregressive integrated moving average (Reg-SARIMA-GARCH) model with 
heteroskedastic error terms produces better forecast accuracy with a mean absolute percent error 
of 1.42%. Accurate prediction of daily peak load demand is very important for decision makers 
in the energy sector. This helps in the determination of consistent and reliable supply schedules 
during peak periods. Accurate short term load forecasts will enable effective load shifting 
between transmission substations, scheduling of startup times of peak stations, load flow analysis 
and power system security studies.   
 
Areas for further study would include combining forecasts produced by the different methods. 
This can be done through use of techniques which will minimize variance of the forecast and 
also the mean absolute percentage error. Another interesting area for further study would be to 
model annual winter peaks using extreme value theory. The development of a stochastic integer 
recourse model to optimize electricity distribution would be another interesting area to study 
including a formal test to see whether an improvement in forecast accuracy between two models 
is statistically significant. These areas will be studied elsewhere. 
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Appendix  

A1. Seasonal Autoregressive Integrated Moving Average (SARIMA) Model 
Let ty represent daily peak electricity demand. Then ty follows a multiplicative seasonal 
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ARIMA model for daily peak demand time series given by:  
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c  is a constant term, tε is an independent and identically distributed random noise. B is a  
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positive integers. Then tω is a stationary SARMA sQPqp ),(),( ×  model given by: 
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A2. The Reg-SARIMA-GARCH model 
A general multiplicative SARIMA model for a variable tv can be written as: 
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The model in (8) can be extended by use of a time varying mean function which can be 
modeled through linear regression effects. A linear regression equation for a time series ty can 

be written as: 
 

t

G

g
gtgt vxy +=∑

=1

β                        (9) 

where gtx is the thg  regression variable at time t , gβ  is the thg  regression parameter and 

∑
=

−=
G

g
gtgtt xyv

1

β are the time series regression errors which are assumed to follow the 

SARIMA model in equation (8). Equations (8) and (9) taken together define the Reg-
SARIMA model for the DPD series which can be written as a single equation as: 
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1

t
s

Qq

G

g
gtgt

Dsds
Pp BBcxyBBBB εθβφ Θ+=−−−Φ ∑

=

                                   (10)       

        
The model in (9) implies that the regression effects are first subtracted from the time series 

ty , which results in a series tv with a zero mean. The series tv is then differenced to get a 

stationary series. Let this series be denoted bytψ , then tψ  follows a stationary Reg-SARMA 

model given by: 
 

.)()()()( t
s

Qqt
s

Pp BBcBB εθψφ Θ+=Φ                                                                         (11)                          

  
The Reg-SARIMA model can also be written as:  

,)1()1()1()1(
1

t

G

g
gt

Dsd
gt

Dsd xBByBB ψβ +−−=−− ∑
=

                                                           (12) 

 
where tψ  follows the stationary Reg-SARMA model.                                            
In order to capture the day of the week effect dummy variables are introduced and defined as 
follows: 
 



 =

=
otherwise,0

Sunday,Tuesday, if,1
D

...r
r           (13) 

 
The day of the week effect is represented byrD  which represents the significant daily 
variability of daily peak electricity demand. The index r  takes values in the interval [2,7] 
representing days in the week except for Monday which represents the base period (2=r for 
Tuesday, 3=r for Wednesday,…., 7=r  for Sunday). The use of the base period is done to 
avoid the problem of multicollinearity which will affect the stability of the regression 
coefficients (Mirasgedis et al., 2006). The daily peak demand decreases during holidays. The 
day before and after a holiday has an effect on demand. To take into account the effects of 
holidays the following dummy variables hH , 1H −h and 1H +h  are introduced. hH , 1H −h and 

1H +h are dummy variables representing holiday, day before and after a holiday respectively. 

South African holidays are: New years day (NY), Human rights day (HR), Good Friday (GF) 
(Easter holiday),  Family day (F) (Easter holiday), Freedom (FD) day, Workers (W) day, 
Youth (Y) day, National women’s (NW) day, Heritage (H) day, Day of reconciliation (DR), 
Christmas (C) day and Day of goodwill (DG). If a holiday falls on a weekend the following 
Monday is declared a public holiday. School holidays were not considered in this study. In 
this paper all holidays are equally weighted. 





=
otherwise,0

holiday a is day  if,1
H

h
h                    (14) 
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

 −

=− otherwise,0

holiday a beforeday  a is  1day  if,1
H 1

h
h                            (15) 

 



 +

=+ otherwise,0

holiday aafter day  a is 1day  if,1
H 1

h
h                             (16) 

 
To take into account the monthly seasonality effect a dummy variable lM is introduced. 

 



 =

=
otherwise,0

December ,...,February  if,1
M

l
l                   (17) 

 
The monthly seasonality effect is represented bylM , wherel represents the months February 

up to December with January as the base month. The index l  takes values in the interval 
[2,12] representing months in a year except for January which represents the base period 
( 2=l for February, 3=l for March,…., 12=l  for December).  
 
The Reg-SARIMA-GARCH model is a regression seasonal ARIMA model with error terms 
following a GARCH process. The model can be written as: 
 

 ,)()()()( t
s

Qqt
s

Pp BBcBB εθψφ Θ+=Φ  

ttt z σε = , 

1)(Var ,0)( with ..~ == ttt zzEdiiz  
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=

−−−−

                   (18) 
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A3 The Piecewise Linear regression Model 
 
The piecewise linear regression model used for comparative analysis with the models 
developed in this paper is shown in equation (19) 
 

thhh
l

ll
r

rrtspttwptt RxtTxtTy ++++++−+−++= +−
==
∑∑ 11

12

2

7

2
231210 HHHMD)()(t λδµταββββ      

                             (19) 
       
where ptT represents peak temperature (in degrees Celsius). The peak temperature is the 
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temperature recorded at the hour of peak demand on day t , ty denotes daily peak demand (in 

megawatts) observed on day t , wt temperature to identify where the winter sensitive portion 

of demand join the non-weather sensitive demand component, st temperature to identify 

where the summer sensitive portion of demand join the non-weather sensitive demand 
component, 0β represents the mean daily peak demand observed in the non-weather sensitive 

period )( sptw tTt ≤≤ . It should be noted that daily peak demand during non-weather sensitive 

days does not depend on temperature )( ptT .The variable t  represents the trend component,hH , 

1H −h and 1H +h are dummy variables representing holiday, day before and after a holiday 

respectively. The day of the week effect is represented by rD , where r represents the days 
Tuesday up to Sunday with Monday as the base period. The monthly effect is represented by 

lM , where l represents the months February up to December with January as the base month. 

tttttt RRRRR εφφφφ ++++= −−−− 77552211 , where tR  is a stochastic disturbance term and tε  is 

the innovation in the disturbance term. 
                       

=tx1  


 <−

otherwise

tTif wpt

,0

0,1
   and 

=tx2  


 >−

otherwise

tTif spt

,0

0,1
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