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Abstract

Daily peak electricity demand forecasting in So#tiica using a seasonal autoregressive integrated
moving average (SARIMA) model, a SARIMA model witieneralized autoregressive conditional
heteroskedastic errors (SARIMA-GARCH) and a redoesSARIMA-GARCH (Reg-SARIMA-
GARCH) model are presented in this paper. The GAR@Geételling methodology is introduced to
accommodate the possibility of serial correlatiorvolatility since the daily peak demand data eithib
non-constant mean and variance, and multiple saégorcorresponding to weekly and monthly
periodicity. The proposed Reg-SARIMA- GARCH modsldesigned in such a way that the predictor
variables are initially selected using a multivegiadaptive regression splines algorithm. The adpes
models are used for out of sample prediction diygsak demand. A comparative analysis is done avith
piecewise linear regression model. Results fromsthdy show that the Reg-SARIMA-GARCH model
produces better forecast accuracy with a mean atlespércent error (MAPE) of 1.42%.
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1. Introduction

Prediction of daily peak load demand is very imaottfor decision making processes in the
electricity sector. Decision making in this sectovolves planning under uncertainty. This
involves for example finding the optimal day to dageration of a power plant and even
strategic planning for capacity expansion. The a&inof electricity forms the basis for power
system planning, power security and supply relgbillsmail et al., 2009). It is important
therefore to produce very accurate forecasts asctivesequences of underestimation or
overestimation can be costly. As noted by TaylddO@), accurate short-term forecasts are
needed by both generators and consumers of elgcarticularly during periods of abnormal
peak load demand.

In this paper seasonal autoregressive integratedng@verage (SARIMA) model, a SARIMA
with generalized autoregressive conditional hetexdastic errors (SARIMA-GARCH) model
and a regression-SARIMA-GARCH (Reg-SARIMA-GARCH) dab are developed and used for
out of sample predictions of daily peak demand (DBEng South African data. The models are
designed for short term forecasting, up to severs daead. The Reg-SARIMA-GARCH model
captures factors such as day of the week, holichaly tamperature effects including multiple
seasonality.
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The major challenge in most conventional Reg-SARIMAdels is that of selecting a minimum
number of predictor variables and ranking themrateo of their importance. The proposed Reg-
SARIMA-GARCH model developed in this paper is desid in such a way that the predictor
variables are initially selected using a multivegisadaptive regression splines algorithm
(Friedman, 1991).

Accurate prediction of daily peak load demand hefpshe determination of consistent and
reliable supply schedules during peak periods. Aateushort term daily peak load forecasts will
enable effective load shifting between transmissohstations, scheduling of startup times of
peak stations, load flow analysis and power systecarity studies.

The rest of the paper is organized as follows, écti®n 2 the data used is described and a
preliminary analysis carried out. The models aesented in Section 3 and a detailed discussion
of the results is covered in Section 4. A compuaeatinalysis of the developed models is done
with a piecewise linear regression model in Seciiomhe summary and conclusion of the paper
are covered in Section 6.

2. Data and Definitions

The data used in this paper is on net energy 3&n{NESO) from distribution in response to
some demand of electrical power. NESO (measureteigawatts) is defined as the rate at which
electrical energy is delivered to customers. Iis fiaper NESO is used as a proxy of electrical
demand after adjusting for energy losses. Thisnd&fn of electrical demand has its weakness.
Electrical demand is bounded by the power plansslave to provide supply at any time of the
day including the need for reserve capacity. Daineemnot exceed supply and there are no
market forces acting to influence electricity paand hence reducing demand in the short run.
Prices are generally fixed in the short run. If dewhwere to exceed supply, intervention takes
place in the form of for example, load sheddingad.@hedding is the last resort used to prevent
a system-wide blackout. This NESO definition exelsidthe demand from households,
companies etc, who are willing and able to payefectricity but currently do not have access to
electrical power. Despite the weakness in the NE8fhition of electrical demand, it is still a
good and measurable proxy of electricity demand.

The data is on daily peak demand (DPD) from 1 Janii@96 to 14 December 2009 £5097
daily peak demand observations$ince demand is normally recorded on an hoursjsh®PD

is the maximum hourly demand in a 24-hour periodil\Dpeak demand modeling is important
as it provides short term forecasts which will sisgh economic planning and dispatching of
electric energy. Aggregated DPD data is collectadtlie industrial, commercial and domestic
sectors of South Africa.

’ The data used in this paper can be provided upon request



2.1 Preliminary Analysis

The time series plot of DPD in Figure 1 shows aitp@slinear trend and a strong seasonal

fluctuation with DPD high in winter and low in sunem The trend is mainly due to economic

development of the country. The winter peaks inSbeathern Hemisphere are around June/July
of each year. A casual inspection of the graph st&vs that the variance is not constant.

40000

35000 |

30000

DPD (MW)

25000 |

20000

15000

1000 2000 3000 4000 5000

Number of observations

Figure 1: Time series plot for DPD (in Megawatt) the period 1/1/1996-14/12/2009

A test for a stochastic trend in the DPD serieagiihe Augmented Dickey Fuller test shows that
the series is not stationary. The null hypothesia stochastic trend was accepted showing that
there is a unit root. Stationarity was achievealiiyst difference of the data.
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Figure 2: Spectral density of DPD

A spectral analysis revealed periodicity in thead&igure 2 shows the spectral density of DPD.
The first major peak in the spectral density isuam 0.14 indicating the presence of a periodic
movement of seven days.

3. The Models

SARIMA, SARIMA-GARCH and Reg-SARIMA-GARCH modelsapresented in this section.

The developed models are then used for out of sapreldictions of DPD. In all models DPD is

taken as the dependent variable. The data is tnanstl by taking natural logarithms to reduce
the impact of heteroskedasticity that may be prtelsecause of the large data set (Hekkenkerg

al., 2009).

3.1 Seasonal ARIMA Model (SARIMA)

Load demand forecasting has been studied extepswetr the years using time series,
regression based methods and artificial and cortipo#d intelligence (Ramanathanhal., 1997;
Mirasgediset al., 2006; Amaralet al., 2008; Amin-Naseri and Soroush, 2008; Gosh, 2008;
Soares and Medeiros, 2008; Taylor, 2008; Truetra., 2008; Goiaet al., 2010, among others).
Updated review of different methods can be foun@Heinberg and Genethliou, 2005; Hadin
al., 2009). The general multiplicative SARIMA, d,q) % (P, D,Q), model used in this paper is

given in equation (1) and the derivation is donappendix Al.
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where y, represents daily peak demand (in megawatts) obdemwveayt (t =1,2,...,n) and &,
represents the error term at timewith variance o7 and potentially subject to conditional
heteroskedasticitys is the seasonal length amis a backshift operator defined By, = v, ,,
@,(B), @, (B*),6,(B), O, (B®), are backshift operator polynomials of orders,P ,q,Q

respectively, modeling the regular and weekly sagogssive and mean average effects
respectivelyl® and? are difference operators defined@$y, = (1-B)"y, and

0%y, = (@-B®)"y,, andcis a constant term.

3.2 Volatility Forecasting Models

In conventional SARIMA models, the variance of tHisturbance term is assumed to be
constant. Causal inspection of the electricity deentame series plot shown in Figure 1 suggests
that the series does not have a constant varidimeeseries exhibits phases of high demand (in
winter) followed by periods of low demand (in suntindhe assumption of homoskedasticity
(constant variance) seems inappropriate, sinceldtee exhibits non-constant mean and variance,
and multiple seasonality corresponding to weeklg amonthly periodicity. The GARCH
modelling methodology is introduced to accommodéae possibility of serial correlation in
volatility. Models for volatility forecasting werkrst developed by Engle (1982). These models
known as the autoregressive conditional heterositieity (ARCH) models were developed to
capture the non constant variance. ARCH models Waez extended to generalized ARCH
(GARCH) models by Bollerslev (1986) and Nelson (IPModelling volatility in time series
data using GARCH - type models has been studieehsixely over the past three decades,
(Engle, 1982; Bollerslev, 1986; Nelson, 1991; Tayl®006; Aknouche and Bentarzi, 2008;
Mulera and Yohaib, 2008; Doornik and Ooms, 2008al@Amaniand Thavaneswaran, 2008;
Horv'athet al., 2008; Ismaikt al., 2009; He and Maheu, 2010; Kiehal., 2010,among others).
Work closely related to ours is that of Taylor (BPOwho investigated methods for Net
Imbalance Volume density forecasting. The authocodgosed the problem into point
forecasting and volatility forecasting. A seasoARMA model and a periodic AR model with
simplistic volatility forecasting gave good results

3.2.1 SARIMA-GARCH Model

The SARIMA-GARCH model is one in which the varianakethe error term of the SARIMA
model follows a GARCH process. The model usedHerRPD series can be written as:

%,(B)®, (B*)(1-B)" (L-B*)°y, =c+6,(B)9, (B°)¢,
& =40,
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where y, represents the time series as defined in fli the order of GARCH process;is the
order of ARCH process;, a and b, are constantsg,is the error term;ois the conditional
variance ofg,; &, is the news about the volatility from tti€lag period ands?; is the j"lag

period forecast error varianca,is a standardized error term.

3.2.2 Reg-SARIMA-GARCH Model

There are various factors that influence elecyriéttad demand. Some of these factors are
temperature, day of the week, holidays, daily arahtimy seasonality. In this section, a Reg-
SARIMA-GARCH model is developed which will captutee day of the week, holiday and
monthly seasonality effects. Temperature is nolushed in the Reg-SARIMA-GARCH model.
The authors are aware that the inclusion of thisofacould have a significant improvement on
prediction particularly in winter when heating ssts are used and also in summer when air
conditioning appliances are used. It should bedthat it is easy to include weather variables
such as temperature in the model. The influencemperature on energy demand will studied
elsewhere. Several papers in literature have adofite same strategy of not including
temperature (Carpinteiret al., 2004; Tayloret al., 2006; Sores and Souza, 2006; Soares and
Medeiros, 2008).

The Reg-SARIMA-GARCH model is a regression seas@&RIMA model with error terms
following a GARCH process. The model can be writien

%, (B)®, (B )y, =c+6,(B)O, (B°)z,,

& =40,

z ~iidwithE(z)=0Var(z) =1
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y= (ao,al,...,aq,ﬂl,---ﬁp)

andy, = (1- B)* - B*)°y, - > B, - B)° (L- B%)°x,

where x, is the g™ regression variable at time B, is the g" regression parameter and the

other variables and parameters are as definecttioss 3.1 and 3.2.1 respectively.
The derivation of the Reg-SARIMA-GARCH model in afjon (3) is given in appendix A2.
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4. Results and Discussion

This section presents the results of estimating ghemeters of the SARIMA, SARIMA-
GARCH and Reg-SARIMA-GARCH models represented byagigns (1)-(3) along with their
diagnostic tests. These results are compared wiglieeewise linear regression model. The
SARIMA model presented in Table 1 can be written as

(1-@B- @B? - B' - gB*)q, = (1-6,B)(1-0,B" - ©,B -0,B)¢, +c @)

where @ = (1-B)*(@-B®%)°Iny,, withd=0,s=7andD =1. The coefficients of the auto
regressive parameterg, @and gare all positive implying that there will be an iease in

DPD when there is an increase in the correspontfigged DPD and the rest are negative
meaning a decrease in DPD. The seasonal movingge@arameters at lags 7, 14 and 42 are an
indication of strong seasonality effects.

The model parameters were estimated using the nuaxifikelihood method. The best model
has a root mean square error (RMSE) of 565 andamrmabsolute percentage error (MAPE) of
1.44%. The parameter estimates of the best SARIMAehdeveloped for the DPD series are
presented in Table 1 with the p-values shown iepidueses.

Table 1: Parameter estimates of the SARIMA Model

Par c % % ¢ @ 6, ©, O, O

Coef | 0.000364 | 0.839 0.110 | -0.066 | 0.068 | -0.161 -0.826 -0.087 | -0.056
(0.0366) | (0.000) | (0.000) | (0.000)| (0.000)| (0.000) | (0.000) | (0.000) | (0.000)

Residual analysis shows hetreskedasticity with anmeround zero. A graphical plot of the
residuals is shown in Figure 3.
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Figure 3: Graphical plot of standardized resid@i@s the SARIMA model.



The residuals were further investigated for hetexdasticity. The gphical plot ofthe squared
residuals is shown in figure 4. Since the residumiance, o7, is unobservable, the squared
residuals serve as a proxy. Figure 4 suggestsdsi&erasticity.
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Figure 4: Graphical plot of squared residuals ftbm SARIMA model

The Ljung-Box Q-statistics on standardardized residuals withowarilag values up to lag 40
with their p-values shown in parentheses are Q€18) (0.158), Q(20) = 10.2 (0.601), Q(30) =
14.9 (0.867) and Q(40) = 35.7 (0.297). All the @tistics were insignificant up to lag 40 at the
5% level indicating that there is no excessive emt@lation left in the residuals. The Ljung-Box
Q-Statistics on squared standardardized residuate @(10) = 425.4 (0.000), {R0) = 433.6
(0.000), G(30) = 443.2 (0.000) and3@0) = 453.9 (0.000). All the Ljung-Box Q statistiwere
significant up to lag 40 at the 5% level indicatithgit there is heteroskedasticity. Engle’s LM
test was carried out and the null hypothesis ttinate are no GARCH effects in the residuals is
rejected at the 5% level. This suggests that tbenebe some improvement on the current model
through volatility modelling.

Several SARIMA-GARCH models were considered andoémst model is selected based on the
Akaike information criterion (AIC). The model paraters are estimated using the maximum
likelihood method. The estimates are obtained ley Berndtet al. (1974) algorithm using
numerical derivatives. The parameter estimatehefbiest model along with their p-values in
parentheses are presented in table 2.



Table 2: Parameter estimates of the SARIMA-GARCH Malel

Parameter ] @ O} 6, O,
Coefficient 0.8668 0.1048 0.1511 -0.0755 -0.9708
(0.0000) (0.0001) (0.0000) (0.0000) (0.0009)
Variance Equation
Parameter C a, a, B
Coefficient 0.0000264 0.5550 -0.4069 0.8164
(0.0003) (0.0000) (0.0000) (0.0000)

The best model has an RMSE of 553 and a MAPE df%.4The positivity conditions imposed
on the GARCH model parameters are relaxed in litie Nelson and Cao (1992) where the sum
of the parameters in the model should be less tmen Volatility shocks are persistent in the
time series data since the sum of the ARCH and GAREZms (which is 0.9645) in the variance
equation are close to one. The Ljung-B@xstatistics on squared standardardized residugts w
various lag values up to lag 40 with their p-valsé®wn in parentheses aré(€) = 1.2947
(0.255), G(10) = 5.2 (0.392), €§20) = 13.9 (0.531), §30) = 18.7 (0.812) and “@L0) = 20.3
(0.977). All the Ljung-Box Q statistics are insificant up to lag 40 at the 5% level indicating
that there is no excessive serial autocorrelagdinih the residuals. Engle’s LM test was carried
out and the null hypothesis that there are no GHREects in the residuals is accepted at the
5% level.
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Figure 5: Graphical plot of squared standardizettals from the SARIMA-GARCH model

Figure 5 shows the graphical plot of the squareshdsrdized residuals (residuals squared
2

divided by the estimated values &g, that is o} :%). A comparison of Figures 5 and 4



shows that the SARIMA-GARCH model has accommodatedh of the heteroskedasticity in
the residuals as we now have smaller spikes. BA&IMA-GARCH models were considered
but the authors were not able to improve resultthensquared standardized residuals. This led
to the development of Reg-SARIMA-GARCH models in effort to further improve the
SARIMA-GARCH model. Table 3 shows a summary of éstimates of the parameters of the
Reg-SARIMA-GARCH model developed along with theiwgdues shown in parentheses. The
predictor variables shown in Table 3 are initiablected from a total of 23 predictor variables
using a multivariate adaptive regression splinggorghm (Friedman, 1991). The model
parameters are then estimated using the maximwethdod method. The estimates are obtained
by the Berndet al. (1974) algorithm using numerical derivatives.

The Ljung-Box Q-statistics on squared standardardized residuidiiswarious lag values up to
lag 40 with their p-values shown in parentheses(#0) = 8.9 (0.113), €(20) = 11.8 (0.692),
Q?(30) = 13.9 (0.963) and¥@10) =17.3(0.995). All the Ljung-Box Q statisticeme insignificant
up to lag 40 at the 5% level indicating that thisreo serial autocorrelation left in the residuals.
The Engle’s LM test is carried out and the nulpbthesis that there are no GARCH effects in
the residuals is accepted at the 5% level.

The best model has an RMSE of 549 and a MAPE d&f%.4/olatility shocks are persistent in
the time series data since the sum of the GARCHidgwhich is 0.928914) in the variance
equation are close to one. The developed modelsihotable 3 can be written as:

A-@B-@B*)(1-B')(Iny, + y,Friday+ y,Saturday- y,Sunday- g,February+ g, July
FAH L+ H, +H,,) = 1+ 0,87 +0,BY +0,B%)s, +c

with the variance equation written @$=a,+a,e’, + 07, Table 3 shows the estimated
parameters.

(5)

Table 3: Parameter estimates of the Reg — SARIMA GARCH Model

Par C H.. H, How Friday Saturday Sunday

Coef | 0.00085| -0.00715| -0.00451| -0.00148| -0.00022 | -0.00024 | -0.00025
(0.0041) | (0.0003)| (0.0041) | (0.0372)| (0.0014) | (0.0033) | (0.0258)

Par | -February July ] @ O, o, O,

Coef | 0.00240| 0.00138| 0.85805 | 0.08301 | -0.80683 | -0.09244 | -0.03281
(0.5632) | (0.3013)| (0.0000) | (0.0025) | (0.0000) | (0.0048) | (0.0524)

Variance Equation

Par C a Jéi

Coef 0.00007 0.47206 0.45578

(0.0000) (0.0000) (0.0000)

From Table 3 all the coefficients of the dummy sahbtes representing holiday, day before a
holiday, day after a holiday, Friday, Saturday @uhday are negative meaning that DPD
decreases during these days. This is due to thdhHfacmost companies will be closed during
these days. The dummy variable for month of Julyasitive meaning that DPD increases. This

10



month is in winter when heating appliances are u3déw® dummy variable for February is
negative, meaning that there will be a decreasPRD. This is possibly due to the fact that
February is in summer. In South Africa DPD is meessitive to winter periods than summer
periods (Sigauke and Chikobvu, 2010).
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Figure 6: Graphical plot of squared standardizesidteals from the Reg-SARIMA-GARCH
model

Figure 6 shows the graphical plot of the squaraddardized residuals. A comparison of Figure
6 with Figure 5 shows that the Reg-SARIMA-GARCH mbtlas accommodated much of the
heteroskedasticity in the residuals. Other Reg-3MRIGARCH models were considered but
the authours were not able to improve further anhbteroskedasticity problem revealed by the
squared standardized residuals.

5. Evaluating the predictive abilities of the moded

In short term load forecasting RMSE and MAPE areegally used to present load forecasting
error (Munozet al., 2010). These accuracy measures are imsdtie evaluation of the developed
models for peak load demand forecasting in theobaample predictions for the period 1 July to
14 December 2009. The training period was 1 Jand&@86 to 30 June 2009. The paper
concentrated on daily peak demand modeling whiclmigortant for providing short term
forecasts which will assist in optimal dispatchofgelectrical energy.

The performance of the developed models is evaluayecomparing them with a naive simple
piecewise linear regression model. The piecewiseali regression model is found in appendix
A3. A detailed discussion of the piecewise lineagression model is found in (Sigauke and
Chikobvu, 2010). Table 4 presents the comparativalyais of the models. The developed
models outperformed the piecewise linear regressiodel.

Table 4: Out-of-sample forecast evaluation for theeriod 01/07/2009-14/12/2009

Forecasting Models Performance Criteria (Validation Period)

11



MAPE RMSE
Piecewise Linear Regression 2.77 941
SARIMA 1.47 571
SARIMA-GARCH 1.43 556
RegSARIMA-GARCH 1.42 554

SARIMA models work well when the data exhibits aelar trend and are only good for short
term forecasting. The Reg-SARIMA-GARCH model has lkast MAPE, showing that it is the
best fitting model. The Reg-SARIMA-GARCH model ignple to implement, reliable and

provides information about the importance of eaddjgtor variable. The results from using the
Reg-SARIMA-GARCH model are relatively robust.

6. Conclusion

This paper has investigated some hybrid modelg#&ly peak load demand forecasting. The
problem is decomposed into point and volatilityefoaisting. Results show that the regression-
seasonal autoregressive integrated moving aver&py-$SARIMA-GARCH) model with
heteroskedastic error terms produces better for@casiracy with a mean absolute percent error
of 1.42%. Accurate prediction of daily peak loadnd&d is very important for decision makers
in the energy sector. This helps in the determomatif consistent and reliable supply schedules
during peak periods. Accurate short term load fasex will enable effective load shifting
between transmission substations, scheduling dugtdimes of peak stations, load flow analysis
and power system security studies.

Areas for further study would include combiningdoasts produced by the different methods.
This can be done through use of techniques whi¢hminimize variance of the forecast and

also the mean absolute percentage error. Anotheresting area for further study would be to
model annual winter peaks using extreme value théldre development of a stochastic integer
recourse model to optimize electricity distributismuld be another interesting area to study
including a formal test to see whether an improvanne forecast accuracy between two models
is statistically significant. These areas will Ihadsed elsewhere.
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Appendix

Al. Seasonal Autoregressive Integrated Moving Averge (SARIMA) Model
Let y,represent daily peak electricity demand. Thgrdollows a multiplicative seasonal
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ARIMA model for daily peak demand time series givsn

9,(B)®, (B%)1°0; y, =c+6,(B)O,(B%)s,,

(6)
£, ~N(0,0?)

where

@,(B) =1-gB-@B*-..—- ¢ B", ®,(B°) =1-®,B* - ®,B* -...-® B,
6,(B) =1-6B-6,B*-...-,B%, O,(B*) =1-0,B° - 0,B* -...- OB,

c is a constant tern, is an independent and identically distributed randwise.Bis a
backshift operator ang,(B), ®, (B®).6,(B),©, (B®* @re backshift operator polynomials of
orders p,P ,q,Q respectively, modeling the regular, daily andelkbg autoregressive and
mean average effects respectivelyl® andO? are difference operators defined as
0%, = @-B)%y, andOPy, = @-B®)"y,, andsis the seasonal length.

Letw = (1-B)*@-B®%)°y,, where (1-B)“represents nonseasonal differencing operator of

order d and (1-B®)® is the seasonal differencing operator of or@eand bothd and D are
positive integers. Themn is a stationary SARMAp,q) x (P ,Q ), model given by:

%(B)®; (B%) = c+6,(B)O, (B%)&, (7)

A2. The Reg-SARIMA-GARCH model
A general multiplicative SARIMA model for a vari@bV, can be written as:

9,(B)®, (B°)(L-B)? (L- B*)°V, = c + 6,(B)®, (B*)4,. ®)

The model in (8) can be extended by use of a tiaging mean function which can be
modeled through linear regression effects. A limegression equation for a time serggan
be written as:

G
Ve = 2 BoXa TN )
g=1
where x,is the g™ regression variable at timg B, is the g™ regression parameter and
G
Vv, =Y, —Z,[z’gxgt are the time series regression errors which arensss to follow the
g=1

SARIMA model in equation (8). Equations (8) and (@ken together define the Reg-
SARIMA model for the DPD series which can be writtes a single equation as:

13



%,(B)®, (B)(1-B)* 1-B)°(y, —Zﬁgxgt) =c+6,(B)O, (B)s, (10)

The model in (9) implies that the regression effeate first subtracted from the time series
Y., Which results in a seriegwith a zero mean. The seriasis then differenced to get a

stationary series. Let this series be denoteg, byheny, follows a stationary Reg-SARMA
model given by:

%, (B)®, (B°)g, =c+6,(B)O, (B%)e.. (11)

The Reg-SARIMA model can also be written as:
G

L-B)'@-B)"y, =2 B,A-B)' (L-B)°x, +¢, (12)
gl

wherey, follows the stationary Reg-SARMA model.
In order to capture the day of the week effect dymvariables are introduced and defined as

follows:

if r =Tuesday,.,Sund
Dr:{l’ if r =Tuesday,.,Sunday 13)

0, otherwise

The day of the week effect is representedDpywhich represents the significant daily
variability of daily peak electricity demand. Thedex r takes values in the interval [2,7]
representing days in the week except for Mondayckineépresents the base perigd=(2for
Tuesday,r =3for Wednesday,....r = Tor Sunday). The use of the base period is done to
avoid the problem of multicollinearity which willffact the stability of the regression
coefficients (Mirasgedist al., 2006). The daily peak demand decreases duririddysl. The
day before and after a holiday has an effect onatheinTo take into account the effects of
holidays the following dummy variablesl,, H,_,and H,,, are introducedH,, H,_and

H,,,are dummy variables representing holiday, day leeford after a holiday respectively.

South African holidays are: New years day (NY), Hummights day (HR), Good Friday (GF)
(Easter holiday), Family day (F) (Easter holidalyjeedom (FD) day, Workers (W) day,
Youth (Y) day, National women’s (NW) day, Heritafj¢) day, Day of reconciliation (DR),
Christmas (C) day and Day of goodwill (DG). If aliday falls on a weekend the following
Monday is declared a public holiday. School holglayere not considered in this study. In
this paper all holidays are equally weighted.
H _{l if dayh isaholiday
L=

. (24)
o} otherwise
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H _{l if dayh- 1isadaybeforeaholiday
h-1 —

) (15)
0} otherwise
1, if dayh+ lisadayafteraholiday
|_|h+1 = . (16)
0, otherwise
To take into account the monthly seasonality effedimmy variabléM, is introduced.
if | = February,...,December
M, =T A (17)
0, otherwise

The monthly seasonality effect is representetlbywhere represents the months February

up to December with January as the base month.ifidex | takes values in the interval
[2,12] representing months in a year except forudan which represents the base period
(I =2for February, = 3or March,....,| = 12for December).

The Reg-SARIMA-GARCH model is a regression seas&iiMA model with error terms
following a GARCH process. The model can be writisn

¢,(B)®,, (B* )y, =c+6,(B)O, (B%)s,
& =40,

z ~iidwithE(z) =0 Var(z) =1

ol =

where (18)
w, = (l£t2_1,...,£t2_q,0}2_1’--"0-tz—p)’
y=(aoyall"')aq’ﬁl"”'ﬁp)

andy, = - B)’ 0~ B9)°y, - 5, - B)* - B)°x,

A3 The Piecewise Linear regression Model

The piecewise linear regression model used for ewatye analysis with the models
developed in this paper is shown in equation (19)

7 12
Y. =B+ Bit+ Bo(Toe —tu)% + BTy —t)% + 2.0, D, + D 1M, + pH + H,, + AH, . + R
r=2 1=2
(19)
whereT ; represents peak temperature (in degrees Celsiug). peak temperature is the
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temperature recorded at the hour of peak demarghapn, y, denotes daily peak demand (in
megawatts) observed on day t,temperature to identify where the winter sensipegtion
of demand join the non-weather sensitive demandpoment, t.temperature to identify

where the summer sensitive portion of demand jbi@ hon-weather sensitive demand
component,S,represents the mean daily peak demand observée inan-weather sensitive

period (t, <T, <t ). It should be noted that daily peak demand dumioig-weather sensitive
days does not depend on temperaflie . Th¢ variablet represents the trend componety,
H,,and H,, are dummy variables representing holiday, day leefand after a holiday
respectively. The day of the week effect is repnese byD,, where r represents the days
Tuesday up to Sunday with Monday as the base pefioel monthly effect is represented by
M,, wherel represents the months February up to Decemberdaithary as the base month.
R=¢gR,.+@R_.,+aR_.+@R_ +&, where R is a stochastic disturbance term agfdis
the innovation in the disturbance term.

1, if T, -t,<0
Xy = .

0, otherwise
{1 if T,-t,>0

and

X2t = .
0, otherwise
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