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Introduction 

In this study we investigate the tail dependence of the two variables of the bivariate 

Generalized Gamma distribution. Tail dependence plays an important role in for 

example the estimation of tail probabilities in multivariate models. The dependence 

structure in the tails are popularly describes through copulas as discussed in various 

literature, see for example Beirlant et al. (2004). In this paper we start by discussing 

the univariate Generalized Gamma distribution and then we extend the univariate 

distribution to the multivariate Generalized Gamma distribution. Tail dependency is 

then investigated for the bivariate Generalized Gamma distribution, by following the 

literature of Ledford and Tawn (1997), for different parameter values.   

Generalized Gamma distribution 

The Gamma class of distributions covers a number of well-known distributions such 

as the Gamma, Weibull and Exponential distributions. In this section we define and 

discuss the Generalized Gamma (GGAM) distribution. The distribution function of 

                is given in [Eq (1)]  
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respectfully where              is the well known Euler’s constant and       
  

 
. The parameters   and   can be expressed in terms of   and   as       –        

and     √     .   
 

√     
 is known as the tail index. From [Eq (1)]   are Gamma 

distributed denoted by           . It is also known that               , the 

distribution [Eq (1)] is constructed such that                and                  

(Beirlant et al., 2002). The parameter space is                             . 



Multivariate Generalized Gamma distribution 

The Multivariate Generalized Gamma (MGGAM) distribution is in accordance with 

the GGAM distribution. The probability density function of 

                              is given in [Eq (5)]  
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  can be written in matrix form as                  
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is the symmetric square root of the inverse of the covariance matrix  . Further 

       and              . the parameter space is:                  and 

     . A random variable   is              if the elements of V are distributed 

Gamma(    ),            , independent of each other. The matrix         
 

  can 

be considered as the tail index of the distribution in line with the univariate tail index 

of the GGAM, namely     
 

√     
.  Marginally      

   

√      
 will be the tail index for 

the ith variable. The bivariate case of the MGGAM is illustrated through the following 

example. 

Example 1 

Let     ,   (
    
    

),    (
 
 
) and     (

   
 

)   Figure 1 shows a simulated 

dataset of         observations distributed GMGAM with the given parameters. An 

interesting observation from the scatter plot is the presence of tail dependency 

between the two variables in the extreme right hand corner. The effect of tail 

dependency is discussed in the next section.  



 

Figure 1: Scatter plot of 500 simulated MGGAM observations 

 Tail dependence 

In the modelling of multivariate data tail dependence plays a critical role. Copulas are 

popular methods for modelling multivariate data especially to describe the 

dependence structure in the tails. To read more about copulas and tail dependence 

see Beirlant et al., 2004. The multivariate normal is a classical case where 

asymptotic tail dependence breaks down although there is a high correlation 

between the variables. The estimation of the coefficient of tail dependence between 

two variables    and    has been discussed by various authors and Beirlant et al., 

(2004) also provides a good review on this. We will follow the method discussed by 

these authors as proposed by Ledford and Tawn (1996), namely defining   as the 

coefficient of tail dependence between variables    and    if the joint survival 

function                  can be written as  
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  is a slowly varying function as       and         .       implies dependence 

and       independence (Zellner, 1977).           are Fréchet variables defined 

as       
 

       
 where    is the cdf of the marginal of   . If    is not known, it can be 

estimated through the empirical cdf  ̂ (    )   
 

   
             based on the   sorted 

observations      on   . Any other estimates of    can also be considered. The 

assumption in [Eq (7)] implies that               has a regular varying tail with 

index  
 

 
 and any of the peaks over threshold (POT) distributions may be candidates 



to estimate  . The question now arises; for what values of           will   be equal 

to one. Thus for what values of           will there be tail dependence between the 

two variables. This question is investigated in the following example. 

Example 2 

In this example we investigate for what values           the tail dependency 

between the two variables    and    exist. The marginals are not available explicitly, 

but we approximate the marginals to be Gamma distributed. A Gamma distribution is 

fitted on each marginal using the MATLAB command gamfit(  ) and gamfit(  ) 

respectively. After doing the Fréchet transformation on the marginals of          

the joint survival function                  can be transformed to        where 

             . Since a tail probability is calculated we consider a POT distribution 

for estimating  . POT distributions only considers observations greater than a 

chosen threshold  . The POT distribution considered here is the generalized single 

Pareto (GSP) distribution discussed in Verster and De Waal (2010). This distribution 

has the advantage of only one parameter if the threshold is known. The GSP is 

shown in [Eq (8)] 
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The optimum threshold is chosen by minimizing the mean squared error between the 

predictive quantiles of    and the observed quantiles. See Verster and De Waal 

(2010) for a discussion of this method for choosing an optimum threshold.   To test 

for tail dependence we consider the posterior distribution of  . The          is 

obtained from the posterior. If             we accept the hypothesis at        

and say that   might be equal to 1.This is illustrated in Figure 2. 

 

 

 

Figure 2: Illustration of the posterior of    

Consider again Example 1 where     ,   (
    
    

),    (
 
 
),     (

   
 

)  and 

     . We will now test for tail dependence which were evident from Figure 1.  For 

different values of   the posterior distribution of    under the GSP distribution is 

obtained. The posterior distribution is given by   

Area   5% 

Posterior 

distribution 
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where 
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is the maximal data information (MDI) prior (Verster and De Waal, 2010). The mode 

of the posterior distribution is an estimate of  . The optimum threshold is obtained 

through first estimating   from the posterior at different values of   and then 

calculating the minimum mean squared error (MSE) between the predictive quantiles 

of    and the observed quantiles [Eq (8)] at the different threshold values. Figure 3 

shows the different values of   plotted against the MSE. A minimum MSE is obtained 

at     . 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3: Various threshold values plotted against the respective MSE values  

After obtaining the optimum threshold values   is again estimated as the mode of the 

posterior (Figure 4) given  . From Figure 4 it can be seen that  ̂      . The 

        is then calculated from the posterior as       , indicating a tail 

dependence.  



 

Figure 4: Posterior of   at      

Various simulation studies were conducted for different values of       and   to test 

for tail dependence. Each simulation was repeated several times. The outcomes are 

given in Figure 5 in the Appendix. The dots indicates that the hypothesis     is 

accepted, thus indicating tail dependence. From Figure 5 we can roughly conclude 

that for       and         tail dependence between the variables exist.  

Conclusion 

When modelling multivariate data tail dependence plays an critical role for example 

in estimated tail probabilities. By following the literature of Ledford and Tawn (1997),  

we have shown in this paper that tail dependence exist in the bivariate Generalized 

Gamma distribution for      .  
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Figure 5: Indicating tail dependence for various values of       and   

 


