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Introduction 

The t distribution is commonly used to model data with heavy tails, see for example 

Beirlant et al. (2004). In some cases it can be argued that the tail on the t distribution 

might be too heavy or too light for a specific situation. In such cases the Generalized 

t distribution might be considered as a more appropriate distribution to model the 

data. The Generalized t distribution, as we will show, allows for situations where the 

tails are heavier or lighter than the usual t distribution. In this paper we introduce the 

Generalized t distribution and compare it to the t distribution by means of a practical 

application. The real data set considered here is the total rainfall in Bloemfontein, 

South Africa, for the month February from 1970 to 2011. The data is shown in Figure 

1. In Section 1 the t distribution is fitted to the February data and the 95th quantile is 

estimated from the posterior predictive density. In Section 2 the Generalized t 

distribution is introduced and fitted to the same data set. Again the 95th quantile is 

estimated using the posterior predictive density and compared to the quantile 

obtained with the t distribution.   

      

Figure 1: February rainfall for 1970 to 2011 
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1 Fitting the t distribution 

 

The t distribution with density function, given by the following equation, is fitted to the 

February rainfall data (X) using the function dfittool in the statistical package Matlab 
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where   is the location parameter,   is the scale parameter and   is the degrees of 

freedom. The parameters are estimated as follows:  ̂            ̂          and 

 ̂         . The t distribution with the estimated parameters are plotted on the 

histogram of the data and shown in Figure 2.  

 

Figure 2: t distribution fitted on the February rainfall  

From Figure 2 the t distribution seems to be a reasonable fit to the data although the 

tail of the distribution might be too heavy or too light. This will be discussed in the 

next section.  

The posterior predictive density of the t distribution can be used to estimate high 

quantiles.  The posterior predictive density of the t distribution for a future 

observation,      , is derived as follows: 

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

7

8
x 10

-3

Data

D
e
n
s
it
y

 

 

rain data

t fit



    
(   ) 

(    )

(      ) 

  
  (     )       (2) 

where    
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 and   ∑   

 
    for      observations (Geisser, 1993).  

Therefore       (   ) follows a Student’s t distribution with mean 0 and variance 1. 

The 95th quantile is predicted by first calculated   using the Matlab function 

  –      (        ). After   is calculated it is substituted into (2) and the 95th 

quantile  (    )     is predicted as 206.9705. The posterior predictive density of 

     for future observations is shown in Figure 3. 

  

Figure 3: The posterior predictive density of the t distribution for future observations 

    .  

 

2 Introducing the Generalized t distribution 

It might be that the tail of the t distribution is too heavy or too light for the given data 

set, therefore we introduce the Generalized t (Gt) distribution to investigate this 

aspect. We start this section with a brief discussion on the Generalized Gamma and 

Generalized Beta Type II distribution before we introduce the Gt distribution.  
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Assume that   is Generalized Gamma distributed then the distribution function of 

        (     ) is given in (3) (Beirlant et al. 2002) 
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 ( ) are the digamma and trigamma functions 

respectively where   ( )         is the well known Euler’s constant and   ( )  
  

 
. The parameters   and   can be expressed in terms of   and   as       –    ( ) 

and     √  ( ). From (3)      (   ) and it is known that  (   ( ))   ( ). The 

distribution (3) is constructed such that  (   ( ))       and   (   ( ))       . The 

    (     ) can be rewritten as     (     ) with parameter   called the tail 

index and parameter     ( )           called the scale parameter. The 

parameter space     *                      + changes to    *       

      + and   is rewritten as              (   ) where     
 

 
  ( )

. The 

density function of   is then given by 
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We will refer to (6) as the GGAM density,       (     ), where   is the shape 

parameter,   the tail index and   the scale parameter. 

Assume now that        (       ) and        (       ) where    and    are 

independent, then   (
  

  
)
  

 
 is Generalized Beta Type II (GBET2) distributed 

denoted by        (       ). Let    
 

 ,   is then expressed as the quotient of 

two GGAM distributions and is Beta Type 2 (BET2) distributed denoted by 

      (     ).  The probability density of   is given by 
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The probability density of        (       ) follows from (7) as  
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where the Jacobian is  (     )  
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It can now be argued that   (
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| is Generalized |t| distributed denoted by 

    (    ). Further,    
 

  is again the quotient of two GGAM distributions and is 

therefore Beta Type 2 (BET2) distributed with parameters    
 

 
 and   . 

The probability density of     (    ) follows as  
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where the Jacobian is  (     )  
 

 
 

 

 
   

.   is an absolute standardized variable,  

  |
   

 
|, where   is the observations,    is the mean and   is the standard deviation 

of the observations.   

The t distribution is a special case of the Gt with mean   and     degrees of freedom 

if    . Figure 4 shows the Gt density with      and different values of   from 0.2 

to 2 with increments of 0.2. 

 

Figure 4: The Gt densities for      and            . 
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The density of |t| where       can be recognized from Figure 4 printed in a thick 

line with (*) as the positive part of the symmetric density of the ordinary     
. The tail 

of the densities become heavier as   increases. We therefore classify the Gt 

distribution with tails heavier than the t distribution (HTT) when       or less than 

the t distribution (LTT) if      . 

A Bayesian approach is considered for estimating the two parameters of the Gt 

jointly. The joint likelihood of    and   is given by 
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The log of the MDI prior,      (    )   (    ( ( ))), on    and   under the Gt 

distribution is given by                                                                                                                                                                                                                                                                                                                                                                                             
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Equation (11) follows since      
 

  is distributed Beta2(
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The joint posterior distribution of    and   is then given as 

 (    | )        (    | ) (    ).                                    (13) 

To simulate a set of (    )’s from the posterior (13), we make use of the Gibbs 

sampling method by simulating alternatively    from its conditional density function 

given   fix, then simulating   from its conditional density given the selected   . This 

process is repeated a large number of times. Figure 5 shows a scatter plot of the 

simulated   against   for the February rainfall data. The means of the simulated k   

and     are calculated as 1.3776 and 0.7784 respectively and is considered as the 

estimates of k and  . In Figure 6 the density function of the Gt with the estimated 

parameters are plotted on the histogram of the standardized February rainfall data. 

Note that     and therefore indicating a lighter tail than the t distribution, the t 

distribution is therefore not appropriate for estimating high February rainfall tail 

quantiles, because the tail of the t distribution is too heavy.  



 

Figure 5: Plot of 2000 simulated (    ) values simulated through the Gibbs 

sampler 

 

Figure 6: The Gt with estimated parameters plotted on the histogram of the 

standardized data. 
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The posterior predictive density of a future observation     , given the data is given 

as follows: 

 (    | )         |  (    |    )                                                      (14) 

Since (14) cannot be solved explicitly the posterior predictive density can be 

simulated by taking the mean of the densities at      for a large number of    and   

values simulated from the posterior. Equation (14) simplifies then to   
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where m is the large number of simulated    and   values. The posterior predictive 

density of the Gt is shown in Figure 7. 

 

Figure 6: The posterior predictive density of the Gt distribution for future 

observations     . 

A posterior predictive quantile function (16) can be used to predict a high pth quantile  
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Equation (16) is solved by doing a similar simulation where a large number of    and 

  values are simulated from the posterior and substituted into (17)  
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The 95th quantile can easily be estimated by Matlab using the function       

       (     
 

 
   ).       is then transformed to        

     

       
 and finally     

        
 

 =1.7913. Since   is a standardized variable the quantile must be rescaled 

as follows                . The 95th quantile obtained is smaller than the 

quantile predicted with the t distribution. This was expected since    . Other 

predicted tail quantiles are shown in Table 1. 

Table 1: Comparing predicted tail quantile for the Gt and the t distributions.  

 Gt distribution t distribution 

p  = 0.975 279.2683 285.7616 

p = 0.95 240.8594 260.9705 

p = 0.9 208.4054 233.8001 

  

Conclusion 

The Gt distribution can be used to model data with a heavier or lighter tail than the t-

distribution as illustrated through the February rainfall data.     indicates a lighter 

tail than the t-distribution and     indicates a heavier tail than the t-distribution. 

The two parameters of the Gt can be estimated through Gibbs sampling when 

considering a Bayesian approach. The posterior predictive density can be estimated 

as well as posterior predicted quantiles. 
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