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Summary: In this paper the probability matching prior for the product of different powers of k

Poisson rates is derived. This is achieved by using the differential equation procedure of Datta and
Ghosh (1995). The reference prior for the ratio of two Poisson rates is also obtained. Simulation stud-
ies are done to compare different methods for constructing Bayesian confidence intervals. It seems
that if one is interested in making Bayesian inferences on θ = ∏k

i=1 λ αi
i and if αi ≥ 0 (i = 1,2, . . . ,k)

then the probability matching prior is the best. If on the other hand we want to obtain point estimates,
credibility intervals or do hypotheses testing about ν = λ1/λ2, the ratio of two Poisson rates, then the
uniform prior must be used.

1 Introduction

The Poisson distribution is often used as a probability model to describe the occurrence of rare events.
For example the number of defects in items randomly selected from a production process may follow
a Poisson distribution. Also the number of misprints counted on the first four pages of an early draft
of a scientific paper. Events may also occur over time such as the number of radio-active decays in a
fixed time interval, the number of injuries during a rugby match and the number of overseas telephone
calls per hour. Research has been done improving statistical inferences on Poisson data. Methods for
computing point and interval estimates of a single Poisson rate are for example discussed in Hald
(1952), Guenther (1973) and Agresti and Coull (1998). Barker (2002) also made an attempt to find
approximate confidence intervals for a single Poisson rate.

Our interest is to make Bayesian inferences on nonlinear functions of Poisson rates. Kim (2006)
derived a non informative (probability matching) prior for θ = ∏k

i=1 λ αi
i , the product of different
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powers of k Poisson rates, thereby obtaining approximate point and Bayesian confidence (credibility)
intervals of the reliability of systems of k independent parallel components. In two sample situations
it may be of interest to test or to construct credibility intervals for the ratio of two Poisson rates. Price
and Bonett (2000) used non informative priors for small and large values of λ j ( j = 1,2) to construct
credibility intervals for ν = λ1/λ2, the ratio of two Poisson rates. According to them these improper
priors worked well. They also mentioned that the Jeffreys’ prior has the advantage of adding 0.5 to
the sample data which will avoid the problem of sampling zeros. We, however, tend to differ from
Price and Bonett on the Jeffreys prior for the ratio of two Poisson rates. Our main purpose of this
note is therefore to obtain probability matching priors for nonlinear functions of Poisson rates. The
reference prior for the ratio of two Poisson rates will also be derived.

2 Probability Matching and Reference Prior

The Bayesian paradigm emerges as attractive in many types of statistical problems, especially in Pois-
son problems, but the choice of an appropriate non informative prior distribution has been controver-
sial. As will be seen later, common non informative priors in multiparameter problems, such as Jef-
freys’ prior can have features that have an unexpectedly dramatic effect on the posterior distribution.
Datta and Ghosh (1995) derived the differential equation which a prior must satisfy if the posterior
probability of a one sided credibility interval for a parametric function and its frequentist probability
agree up to O

(
n−1) , where n is the sample size. They proved that the agreement between the poste-

rior probability and the frequentist probability holds if and only if ∑k
i=1

∂
∂λi

{ηi (λ )π (λ )}= 0, where

π (λ ) is the probability matching prior for λ = [λ1 λ2 . . .λk]
′
, the vector of unknown parameters. Let

∇t (λ ) =
[

∂
∂λ1

t (λ ) · · · ∂
∂λk

t (λ )
]′
, where t (λ ) is a nonlinear function of Poisson parameters,

then η (λ ) = F−1(λ )∇t(λ )√
∇′

t (λ )F−1(λ )∇t(λ )
=
[

η1 (λ ) · · · ηk (λ )
]′
. Where F−1 (λ ) is the inverse of F (λ ) ,

the Fisher information matrix of λ . Reasons for using the probability matching prior is that it provides
a method of constructing accurate frequentist intervals and it could also be useful for comparative pur-
poses in Bayesian analysis. From Wolpert (2004), Berger states that frequentist reasoning will play
an important role in finally obtaining good general priors for estimation and prediction. Some statis-
ticians argue that frequency calculations are an important part of applied Bayesian statistics. (See
Rubin, 1984).

The Jeffreys’ and probability matching priors are but two methods to obtain useful non informative
priors. As mentioned, the Jeffreys’ prior is not always suitable for multiparameter problems. In
recognition of this problem, Berger and Bernardo (1992) proposed the reference prior approach to the
development of non informative priors, the key feature of which was a possible dependence of the
reference prior on specification of parameters of interest and nuisance parameters. As mentioned by
Pearn and Wu (2005) the reference prior maximises the difference in information about the parameter
provided by the prior and posterior, the reference prior is derived in such a way that it provides as
little information as possible about the parameter. In this section the reference prior of Berger and
Bernardo (1992) will be derived for the ratio of two Poisson rates. As in the case of the Jeffreys’ prior,
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the reference prior method is derived from the Fisher information matrix. The reference priors depend
on the group ordering of the parameters. Berger and Bernardo (1992) recommended the reference
prior based on having each parameter in its own group, i.e. having each conditional reference prior to
be one dimensional.

The parameter ψ = θ/(∏k
i=1 nαi

i ) where θ = ∏k
i=1 λ αi

i is the product of different powers of k Poisson
rates and appears in applications to system reliability. In Section 3 the probability matching prior for
θ will therefore be derived as well as the reference prior for the ratio λ1/λ2 and in Section 4 a weighted
Monte Carlo simulation method is described for obtaining credibility intervals in the case of the
probability matching prior. This method is especially suitable for computing Bayesian confidence
intervals, since only the kernel of the posterior distribution of the parameter is needed. In Section 5
simulation results are given for θ =∏k

i=1 λ αi
i and it shows that if αi ≥ 0 (i = 1,2, . . . ,k) the probability

matching prior is an improvement on the Jeffreys’ and uniform priors for obtaining point estimates
and credibility intervals of θ . In Section 6 simulation results are given for ν = λ1/λ2, the ratio of two
Poisson parameters. From the simulation results it becomes clear that the uniform prior is the best for
making inferences about the ratio. The coverage probabilities obtained from the Jeffreys’ (probability
matching and reference) priors are reasonable, but the average interval lengths and the variances of
the interval lengths are much too large.

3 The Ratio and Product of Poisson Rates

In this section we will firstly derive the probability matching prior for the general case where the
parameter of interest is θ = ∏k

i=1 λ αi
i . The special case θ1 = λ1/λ2 = ν (α1 = 1,α2 = −1 and α3 =

α4 = . . .= αk = 0) is also of interest. In the last part of this section the reference prior for ν = λ1/λ2

will be derived. Kim (2006) derived the probability matching prior for the case where θ = ∏k
i=1 λ αi

i ,
Kim however used a different method to derive the probability matching prior, Kim’s proof is based
on the method of Tibshirani (1989). Our proof is based on the procedure of Datta and Ghosh (1995).

Consider a sample from k populations. Let X i be an observation from population i. Then
X1,X2, . . . ,Xk will be independent Poisson distributions such that X i ∼ P(λi) , for i = 1,2, . . . ,k.
Where λi is the expected number of events per unit sample.

Theorem 1. The probability matching prior for θ =
k
∏
i=1

λ αi
i is given by

πPM (λ ) ∝

(
k

∑
i=1

λ−1
i α2

i

) 1
2

. (1)

Proof. The Fisher information matrix is well known , the inverse of the Fisher information matrix is
then given b

F−1 (λ ) = diag
[

λ1 λ2 . . . λk

]
.
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We are interested in a probability matching prior for t (λ ) = θ =
k
∏
i=1

λ αi
i .

Now

∇′
t (λ ) =

[
∂ t(λ )
∂λ1

∂ t(λ )
∂λ2

· · · ∂ t(λ )
∂λk

]
=

[
α1λ α1−1

1

k
∏
j ̸=1

λ α j
j α2λ α2−1

2

k
∏
j ̸=2

λ α j
j · · · αkλ αk−1

k

k
∏
j ̸=k

λ α j
j

]
.

Also

∇′
t (λ )F−1 (λ ) =

(
k
∏
i=1

λ αi
i

)[
α1 α2 · · · αk

]
and

∇′
t (λ )F−1 (λ )∇t (λ ) =

(
k
∏
i=1

λ αi
i

)2 k
∑

i=1
α2

i λ−1
i .

Define

η ′ (λ ) =
∇′

t (λ )F−1 (λ )√
∇′

t (λ )F−1 (λ )∇t (λ )

=
[

η1 (λ ) η2 (λ ) · · · ηk (λ )
]

where ηi (λ ) = αi√
k
∑

i=1
α2

i λ−1
i

(i = 1,2, . . . ,k) .

The prior π (λ ) is a probability matching prior if and only if the differential equation
k
∑

i=1

∂
∂λi

{ηi (λ )π (λ )}= 0 is satisfied.

The differential equation will be satisfied if π (λ ) is

πPM (λ ) ∝

{
k

∑
i=1

α2
i λ−1

i

} 1
2

.

If we substitute h = 0 and s = 1/2 in equation (3.1) of Kim (2006), the two priors are identical.

When using the probability matching prior, the posterior distribution of λ is given by

πPM (λ |x1,x2, . . . ,xk ) ∝

{
k

∑
i=1

α2
i λ−1

i

} 1
2 k

∏
i=1

λ xi
i e−λi. (2)

It is easy to prove (see Kim, 2006) that equation 2 is a proper posterior distribution.

The Jefrreys’ prior, πJ, is given by

πJ (λ ) ∝ |F (λ )|
1
2 =

(
k

∏
i=1

λi

)− 1
2

. (3)

Where F (λ ) is the information matrix connected with the likelihood function.
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When using the Jeffreys’ prior, the posterior distribution of λ is given by

πJ (λ |x1,x2, . . . ,xk ) ∝

(
k

∏
i=1

λi

)− 1
2 k

∏
i=1

λ xi
i e−λi =

k

∏
i=1

λ xi− 1
2

i e−λi. (4)

The posterior distribution of λ is thus the product of k independently distributed Gamma
(
xi +

1
2 ,1
)

variates.

The Uniform prior, π, is given by

πU (λ ) ∝ constant. (5)

When using the Uniform prior, the posterior distribution of λ is given by

πU (λ |x1,x2, . . . ,xk ) ∝
k

∏
i=1

λ xi
i e−λi. (6)

The posterior distribution of λ is thus the product of k independently distributed Gamma(xi +1,1)
variates.

Theorem 2. The posterior distribution for the ratio ν = λ1/λ2 in the case of the probability matching

prior is given by

πPM (ν |x1,x2 ) ∝
1

B
(
x1 +

1
2 ,x2 +

1
2

)νx1− 1
2

(
1

ν +1

)x1+x2+1

(7)

ν > 0

a Beta distribution of the second kind.

Proof. If α1 = 1, α2 = −1 and α3 = α4 = . . . = αk = 0, it easily follows from equation 1 that the
probability matching prior in the case of ν = λ1/λ2 is given by

πPM (λ1,λ2) ∝
(λ1 +λ2)

τ

λ
1
2

1 λ
1
2

2

. (8)

where τ can take on any value. Using equation 8, the joint posterior distribution of λ1 and λ2 is
given by

πPM (λ1,λ2 |x1,x2 ) ∝
(λ1 +λ2)

τ

λ
1
2

1 λ
1
2

2

e−(λ1+λ2)λ x1
1 λ x2

2

Let ν = λ1/λ2, thus λ1 = νλ2 and dλ1 = λ2dν , then

πPM (ν ,λ2 |x1,x2 ) ∝ νx1− 1
2 (1+ν)τ λ x1+x2+τ

2 e−λ2(1+ν)

5
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and

πPM (ν |x1,x2 ) =

∞̂

0

πPM (ν ,λ2 |x1,x2 )dλ2

= Cνx1− 1
2

(
1

ν +1

)x1+x2+1

(9)

which is a Beta distribution of the second kind and C = 1
B(x1+

1
2 ,x2+

1
2)

.

Corollary. The Jeffreys’ and probability matching priors for ν = λ1/λ2 have the same posterior dis-

tribution. As will be seen from the next Theorem, equation 7 is also the posterior distribution for the

reference prior of ν = λ1/λ2 .

Theorem 3. The reference prior of ν = λ1/λ2 for the group ordering {λ1,λ2} is given by

πR (λ1,λ2) ∝
{

1
λ1λ2 (λ1 +λ2)

} 1
2

. (10)

Proof. By making a transformation we will, first derive the reference prior, πR (ν ,λ2). The Fisher
information matrix F (ν ,λ2) = A

′
F (λ1,λ2)A where

A =
∂ (λ1,λ2)

∂ (ν ,λ2)
=

[
λ2 ν
0 1

]
.

Therefore

F (ν ,λ2) =

[
λ2 0
ν 1

][
1

νλ2
0

0 1
λ2

][
λ2 ν
0 1

]

=

[
λ2
ν 1

1 (ν+1)
λ2

]
.

Now

h1 =

∣∣∣∣λ2

ν
− λ2

(ν +1)

∣∣∣∣= λ2

(
1

ν (ν +1)

)
and

πR (ν) = |h1|
1
2 ∝

1

ν
1
2 (ν +1)

1
2

h2 =

∣∣∣∣ 1
λ2

(ν +1)
∣∣∣∣ .

Therefore

πR (λ2 |ν ) = |h2|
1
2 ∝

(
1
λ2

) 1
2

6
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The joint prior for the group ordering {ν ,λ2} is given by

πR (ν ,λ2) = πR (ν)πR (λ2 |ν ) ∝
(

1
λ2

) 1
2
(

1
ν (ν +1)

) 1
2

and the joint reference prior for the group ordereing {λ1,λ2} is given by

πR (λ1,λ2) ∝
{

1
λ1λ2 (λ1 +λ2)

} 1
2

.

From equation 10 it follows that the reference prior is also a probability matching prior.

4 The Weighted Monte Carlo Method in the Case of πPM (λ ) ∝(
∑k

i=1 λ−1
i α2

i

)1
2 , the Probability Matching Prior for θ =∏k

i=1 λ αi
i

In this section a weighted Monte Carlo method is described which will be used for simulation from
the posterior distribution in the case of the probability matching prior. This method is especially
suitable for computing Bayesian confidence (credibility) intervals. It does not require knowing the
closed form of the marginal posterior distribution of θ , only the kernel of the posterior distribution of
{λ1,λ2, . . . ,λk} is needed.

As mentioned by Chen and Shao (1999), Kim (2006), Smith and Gelfand (1992), Guttman and
Menzefrieke (2003), Skare et al. (2003) and Li (2007) the weighted Monte Carlo (sampling - im-
portance re-sampling) algorithm aims at drawing a random sample from a target distribution π, by
first drawing a sample from a proposal distribution q, and from this a smaller sample is drawn with
sample probabilities proportional to the importance ratios π/q. For the algorithm to be efficient, it
is important that q is a good approximation for π. This means that q should not have too light tails
when compared to π. For further details see Skare et al. (2003). In the case of credibility intervals
it is not even necessary to draw the smaller sample. The weights (sample probabilities) are however
important.

If a uniform prior is put on λ , the posterior (proposal) distribution is

q(λ |data) ∝
k
∏
i=1

λ xi
i e−λi

In the case of the probability matching prior, the posterior (target) distribution is

πPM (λ |data) ∝
{

k
∑

i=1
α2

i λ−1
i

} 1
2 k

∏
i=1

λ xi
i e−λi

The sample probabilities are therefore proportional to

πPM (λ |data)
q(λ |data)

=

{
k

∑
i=1

α2
i λ−1

i

} 1
2

7
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and the normalized weights are

ωl =

{
k
∑

i=1

(
α2

i λ−1
i
)(l)} 1

2

n
∑

l=1

{
k
∑

i=1

(
α2

i λ−1
i
)(l)} 1

2
l = 1,2, . . . ,n.

A straightforward way of doing the weighted Monte Carlo (WMC) method was proposed by Chen
and Shao (1999). Details of the Monte Carlo method are as follows:

Step 1 Obtain a Monte Carlo sample
{(

λ (l)
1 ,λ (l)

2 . . . ,λ (l)
k

)
; l = 1,2, . . . ,n

}
from the proposal distri-

bution q(λ |data) and calculate θ (l) =
k
∏
i=1

(
λ α1

i
)(l) for l = 1,2, . . . ,n.

Step 2 Sort
{

θ (l),(l = 1,2, . . . ,n)
}

to obtain the ordered values θ [1] ≤ θ [2] ≤ ·· · ≤ θ [n].

Step 3 Each simulated θ value has an associated weight. Therefore compute the weighted function
ω(l) associated with the l−th ordered θ [l] value.

Step 4 Add the weights up from left to right (from the first on) until one gets
n1
∑

l=1
ω(l) = α/2. Write

down the corresponding θ [n1] value and denote it as θ(α/2). Add the weights up from right to left (from

the last back) until one gets
n
∑

l=n2

ω(l) = α/2. Write down the corresponding θ [n2] value and denote it

as θ(1−α/2).

Step 5 The 100(1−α)% Bayesian confidence interval is:

(
θ(α/2),θ(1−α/2)

)
.

5 Simulation Studies

As mentioned, the parameter θ = ∏k
i=1 λ αi

i , the product of different powers of k Poisson parameters
appears in applications to system reliability. If a system consists of k components in parallel, then
the probability of system failure is ψ = ∏k

i=1

(
λi
ni

)αi
where pi =

λi
ni

is the probability that the i−th
component will fail. Also if a system requires that at least one of each of k types of components must
be employed and that these components are needed in parallel, then the probability of failure of an m-
component system is ψ = ∏k

i=1

(
λi
ni

)αi
, where k < m, αi is the number of components of type i and

∑k
j=1 α j = m.

From a Bayesian perspective a prior is needed for the parameter ψ . As mentioned common non-
informative priors in multiparameter problems such as Jeffreys’ priors can have features that have an

8
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unexpectedly dramatic effect on the posterior distribution. It is for this reason that the probability
matching prior for θ = ∏k

i=1 λ αi
i was be derived in Theorem 1.

Also as mentioned a probability matching prior is a prior distribution under which the posterior
probabilities match their coverage probabilities. The fact that the resulting Bayesian posterior inter-
vals of level 1−α are also good frequentist confidence intervals at the same level is a very desirable
situation. See also Bayarri and Berger (2004) and Severini et al. (2002) for general discussion.

5.1 Simulation Study I

In Table 1 the frequentist coverage probabilities are given for θ = ∏k
i=1 λi in the case of:

1. the Jeffreys’ prior, πJ (λ ) ∝
(

k
∏
i=1

λi

)− 1
2

;

2. the uniform prior, πU (λ ) ∝ constant;

3. the probability matching prior, πPM (λ ) ∝
{

k
∑

i=1
λ−1

i

} 1
2

;

50 000 samples were generated and from each sample 10 000 parameter values were simulated to
obtain the Bayesian confidence intervals in the case of the Jeffreys’ and uniform priors. For the
probability matching prior only 20 000 samples were generated.

From the simulation results in Table 1 it is clear that the probability matching prior is better than
the Jeffreys’ and uniform priors in most of the situations. As mentioned by Kim (2006) if each co-
ordinate of the parameter vector λ is large, the frequentist coverage percentages obtained from using
the probability matching prior is close to the desired level.

The simulation results are displayed in Figures 1 and 2. The inability of the Jeffreys’ and uniform
priors to give good coverage probabilities is even more clear from these graphs.

Table 1. Frequentist Coverage Probabilities for 5% and 95% Posterior Quantiles of θ = ∏k
i=1 λi

Jeffreys’ Uniform Prob. Matching
λ θ 5% 95% 5% 95% 5% 95%

(1 1 1) 1 0.0223 0.9512 0.1037 1.0000 0.0551 1.0000
(1 2 3) 6 0.0270 0.9133 0.0849 0.9975 0.0514 0.9819
(2 2 2) 8 0.0243 0.9142 0.0775 1.0000 0.0491 0.9674
(1 5 10) 50 0.0346 0.9576 0.0876 0.9967 0.0532 0.9862
(5 5 5) 125 0.0352 0.9069 0.0612 0.9650 0.0484 0.9417

(10 10 10) 1 000 0.0325 0.9253 0.0588 0.9625 0.0462 0.9490
(1 2 3 4 5) 120 0.0192 0.8861 0.0806 0.9922 0.0500 0.9742
(2 2 3 4 5) 240 0.0194 0.8657 0.0721 0.9847 0.0518 0.9586
(3 3 3 4 5) 540 0.0198 0.8647 0.0666 0.9753 0.0482 0.9499

(1 2 3 4 5 6 7 8) 40 325 0.0141 0.8560 0.0756 0.9877 0.0503 0.9704
(1 2 3 4 5 5 5 5) 15 000 0.0131 0.8442 0.0704 0.9870 0.0514 0.9693
(5 5 5 5 5 5 5 5) 390 625 0.0164 0.8466 0.0591 0.9614 0.0477 0.9458
(5 5 5 5 6 7 8 9) 1 890 000 0.0178 0.8617 0.0587 0.9614 0.0499 0.9455

(5 5 5 5 10 10 10 10) 6 250 000 0.0179 0.8729 0.0582 0.9627 0.0472 0.9472
(10 10 10 10 10 10 10 10) 108 0.0184 0.8880 0.0534 0.9546 0.0492 0.9507

9



10 RAUBENHEIMER AND VAN DER MERWE

Figure 1. Illustration of the 5% Quantiles of θ = ∏k
i=1 λi in the same order as given in Table 1.

Figure 2. Illustration of the 95% Quantiles of θ = ∏k
i=1 λi in the same order as given in Table 1.

10
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5.2 Simulation Study II - Comparing Six Priors for θ = λ1λ2 - Reliability of
Independent Parallel Components System

In this example a simulation study is done for θ = λ1λ2, the product of two Poisson rates. The
parameter values for the Poisson distributions are λi =2, 3, 4, 5, 6, 7, 8, 9, 10 (for i = 1,2).

The priors that will be compared are:

1. the uniform prior: πU (λ1,λ2) ∝ constant;

2. the Jeffreys’ prior: πJ (λ1,λ2) ∝ ∏2
i=1 λ− 1

2
i ;

3. the probability matching prior: πPM (λ1,λ2) ∝
{

∑2
i=1 λ−1

i
} 1

2 ;

4. π (λ1,λ2) ∝ ∏2
i=1 λ− 3

8
i ;

5. π (λ1,λ2) ∝ ∏2
i=1 λ− 1

4
i ;

6. π (λ1,λ2) ∝ ∏2
i=1 λ− 1

8
i .

We know from experience (and this is also clear from Table 1) that the Jeffreys’ prior under covers
while the uniform prior tends to over cover in the case of the product of Poisson rates. Priors (4),
(5) and (6) are in between priors for (1) and (2) and it is for this reason that they are included in this
simulation study.

The frequentist coverage percentages of the 95% HPD (highest posterior density) intervals as well
as the interval lengths are displayed in Figure 3. The graphs are averages over λ1 for λ2 = 2 to 10.
The coverage percentage of the probability matching prior is much better than those of the Jeffreys’
and uniform priors. It is also not impossible that a prior with a = 1

5 or a = 1
6 will give a very good

coverage.

11
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Figure 3. Illustration of the Coverage Percentages of the 95% HPD Intervals of θ = λ1λ2.

5.3 Simulation Study III - Comparing Priors for θ3 = λ 2
1 λ2 and θ4 = λ 3

1 λ2 -
Reliability of Repeated Components System

Assume a system needs three components in parallel and at least one of each of two types of compo-
nents must be used. If the first component is replicated, then the probability of failure is ψ3 = p2

1 p2.
Also if four components are needed and the first component is replicated three times, then the prob-
ability of failure is ψ4 = p3

1 p2 where pi =
λi
ni

(i = 1,2) .For further details see Kim (2006). In this
simulation study the coverage probabilities of these different priors for the parameters θ3 = λ 2

1 λ2 and
θ4 = λ 3

1 λ2 will therefor be looked at. The parameter values for the Poisson distribution are as in
Section 5.2, i.e. λi =2, 3, 4, 5, 6, 7, 8, 9, 10 (for i = 1,2) and the priors that will be compared are:

1. the uniform prior: πU (λ1,λ2) ∝ constant;

2. the Jeffreys’ prior: πJ (λ1,λ2) ∝ ∏2
i=1 λ− 1

2
i ;

3. the probability matching prior: πPM (λ1,λ2) ∝
{

∑2
i=1 α2

i λ−1
i
} 1

2 .

The frequentist coverage probabilities as well as the interval lengths of the 95% Bayesian confidence
intervals for the above priors in the case of θ3 = λ 2

1 λ2 are given in Figure 4 and in Figure 5 the same
graphs are given for θ4 = λ 3

1 λ2. The graphs are averages over λ1 for λ2 = 2 to 10.
The same patterns as in Figure 3 emerge from Figures 4 and 5, i.e. the Jeffreys’ prior underesti-

mates the coverage probabilities while the uniform prior tends to overestimate the coverage probabil-
ities. In general the probability matching prior seems to give the best coverage probabilities.

12
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Figure 4. Illustration of the Coverage Probabilities of the 95% Bayesian Confidence Intervals for
θ3 = λ 2

1 λ2.

Figure 5. Illustration of the Coverage Probabilities of the 95% Bayesian Confidence Intervals for
θ4 = λ 3

1 λ2.
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6 Bayesian Confidence Intervals for ν = λ1/λ2, the Ratio of Two
Poisson Rates

The comparison of Poisson rates is of great interest in biological, agricultural and medical research.
In two sample situations it may be of interest to test or to construct confidence intervals for the ratio
of two Poisson rates. Gu et al. (2008) compared the proportions of four approaches for testing the
ratio of two Poisson rates.

Price and Bonett (2004) on the other hand computed the exact coverage probabilities of the in-
tervals of six classical methods and that of the Bayesian interval, using Jeffreys’ prior, for small and
large values of λ j ( j = 1,2) . They also looked at other plausible non informative priors for λ j such
as π

(
λ j
)

∝ λ−1
j and π

(
λ j
)

∝ constant and mentioned that these priors work about as well as the

Jeffreys’ prior (π
(
λ j
)

∝ λ− 1
2

j ). According to them the Jeffreys’ prior has the advantage of adding 0.5
to the sample data which would avoid the problem of sampling zeros. From their simulation studies
they concluded that the non informative Bayesian intervals (using the Jeffreys’ prior) is reasonable
under classical evaluation. We however tend to differ from them, since we came to the conclusion
that the Jeffreys’ prior cannot be used for testing the ratio ν = λ1/λ2 or obtaining confidence intervals,
especially if λ2 is small. A prior that can be used for these purposes is the uniform prior. This will
become clear from the following simulation study.

In equation 9 it was shown that the posterior distribution of ν = λ1/λ2 in the case of the Jeffreys’,
probability matching and reference priors is a Beta distribution of the second kind. This distribu-
tion can easily be transformed to an F−distribution with 2x1 + 1 and 2x2 + 1 degrees of freedom.
In a similar way the posterior distribution of ν , using the uniform prior can be transformed to an
F−distribution with 2x1 +2 and 2x2 +2 degrees of freedom. Bayesian confidence intervals and cov-
erage probabilities for ν can therefore be calculated exactly.

6.1 Simulation Study IV - Exact Frequency Coverage Percentages for ν = λ1/λ2

In this example a simulation study is done for ν = λ1/λ2 , the ratio of two Poisson rates. The parameter
values for the Poisson distributions are λ1 =2, 5 and 10 and λ2 =2, 3, 4, 5, 6, 7, 8, 9, 10.

The priors that will be compared are:

1. the uniform prior: πU (λ1,λ2) ∝ constant;

2. the Jeffreys’ prior: πJ (λ1,λ2) ∝ ∏2
i=1 λ− 1

2
i .

In Table 2 the coverage percentages are given for the 95% Bayesian equal-tail intervals in the case
of the Jeffreys’ prior and in Table 3 the coverage percentages are given for the uniform prior. Ten
thousand samples were generated for each parameter combination.

14
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Table 2. Coverage Percentages of the 95% Bayesian Confidence Intervals for ν = λ1/λ2 in the case
of the Jeffreys’ (Reference and Probability Matching) Priors. Coverage Percentage (a), Mean Length
(b) and Standard Deviation (c).

↓λ1 λ2
→

2 3 4 5 6 7 8 9 10

(a) 95.92 94.16 94.46 94.72 95.24 95.20 95.60 95.72 95.30
2 (b) 599.98 250.08 102.77 41.956 8.0429 3.7614 4.8311 1.5405 0.8661

(c) 3.3e6 1.5e6 6.1e5 2.5e5 32752 8470 24634 1261.9 0.4405
(a) 95.40 94.08 94.38 94.94 94.76 94.30 94.32 95.06 94.40

5 (b) 1381.8 599.82 208.86 87.282 23.004 13.445 6.6475 1.8303 1.5217
(c) 1.5e7 7.2e6 2.5e6 1.0e6 2.4e5 1.1e5 46513 4.5629 1.5058
(a) 95.40 94.56 94.76 94.16 93.82 94.32 94.92 94.80 95.20

10 (b) 2886.3 1054.9 3912.1 1727.3 58.639 13.765 10.434 11.167 2.4904
(c) 5.7e7 2.3e7 8.9e6 3.5e6 1.2e6 2.3e5 2.1e5 3.2e5 3.5445

Table 3. Coverage Percentages of the 95% Bayesian Confidence Intervals for ν = λ1/λ2 in the case of
the Uniform Prior. Coverage Percentage (a), Mean Length (b) and Standard Deviation (c).

↓λ1 λ2
→

2 3 4 5 6 7 8 9 10

(a) 98.16 97.34 96.58 96.38 96.80 96.82 96.06 96.18 96.22
2 (b) 21.572 10.130 5.4558 3.2781 2.1531 1.6649 1.3948 1.0562 0.9313

(c) 1901.0 688.59 278.14 107.50 34.622 21.250 22.322 0.9839 3.4559
(a) 95.86 96.46 95.70 95.62 95.92 95.68 95.56 96.26 95.94

5 (b) 42.687 20.474 10.341 6.1223 3.6942 2.7507 2.2019 1.7188 1.4644
(c) 6813.1 2935.1 1075.7 415.72 83.159 38.849 38.722 2.0315 1.1217
(a) 96.22 95.76 96.00 95.76 94.84 95.28 95.54 95.90 95.44

10 (b) 83.653 38.105 18.813 10.916 6.8133 4.9464 3.6860 3.0692 2.3601
(c) 23576 9702.6 3713.5 1481.8 570.94 233.67 96.470 158.94 3.2491

From Table 2 it is clear that the coverage percentages of the Jeffreys’ (reference and probability
matching) priors are reasonably good (slight under coverage in some cases) but the mean lengths
and standard deviations of the credibility (Bayesian confidence) intervals are much too large. This is
especially true if λ2 is small. The uniform prior on the other hand also give reasonably good coverage
(slight over coverage) but the mean lengths and standard deviations of the credibility intervals are
much smaller.

7 Conclusion

If one is interested in obtaining point estimates and Bayesian confidence intervals for θ = ∏k
i=1 λ αi

i ,

the product of different powers of Poisson rates and if αi ≥ 0 (i = 1,2, . . .k) then the probability
matching prior is the best. If on the other hand we want to obtain point estimates, credibility intervals
or do hypothesis testing about ν = λ1/λ2, the ratio of two Poisson rates, then the uniform prior must
be used.

Price and Bonett (2000) mentioned that the Jeffreys’ prior has the advantage of adding 0.5 to the
sample data which will avoid sampling zeros. From our research it seems that adding 1 to the sample
data (using the uniform prior) gives better results for ν = λ1/λ2.
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