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Abstract 

Arpad E. Elo (1903-1992) developed the Elo rating system in the late 1950’s to rate chess players’ 

performance. It is still widely used today for the rating of chess players. This paper aims to 

investigate a possible improvement of the Elo system, namely the introduction of momentum into 

the rating system. It is of interest to establish whether this can be done while harnessing the 

simplicity of the basic Elo system. Simplicity is as important as effectiveness if one wishes to expand 

the reach of the Elo rating system. The system holds great potential for measuring two-player 

games, as well as team games, and is not restricted to win, draw or loss outcomes, but can be used 

for ratings in systems with score-based games as well. With the current immense internet gaming 

arena kept in mind, there truly exist opportunities for dynamic (yet simple) rating systems to 

flourish. 
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Introduction 

The Elo rating system, which is still in use today, was developed by Arpad E. Elo (1903-1992) in the 

late 1950’s. His initial research took place whilst heading a committee that studied the then used 

Harkness System with the aim to improve it. This led to Elo developing a formula that emulated the 

results of the Harkness System, thus creating the Elo system. Subsequently, the United States Chess 

Federation (USCF) approved of Elo’s new system in August 1960 and it was implemented (Sloan, 

2008). Glickman (1995: 1) stated that, “The introduction of chess rating systems may have done 

more to popularize tournament chess than any other single factor.” Since implementation of the Elo 

system it has been scrutinised on a regular basis, leading to the identification of areas for 

improvement.  As a result of this, many modifications have been made to the Elo system (Glickman, 

1995). Modifications are usually aimed at two aspects; firstly, it is important that a rating system 

succeeds in assigning a player an accurate rating within a small timeframe. Accuracy is considered as 

successfully measuring a player’s relative strength (within the set of players in the system). Time will 

usually be measured by the number of games needed to achieve an accurate rating. Secondly, once 

an accurate rating is achieved, it is important to keep the deviation of this rating around the true 

underlying skill level to a minimum. 

 

This paper aims to investigate a possible improvement of the Elo rating system, namely the 

introduction of momentum into this system. It is of interest to establish whether this can be done 

while retaining the simplicity of the basic Elo rating procedure. One can assume that chess players 

are familiar with Elo-type rating systems and therefore accept it. However, it may prove 

troublesome to introduce such systems to other gaming or sports environments, as players might be 

sceptical when it comes to scoring systems they are unfamiliar with. Thus, simplicity is as important 

as effectiveness if one wishes to expand the reach of the Elo rating system. Simplicity also ensures 

transparency. Thus, having a more effective, yet still simple rating system can be of great value, not 

only in the realm of tournament chess, but also, for example, in tennis. The latter has, similar to 

chess, a large number of individual players, who can also be ranked using a simple rating system. 

With the current immense internet gaming arena kept in mind, there truly exist opportunities for 

dynamic (yet simple) rating systems to flourish. 

 

The objective of the study in this paper is to answer the following research questions: 

 Will the addition of a momentum component make the Elo system more effective? 

 Will the Elo system still be relatively simple with the addition of a momentum component? 
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The next section includes a literature review on the origins of the Elo system, with the aim to 

introduce the basic structure of the system. It also mentions some of the modifications that have 

been made to the Elo system, as well as a few other systems used for rating players. The subsequent 

chapter will elaborate on the methodology used to answer the research questions posed, including 

the methods used for simulating data testing this data. A chapter on experimentation, simulation 

and analysis will follow, where various methods of incorporating momentum will be applied and 

tested. Finally, a conclusion will end the paper, discussing the results obtained. 

 

Literature review 

Since the early days of competitive chess, the need for a dynamic rating system was present. 

Kenneth Harkness designed the Harkness system in the late 1940’s, the starting point for all chess 

rating systems used today (Sloan, 2008). His system was very crude and had many shortcomings, but 

Arpad Elo used players’ Harkness ratings to formulate the assumptions underlying the Elo rating 

system. The Harkness system can be summed up in a single table: 

Rating 
Difference 

Higher rated wins: 
Add to winner and 
deduct from loser 

Lower rated wins: 
Add to winner 

and deduct from 
loser 

Draw: Add to lower rated 
and deduct from higher 

rated 

0 to 24 16 16 0 

25 to 49 15 17 1 

50 to 74 14 18 2 

75 to 99 13 19 3 

100 to 124 12 20 4 

125 to 149 11 21 5 

150 to 174 10 22 6 

175 to 199 9 23 7 

200 to 224 8 24 8 

225 to 249 7 25 9 

250 to 274 6 26 10 

275 to 299 5 27 11 

300 or more 4 28 12 

Source: Ross (2007) 

The crudeness of the system is immediately apparent, but it nonetheless supplied a rich database of 

players’ ratings for Arpad Elo to analyse. 

 

Elo (1978: 19) assumed that the performances of individual chess players were Normally distributed, 

and he did extensive studies to validate this (Elo, 1965 and McClintok, 1977, cited in Elo, 1978: 19). 

Elo used a mean of zero and a standard deviation,  , of one class, or 200 points, for the distribution 

of individual player performances. For a game with two players the standard deviation of the 
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difference of performance would be √       √          Elo could use the difference 

between the rating of a player and the rating of the competition to calculate the expected outcome 

of any given game or games. The competition could be a single player or a collection of opponents, 

where the latter uses the average rating of the opponents in calculations. Elo (1978) also stated that 

the Logistic distribution could also be used as underlying model for individual performance. Today, 

the USCF uses the Logistic distribution, whilst FIDE (Fédération Internationale des Échecs or World 

Chess Federation) still uses the Normal distribution that Elo originally based his system on. The USCF 

uses the Logistic distribution as they regard it to most accurately extrapolate outcomes (Ross, 2007). 

The research proposed in this paper will make use of the Logistic curve as mentioned in Glickman 

and Jones (1999: 2). 

 

Being able to calculate the expected outcome of any given game, Elo devised a range of formulas to 

calculate the changes in ratings. These formulae include methods for periodic measurements, 

continuous measurements, linear approximation formulae and rating of round robins (Elo, 1978: 24-

29). Continuous measurement is of interest, as it allows for the most recent rating. The formula 

states:  

        (    ) 

where    is the new rating and    is the pre-event rating. The variable   is the actual event 

outcome, 1 for each game won, 0 for each game lost and 0.5 for a game drawn.1 The expected 

outcome of the event is   . The  -factor controls the magnitude of the rating change for the current 

event.2 A constant  -factor for all events weighs all events as equally important. It is common 

practice to give high  -factors to new players and then to lower the factor as the number of games 

played increases, the reasoning being that after many games a player’s listed rating will be close to 

the player’s true underlying rating. When the listed rating nears the real rating, rating adjustments 

after each event need not be of a considerable magnitude. An event can represent a single game or 

a number of games. However, adjusting ratings after every game will provide more accurate results. 

 

Adaptations of Elo’s system used today concentrate on the underlying distribution of performance 

and various combinations of  -factors. Various techniques of assigning initial ratings are also 

explored. Players each have a rating and the number of games played should also be recorded, as it 

                                                           
1
 Even though the system is not limited to win/draw/loss outcomes, but can also handle scored outcomes, this 

paper is not considering this possibility. As mentioned in the conclusion, this is a topic that could be handled in 
further research. 
2
It is easy to see that the maximum rating change that can occur in a game is limited to the value of  , which is 

the amount of rating change when a win occurs for the player who has an infinitesimally small expectation of 
winning. 
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is used in determining  -factors. An example of a widely used and effective adaptation is the Glicko 

system, as stipulated in Glickman (2001). This system assigns each player a rating and a rating 

deviation. The rating deviation decreases with number of games played and is increased by time 

passing without playing rated games. Whilst this is a very effective system, calculations can be quite 

complex, especially without the aid of a computer. It is interesting to note that the Elo system is a 

special case of the Glicko system. 

 

This system, along with the original Elo system, is described by Coulom (2008: 1) as an Incremental 

Rating System.3 

 

A summary of the different rating systems in use, as described by Coulom (2008: 1-2), is as follows: 

 Static Rating Systems, not considering the variation in time of players’ ratings. 

 Incremental rating systems, storing a small amount of data for each player used to calculate 

rating systems. Examples are the Elo, Glicko and TrueSkill systems. 

 Decayed History Rating Systems. These give decaying weights to results of older games, 

deriving the current rating by assuming the most recent games hold more up to date 

information. 

 Accurate Bayesian Inference, a model similar to incremental algorithms, but with less 

approximations. Coulom (2008) classifies the Whole History Rating system described in his 

paper as such. 

These systems have been scrutinised and compared with each other, each having unique strengths 

and weaknesses. Though all of them are by all means effective, the mathematics behind calculating 

and estimating ratings can become very complex. 

 

It is important to note that all these systems use relative ratings. The true rating of a player can 

never be known, so ratings are adjusted relative to each other. Two groups of players who compete 

independently – i.e. none of the players from one group play against players in the other group – will 

produce ratings which could not be compared between groups. For the purposes of this paper, a 

two-player world will be considered and the ratings of the players will vary relative to each other. 

 

There remains a need to test the Elo system with the addition of a momentum component assigned 

alongside the ratings. The main focus should be on effectiveness accompanied by simplicity if the 

                                                           
3
Coulom (2008) also classifies the Trueskill rating system as described by Herbrich and Graepel (2006) in this 

category. 
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system is to be introduced as a chess rating system as well as to sports and gaming communities 

outside of chess. 

 

Methodology 

The research proposed in this paper will be an empirical study. All the data to be tested will be 

simulated using computer packages. Since all data are simulated, the control over the data will be 

high. Simulations carried out will provide numerical data containing information about game 

outcomes. Outcomes can then be rated using different rating systems, allowing for comparisons 

among the rating systems.  

 

The questions to be answered in this research are concerned with which rating system performs 

best under given scenarios. Moreover, the questions will be answered empirically, analysing the 

created data and testing the relevant hypothesis.  

 

The software package that will be used to simulate the data is Matlab (MATLAB, 2007). Initially, a list 

of players will be created, all players being assigned a true underlying rating. Game outcomes will be 

generated from these true ratings. Each player in the list will also be assigned a rating to be altered 

by the rating system, as well as statistic to track the number of games played. At this point, it is 

important to elaborate on the generation of game outcomes. This will be done by assuming that a 

player’s performance follows a logistic distribution with the expected score for Player A, from 

Glickman and Jones (1999: 2), calculated as follows: 

   
 

     (     )    
 

In this equation,    is the true rating of Player A and    is the true rating of Player B. Let    be the 

event where Player A wins the match: 

             (  ) 

 This means that once the expected score for Player A is determined, a random number generator on 

the (   ) interval is constructed to determine the game’s outcome – if a random draw is less than 

the expected score for Player A, we score a win for Player A, and a loss for Player B. The reverse is 

true for a random draw greater than the expected score for Player A; in this case a loss is notated for 

Player A and a win for Player B.  Note that the generator will only generate a win or loss; draws will 

not be considered. It is worth mentioning that the expected scores utilise the same distribution that 

will be used as the underlying distribution to calculate the rating changes by the Elo system. In other 

words, Elo assumed that this is the distribution that adequately describes game outcomes given 
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ratings. By using this distribution to model the game outcomes in the experiment we are in effect 

controlling variables that may cause an effective system to not perform well.  

 

The effectiveness of a rating system will be tested in two ways for every proposed method of 

including momentum, namely speed of the rating system and stability of the ratings under the rating 

system. This will be done by first creating a universe with only two players. The two players will each 

be assigned true underlying ratings as well as ‘published’ ratings to be changed under the system in 

question. The latter will be referred to as the quoted rating. The starting point for the quoted ratings 

will be exactly in the middle of the true ratings. For example, for two players with real ratings 1300 

and 1700, the starting point will be 1500 for both players. It is important to note that if the starting 

position for the assigned ratings is not exactly in the middle of the true ratings for both players, we 

cannot expect the assigned ratings to converge to the real ratings. This is because the Elo formula 

only takes into account the difference between to players’ ratings and not the actual magnitude of 

each player’s rating. This makes it difficult to simulate a tournament with more than two players 

with the objective of checking to see when assigned ratings reach true ratings. 

 

Games will be simulated between the two players and ratings adjusted accordingly. Each time the 

number of games taken to achieve the true rating difference will be recorded. This will be the 

measure of the system’s speed. The above process will be repeated for various rating differences 

and  -factor combinations, to test the system under a wide array of circumstances. Each time the 

procedure will be repeated        times, after which the average number of games taken to reach 

the true ratings will be calculated. Then we will test the following hypothesis: 

     : The Elo system and Momentum adjusted system are equally effective, i.e. the average 

number of games taken to reach the true ratings is the same for both systems.  

This will be done using a t-test of equal means. To do this it will be required to first do an F-test of 

equal variances, to determine which assumptions underlie the t-test. All significance tests will be 

done at a 95% confidence level. It is important to note that a t-test carried out on a very large 

sample will sometimes inaccurately reject the    because of the way the test procedure is 

structured. Thus, the sample of 10 000 values will be used to calculate the averages, but the t-test 

will be carried out on only 100 values, selected at random. 

 

Stability will be tested by starting the quoted ratings equal to the actual ratings and then letting the 

players play        games. After each game the ratings will be adjusted and recorded, so that the 

overall average and standard deviation of the player’s rating can be calculated. If the system is 
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stable, we would expect the average quoted rating to remain close to the real rating, with a small 

standard deviation. The average and standard deviation of the quoted ratings for the proposed 

momentum adjusted systems can be compared with that of the original Elo.  

 

The above tests will be repeated for the following player pairs: 

Payer A   Player B Difference 

1450 vs 1550 100 

1400 vs 1600 200 

1300 vs 1700 400 

1200 vs 1800 600 

1100 vs 1900 800 

1000 vs 2000 1000 

 

We perform these tests for  -factors of 10, 15, 25, 16, 24 and 32. The first three are used in the FIDE 

system whereas the last three are used by many National Federations. These are the two most 

commonly used  -factor combinations (Vovk, 2008). This will allow us to compare the speed and 

stability of various systems with the basic Elo and each other. However, each comparison of a 

proposed system will begin with a plot of the rating movements of the system, along with the rating 

movements of the same scenario rated using Elo’s system. It should be possible to deduce whether 

the system harbours potential by first looking at the plot. If deemed to have potential, further 

testing can be done on the system. 

 

In a two-player world it will be impossible to get the assigned ratings close to the true ratings if the 

conditions aren’t controlled to achieve this, as the ratings assigned to a player are relative to the 

ratings of the other players. However, if the conditions aren’t controlled, it would be possible to 

calculate the difference between the true real ratings for both players and compare this with the 

difference of the assigned ratings. 

 

In real world situation a player’s true rating will never be known, but in the theoretical situation of 

this paper it is important to control the variables that affect the assigned ratings’ movements 

relative to the true ratings. 

 

After testing the systems for speed and stability, another indication of effectiveness will be to see if 

a system can overcome some weakness of the Elo system. In this case, the system will have to have 

a speed and stability close to that of the Elo system, whilst having some characteristic that improves 

on it. Stability will be tested more thoroughly by calculating the root mean squared error (RMSE) for 
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both systems i.e. the root of the mean squared difference between the true rating and the assigned 

rating. The RMSEs for the Elo system can then be compared with that of the proposed system. 

 

To calculate RMSE values, simulate a random value between     and       to use as difference 

between true ratings. Then simulate       games, starting the players’ assigned ratings at the level 

equal to their true ratings, and then calculate the RMSE for both the Elo and the other system in 

question: 

      √
 

     
∑ (                             ) 
     

   

 

 

Then, for comparison, calculate the difference between the RMSE’s of the two systems: 

                                

This test is done       times for each player pair, for       different random player pairs, giving 

          values for the difference in RMSE values. A positive difference indicates a higher RMSE 

for the other system, indicating that it is less stable than the Elo system. 

 

Three systems will be tested in this paper. The first is called the Buffer system and it gradually builds 

up momentum for a player throughout play, which is then used to offset rating changes at a later 

stage. Second, the Switching Momentum system, assigns a player a momentum of -1, 1 or 0, for a 

losing streak, a winning streak and broken streak respectively.  -factor values are then doubled on 

winning or losing streaks. Thirdly, the Deficit system is tested; it tracks the movements of the Elo 

system, but creates a deficit for a player when a streak is broken. The player’s rating will remain 

unchanged until the Deficit is recovered. 

 

Experimentation, simulation and analysis 

In order to explore different ways of implementing momentum, it is of interest to investigate how 

the chosen  -factor will influence the average rating changes experienced by the system. In other 

words, how much a player’s rating will change on average after one game. This information can then 

be used in a system where a player builds momentum with each game, using it to protect him from a 

future loss. Knowing the magnitude of rating changes under specified  -factors is important when 

deciding where to stop the accumulation of momentum to ensure that it only protects a player 

against a small number of adverse rating changes. To do this, create eight players with real ratings as 

given in the table below. 
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Player 
True 

Rating 

1 2000 

2 1950 

3 1900 

4 1850 

5 1800 

6 1750 

7 1700 

8 1650 

9 1600 

10 1550 
 

Then give them each an assigned rating of 1200 and simulate 100 round robins, recording the rating 

change after every game, i.e.  (    ) in the Elo rating adjustment formula. Do this at the  -

factors mentioned above. Using the results from the round robins, the following table of average 

rating changes is produced: 

k-
factor 

Average 
change 

10 4.187317707 

15 6.206991263 

16 6.54197403 

24 9.30081315 

25 10.05383182 

32 12.45037077 
 

Attempt to use a simple linear regression to predict the average rating changes: 

 

Regression Statistics 
    Multiple R 0.999 
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R Square 0.998 
    Adjusted R Square 0.998 
    Standard Error 0.147 
    Observations 6 
    

      ANOVA 
       df SS MS F Significance F 

Regression 1 45.416 45.416 2114.632 1.33E-06 

Residual 4 0.086 0.021 
  Total 5 45.501       

        Coefficients Standard Error t Stat P-value 
 Intercept 0.526 0.176 2.996 0.045 
 k-factor 0.374 0.008 45.985 1.33E-06 
  

From the output it is clear that the  -factor can successfully be used to predict the average rating 

change, as 99.8% of the variation in the average rating changes can be explained by the variation in 

the  -factorss. Thus the following equation will be adequate for predictions: 

                                               

 

The Buffer system 

We begin by testing a simple and intuitive system, where a player builds momentum as he/she plays, 

then uses the momentum to protect him- or herself against a sudden rating change. Positive and 

negative momentum positions are possible. After each game, a player will gain momentum equal to 

a quarter of the rating change experienced in the game. It can also be altered to add other 

coefficients of the rating change to the momentum, but for the purposes of proof of concept in this 

paper, a value of ¼ will be used: 

                          
 

 
(                     ) 

This will accumulate up to a maximum momentum holding, calculated using the above formula. 

Thus, a player can at any time only hold enough momentum to buffer an average rating change. This 

can be altered; the goal is to see if such a system can be effective. When a player has positive 

momentum and loses a game, the rating change is applied to the momentum first. A rating change 

larger than the momentum at the current position will be carried over to the actual rating of the 

player, resulting in the momentum being reset to zero. In effect, players use momentum as a 

“shield” or “buffer” to protect them against large future rating movements. Test this system for two 

players with true ratings 1700 and 1300, firstly for speed of convergence. Both players start with an 

assigned rating of 1500, the following plot illustrates the rating movements. 



15 
 

 

The speed at which the system achieves the true ratings appears to be slightly greater than the basic 

Elo system, so it is worthwhile to test this. We simulate games under both systems to calculate the 

average number of games taken to reach the true rating difference. Do this for all the above 

mentioned player and k-value combinations. Each time, do a t-test of equal means to test the 

following hypothesis: 

                

Where    is the average number of games taken for the assigned ratings to reach the true ratings 

under each system.  

Rating Diff 

k =  10 k =  15 k =  16 k =  24 k =  25 k =  32 

Elo  Buffer Elo  Buffer Elo  Buffer Elo  Buffer Elo  Buffer Elo  Buffer 

100                         

Mean 62 46 37 29 34 27 19 17* 18 16* 13 12* 

SD 40 29 26 20* 24 19* 15 12* 14 11 10 9 

200                         

Mean 100 70 61 45 57 42 35 27 33 26 24 20 

SD 48 31 31 21 29 20 19 14 18 14 14 11 

400                         
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Mean 244 168 150 108 139 102 85 65 81 62 60 47 

SD 98 53 62 37 58 35 37 24 36 23 27 18 

600                         

Mean 671 462 415 300 379 279 236 179 222 172 168 131 

SD 262 130 168 93 151 86 99 60 91 57 72 44 

800                         

Mean 1999 1376 1233 898 1146 834 694 534 667 514 495 390 

SD 788 379 494 274 465 255 283 169 276 164 207 129 

1000   
 

  
 

  
 

  
 

        

Mean 6211 4266 3814 2765 3565 2586 2168 1658 2069 1588 1524 1204 

SD 2461 1192 1518 836 1462 783 900 540 868 525 634 396 

To determine whether to use the assumption of equal variances, F-tests were performed in each 

case, and, every time the hypothesis of equal variances was rejected at a confidence level of 95%., a 

t-test assuming unequal variances was used for that pair. An asterisk (*) indicates an insignificant 

difference. Excluding the cases with small true rating differences and high  -values, the Buffer 

system outperformed the Elo system’s speed in all cases. 

 

The buffering process seems to overestimate the the rating of better player and underestimate that 

of the weaker player. This is more apparent when the system is tested for stability by starting the 

players at their true ratings and observing the changes. 
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The system appears to have good stability for the player pair, when compared to the Elo system. The 

results from the stability tests mentioned in the methodology follow i.e. for each player pair, start 

both players with assigned ratings equal to true ratings, simulate        games and calculate the 

average assigned rating and standard rating deviation. An assigned rating mean close to the true 

rating mean accompanied by a small standard rating deviation indicates a stable system. 

 

True Rating Difference Elo Elo SD Buffer 
Buffer 
SD 

k = 10           

Player A           

1550 100 1550 22 1558 24 

1600 200 1599 20 1614 23 

1700 400 1700 20 1721 20 

1800 600 1800 18 1823 20 

1900 800 1898 15 1910 23 

2000 1000 1999 11 2001 19 

Player B           

1000 1000 1001 11 999 19 

1100 800 1102 15 1090 23 

1200 600 1200 18 1177 20 

1300 400 1300 20 1279 20 

1400 200 1401 20 1386 23 

1450 100 1450 22 1442 24 

k = 15           

Player A           

1550 100 1551 25 1560 31 

1600 200 1603 24 1613 30 

1700 400 1702 25 1719 29 

1800 600 1810 23 1821 25 

1900 800 1913 20 1909 20 

2000 1000 1999 18 2030 15 

Player B           

1000 1000 1001 18 970 15 

1100 800 1087 20 1091 20 

1200 600 1190 23 1179 25 

1300 400 1298 25 1281 29 

1400 200 1397 24 1387 30 

1450 100 1449 25 1440 31 

k = 16           

Player A           

1550 100 1553 27 1558 34 

1600 200 1599 28 1613 31 

1700 400 1704 28 1714 29 

1800 600 1796 25 1828 27 
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1900 800 1888 25 1904 23 

2000 1000 2008 18 2033 13 

Player B           

1000 1000 992 18 967 13 

1100 800 1112 25 1096 23 

1200 600 1204 25 1172 27 

1300 400 1296 28 1286 29 

1400 200 1401 28 1387 31 

1450 100 1447 27 1442 34 

k = 24           

Player A           

1550 100 1554 34 1558 36 

1600 200 1603 33 1618 36 

1700 400 1705 31 1718 32 

1800 600 1806 29 1812 34 

1900 800 1900 28 1908 30 

2000 1000 1996 29 2002 34 

Player B           

1000 1000 1004 29 998 34 

1100 800 1100 28 1092 30 

1200 600 1194 29 1188 34 

1300 400 1295 31 1282 32 

1400 200 1397 33 1382 36 

1450 100 1446 34 1442 36 

k = 25           

Player A           

1550 100 1550 34 1561 39 

1600 200 1601 34 1617 38 

1700 400 1706 30 1724 31 

1800 600 1799 33 1824 31 

1900 800 1910 29 1928 30 

2000 1000 1998 34 2043 24 

Player B           

1000 1000 1002 34 957 24 

1100 800 1090 29 1072 30 

1200 600 1201 33 1176 31 

1300 400 1294 30 1276 31 

1400 200 1399 34 1383 38 

1450 100 1450 34 1439 39 

k = 32           

Player A           

1550 100 1554 37 1561 44 

1600 200 1602 36 1617 41 

1700 400 1703 34 1725 39 

1800 600 1807 40 1832 37 

1900 800 1900 28 1927 28 
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2000 1000 2011 41 2030 34 

Player B           

1000 1000 989 41 970 34 

1100 800 1100 28 1073 28 

1200 600 1193 40 1168 37 

1300 400 1297 34 1275 39 

1400 200 1398 36 1383 41 

1450 100 1446 37 1439 44 

 

In the above table, the column labelled ‘difference’ is the difference between the two players’ 

ratings used in the specific simulation. The columns labelled ‘Elo’ and ‘Buffer’ give the average 

assigned ratings by the Elo and Buffer systems respectively, while the columns labelled ‘Elo SD’ and 

‘Buffer SD’ give the respective standard deviations of the assigned ratings. From the table it can be 

seen that the Buffer system always overestimates the rating of the stronger player and 

underestimates the rating of the weaker player. This also occurs in the case of the Elo system, but 

the estimation error of the Buffer system is larger in all cases. The standard deviations of the 

assigned ratings are also higher in the case of the Buffer system, except for large  -values 

accompanied by large differences in true ratings. 

 

The Switching Momentum system 

A different approach to the momentum addition would be to alter the  -value used in the rating 

adjustment equation under different streak and non-streak situations. Intuitively, one would argue 

to use a higher  -value for a player who is on a streak, but not indefinitely. As a proof of concept, a 

system is suggested where a player has a momentum of -1, 1 or 0. A momentum of 0 indicates that 

the player is currently not on a streak, whereas a momentum of 1 or -1 indicates a winning and 

losing streak respectively. A streak is defined as winning (or losing) 2 games in a row. As with the 

buffer system, we start by testing the system for two players with ratings 1300 and 1700 and plot 

the rating changes. 
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It is immediately apparent that the assigned ratings under the Switching Momentum system reach 

the true ratings faster than those of the Elo system. To verify this, we perform the test for the 

system’s speed as described in the methodology; that is, we simulate games under both systems to 

calculate the average number of games taken to reach the true rating difference. We then do this for 

all the above mentioned player and  -value combinations. Each time, we do a t-test of equal means 

to test the following hypothesis: 

                            

where    is the average number of games taken for the assigned ratings to reach the true ratings 

under each system. 

Rating 
diff 

k= 10 k= 15 k= 16 k= 24 k= 25 k= 32 

Elo Switch Elo Switch Elo Switch Elo Switch Elo Switch Elo Switch 

100                         

Mean 62 21 37 12 34 11 20 6 19 6 13 4 

SD 40 15 26 9 24 8 15 4 14 4 10 3 

200                         

Mean 100 32 61 21 57 19 35 12 33 12 24 9 

SD 48 14 32 10 29 9 19 7 18 7 14 5 
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400                         

Mean 243 75 149 49 138 45 85 29 81 28 60 22 

SD 98 18 62 13 57 13 37 9 36 9 27 7 

600                         

Mean 668 204 414 133 382 125 237 81 224 77 166 60 

SD 258 40 171 29 156 27 100 20 94 19 71 16 

800                         

Mean 1999 606 1230 398 1131 371 696 242 662 233 494 179 

SD 785 111 493 83 454 80 286 58 271 55 209 46 

1000                         

Mean 6186 1864 3814 1230 3563 1152 2169 749 2065 716 1524 553 

SD 2399 327 1523 251 1470 244 898 174 861 166 633 138 

 

To determine whether to use the assumption of equal variances, F-tests were completed in each 

case, and every time the hypothesis of equal variances was rejected at a confidence level of 95%. 

Thus, a t-test assuming unequal variances was used for each pair. In each case the test showed a 

significant difference between the average numbers of games taken to reach the true rating 

difference. From this it can be concluded that the Switching Momentum system has more speed 

than the Elo system by the before-mentioned standard. Overall, the Switching Momentum system is 

almost 3 times faster than the basic Elo. It is also interesting to note that the Switching system with a 

 -value of 10 had a performance that can be compared to the Elo system with a  -value of 24.  

 

The analysis continues with a look at the stability of the Switching Momentum system when 

compared with the Elo system. Both players start with their assigned ratings equal to their actual 

ratings, 1300 and 1700, the changes are logged and plotted. 
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Though the speed of the Switching Momentum system is better than the Elo system, it is clear that it 

is not as stable. This is intuitive, since the  -value used is doubled every time a player wins two 

games in a row. The results of the stability tests from all the player and  -value combinations follow. 

The table shows the true ratings of the players for each  -value, the difference between the ratings, 

then the average rating assigned by the both systems, as well as a standard deviation for this rating. 

True 
Rating Difference Elo Elo SD Switch 

Switch 
SD 

k = 10           

Player A           

1550 100 1549 21 1569 36 

1600 200 1600 20 1635 31 

1700 400 1701 21 1751 26 

1800 600 1795 15 1852 17 

1900 800 1901 14 1956 20 

2000 1000 1993 11 2039 17 

Player B           

1000 1000 1007 11 961 17 

1100 800 1099 14 1044 20 

1200 600 1205 15 1148 17 

1300 400 1299 21 1249 26 

1400 200 1400 20 1365 31 

1450 100 1451 21 1431 36 

k = 15           

Player A           

1550 100 1552 25 1574 42 

1600 200 1603 25 1641 38 

1700 400 1705 24 1759 28 

1800 600 1811 25 1869 28 

1900 800 1915 23 1972 25 

2000 1000 2001 19 2051 20 

Player B           

1000 1000 999 19 949 20 

1100 800 1085 23 1028 25 

1200 600 1189 25 1131 28 

1300 400 1295 24 1241 28 

1400 200 1397 25 1359 38 

1450 100 1448 25 1426 42 

k = 16           

Player A           

1550 100 1553 27 1575 47 

1600 200 1599 27 1636 42 

1700 400 1701 28 1753 33 

1800 600 1792 22 1849 24 

1900 800 1886 26 1942 29 
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2000 1000 2006 19 2057 23 

Player B           

1000 1000 994 19 943 23 

1100 800 1114 26 1058 29 

1200 600 1208 22 1151 24 

1300 400 1299 28 1247 33 

1400 200 1401 27 1364 42 

1450 100 1447 27 1425 47 

k = 24           

Player A           

1550 100 1553 33 1577 57 

1600 200 1603 33 1642 50 

1700 400 1706 31 1759 37 

1800 600 1810 30 1868 32 

1900 800 1905 27 1963 28 

2000 1000 2002 27 2057 29 

Player B           

1000 1000 998 27 943 29 

1100 800 1095 27 1037 28 

1200 600 1190 30 1132 32 

1300 400 1294 31 1241 37 

1400 200 1397 33 1358 50 

1450 100 1447 33 1423 57 

k = 25           

Player A           

1550 100 1550 34 1572 58 

1600 200 1601 34 1639 51 

1700 400 1706 31 1760 36 

1800 600 1801 33 1858 35 

1900 800 1907 27 1965 29 

2000 1000 2007 35 2060 41 

Player B           

1000 1000 993 35 940 41 

1100 800 1093 27 1035 29 

1200 600 1199 33 1142 35 

1300 400 1294 31 1240 36 

1400 200 1399 34 1361 51 

1450 100 1450 34 1428 58 

k = 32           

Player A           

1550 100 1553 38 1576 64 

1600 200 1603 36 1643 53 

1700 400 1704 34 1759 39 

1800 600 1805 39 1862 41 

1900 800 1902 33 1961 35 

2000 1000 2009 42 2066 45 
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Player B           

1000 1000 991 42 934 45 

1100 800 1098 33 1039 35 

1200 600 1195 39 1138 41 

1300 400 1296 34 1241 39 

1400 200 1397 36 1357 53 

1450 100 1447 38 1424 64 

 

A stable system will have an average assigned rating that is close to the real rating, as well as a small 

standard deviation. From the graph and table it is immediately obvious that the Switching 

Momentum system does not have the accuracy or stability of the Elo system. This is true for all  -

values. For larger true rating differences the Standard deviation of the Switching Momentum system 

isn’t much larger than that of the Elo, but it is offset by the average assigned rating being inaccurate. 

This system tends to greatly overestimate the better player and underestimate the weaker player. At 

this stage it is clear that using momentum to alter the  -value used in calculations can greatly 

increase the speed of the Elo system, even for a simple case with momentum only having three 

possible values. It is only the stability that should be improved on.  

 

The Deficit system 

In our final momentum-added adjustment of the Elo system, we track the ratings assigned by the Elo 

system, but create a “deficit” when a streak is broken. A player’s rating will remain unchanged while 

playing out of a negative or positive deficit, possibly ensuring greater stability. Higher rated players 

will not experience a large decline in their assigned rating following an accidental loss against a much 

lower rated player. Instead, a deficit will be created and the player’s assigned rating should remain 

unchanged if the player can play themselves out of the deficit, which should be the case if the loss 

was accidental rather than due to a true difference in skill. The Deficit system can also be adapted to 

assign higher  -values on winning or losing streaks, but then it will not track the Elo system. Doing 

the test for speed and plotting the results for the 1300 – 1700 player pair, yields the following. 
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Because the Deficit system tracks the Elo system, the speed is exactly the same. We test the speed 

by using the hypothesis described in the methodology, for all the different player and  -value 

combinations: 

                 

where    is the average number of games taken for the assigned ratings to reach the true ratings 

under each system. 

Rating 
difference 

k = 10 k = 15 k = 16 k = 24 k = 25 k = 32 

Elo  Deficit Elo  Deficit Elo  Deficit Elo  Deficit Elo  Deficit Elo  Deficit 

100                         

Mean 62 62 37 37 34 34 19 19 18 18 13 13 

SD 40 40 26 26 24 24 15 15 14 14 10 10 

200                         

Mean 100 100 61 61 57 57 35 35 33 33 24 24 

SD 48 48 31 31 29 29 19 19 18 18 14 14 

400                         

Mean 243 243 148 148 138 138 85 85 81 81 60 60 

SD 98 98 62 62 57 57 37 37 36 36 27 27 

600                         

Mean 668 668 415 415 382 382 237 237 224 224 166 166 

SD 258 258 171 171 157 157 99 99 94 94 71 71 

0 50 100 150 200 250
1250

1300

1350

1400

1450

1500

1550

1600

1650

1700

1750

Number of games

R
a
ti
n
g
 m

o
v
e
m

e
n
ts

1700 vs 1300

 

 

Elo A

Elo B

Deficit A

Deficit B



26 
 

800                         

Mean 2000 2000 1229 1229 1131 1131 696 696 662 662 494 494 

SD 786 786 492 492 453 453 286 286 271 271 208 208 

1000                         

Mean 6192 6192 3800 3800 3543 3543 2166 2166 2063 2063 1529 1529 

SD 2448 2448 1527 1527 1428 1428 895 895 858 858 634 634 

 

F-tests were performed for all of the ratings to determine whether the assumption of equal 

variances holds. At the 95% confidence level, the hypothesis of equal variance was rejected for all of 

the above, so t-tests using unequal variances were performed. In each case the test showed an 

insignificant difference between the average numbers of games taken to reach the true rating 

difference. Thus, it can be concluded that the speed of the Deficit system is statistically the same as 

that of the Elo system. This was expected, since the Deficit system tracks the Elo system when the  -

factor is not inflated on streaks, as was the case of the above tests. 

 

Stability is again checked by starting both players at their true ratings and producing a plot of the 

changes in the assigned ratings. 
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From looking at the graph, first impressions would suggest that the Deficit system has stability close 

to the Elo system. The following table shows the results of the stability test, as described in the 

methodology. Again the table shows the true ratings of the players for each  -value, the difference 

between the ratings, then the average rating assigned by the both the Elo and Deficit systems, as 

well as a standard deviation for this rating. 

True 
Rating Difference Elo Elo SD Buffer 

Buffer 
SD 

k = 10           
Player 

A           

1550 100 1550 22 1550 22 

1600 200 1599 20 1599 20 

1700 400 1700 20 1700 21 

1800 600 1800 18 1800 18 

1900 800 1898 15 1899 15 

2000 1000 1999 11 2000 11 
Player 

B           

1000 1000 1001 11 1000 11 

1100 800 1102 15 1101 15 

1200 600 1200 18 1200 18 

1300 400 1300 20 1300 21 

1400 200 1401 20 1401 20 

1450 100 1450 22 1450 22 

k = 15           
Player 

A           

1550 100 1551 25 1551 26 

1600 200 1603 24 1603 25 

1700 400 1702 25 1702 25 

1800 600 1810 23 1810 24 

1900 800 1913 20 1914 20 

2000 1000 1999 18 2000 18 
Player 

B           

1000 1000 1001 18 1000 18 

1100 800 1087 20 1086 20 

1200 600 1190 23 1190 24 

1300 400 1298 25 1298 25 

1400 200 1397 24 1397 25 

1450 100 1449 25 1449 26 

k = 16           
Player 

A           

1550 100 1553 27 1553 27 
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1600 200 1599 28 1599 28 

1700 400 1704 28 1704 29 

1800 600 1796 25 1796 26 

1900 800 1888 25 1888 25 

2000 1000 2008 18 2009 19 
Player 

B           

1000 1000 992 18 991 19 

1100 800 1112 25 1112 25 

1200 600 1204 25 1204 26 

1300 400 1296 28 1296 29 

1400 200 1401 28 1401 28 

1450 100 1447 27 1447 27 

k = 24           
Player 

A           

1550 100 1554 34 1554 36 

1600 200 1603 33 1603 34 

1700 400 1705 31 1705 32 

1800 600 1806 29 1806 29 

1900 800 1900 28 1900 29 

2000 1000 1996 29 1996 29 
Player 

B           

1000 1000 1004 29 1004 29 

1100 800 1100 28 1100 29 

1200 600 1194 29 1194 29 

1300 400 1295 31 1295 32 

1400 200 1397 33 1397 34 

1450 100 1446 34 1446 36 

k = 25           
Player 

A           

1550 100 1550 34 1550 36 

1600 200 1601 34 1602 36 

1700 400 1706 30 1706 31 

1800 600 1799 33 1800 34 

1900 800 1910 29 1910 29 

2000 1000 1998 34 1999 35 
Player 

B           

1000 1000 1002 34 1001 35 

1100 800 1090 29 1090 29 

1200 600 1201 33 1200 34 

1300 400 1294 30 1294 31 

1400 200 1399 34 1398 36 

1450 100 1450 34 1450 36 



29 
 

k = 32           
Player 

A           

1550 100 1554 37 1554 40 

1600 200 1602 36 1603 38 

1700 400 1703 34 1703 35 

1800 600 1807 40 1808 41 

1900 800 1900 28 1900 28 

2000 1000 2011 41 2012 43 
Player 

B           

1000 1000 989 41 988 43 

1100 800 1100 28 1100 28 

1200 600 1193 40 1192 41 

1300 400 1297 34 1297 35 

1400 200 1398 36 1397 38 

1450 100 1446 37 1446 40 

 

The average rating assigned by the Deficit system seems just as good as that of the Elo system. The 

deviation of the Deficit system’s assigned rating is very close to that of the Elo system, especially for 

small  -factor values. For the higher  -factor values, the Deficit system has slightly higher deviations 

than the Elo system and it is worth investigating further by means of the RMSE method mentioned 

in the methodology. 

 

Analysing the difference between the RMSE values yields the following histogram and 

characteristics: 
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• Mode 0 

• Median 2.33 

• Mean 1.77 

Percentiles: 

2.50% 5% 50% 95% 97.50% 

-5.02 -3.76 2.34 5.64 6.48 

 

It is clear that the differences between the RMSE’s are of a small magnitude. The percentiles span 

zero, showing that many of the differences were insignificant. The median and mean are also of a 

very small magnitude; In fact, the mode is equal to zero, because of the rounding properties of the 

software used – when the true difference between the players is very high, the probability of the 

higher-rated player losing is very small, resulting in the systems having exactly the same rating 

adjustments and thus the same RMSE’s. From these results it can be concluded that the stability of 

the Deficit system is very close to the Elo. 

 

It is worth mentioning a shortcoming of the basic Elo system, which is the effect of an unnatural loss 

of a very highly rated player against player with a much lower rating. An unnatural loss can be 

regarded as the higher-rated player losing due to reasons other than skill i.e. an accidental loss. This 

might be an unlikely scenario in chess tournaments, but it could easily occur in the arena of internet 
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gaming. In this case the assigned ratings for both players would undergo an immense change, which 

could take a long time to be corrected. This is illustrated by simulating 100 games between two 

players, with ratings 1000 and 2000, and forcing the higher player to lose halfway through. The 

following plot is produced by rating the players using the Elo system. 

 

RMSE = 17  

 

After the unnatural loss, there is a large change in the ratings, which is corrected very slowly. Fifty 

games after the unnatural loss, the ratings still haven’t recovered. The Deficit system addresses this 

problem in the use of the momentum component. The deficit created for both players puts them on 

‘probation,’ rather than immediately changing the ratings. The following plot shows the same 

scenario as above, comparing the rating movements of the Elo and Deficit systems. 
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RMSE: 
Elo 17 
Deficit: 4  
 

Momentum acquired by both players in the first 50 games protected the players from the unnatural 

event at the 50th game. After this, all of the ratings assigned by the Deficit system can be regarded as 

more accurate than that of the Elo system. Next, a scenario is considered where the higher player 

loses after 25 games and again at 75 games. 
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RMSE: 
Elo 33 
Deficit: 27  
 

Even though the rating changes at the 25th game were prevented by the momentum held by both 

players, the second loss at the 75th game suggests that the earlier loss might not have been entirely 

unnatural. Thus, the rating is adjusted to where it would have been, ignoring momentum. This 

illustrates the probation period of the Deficit system; while a player is playing out of a Deficit, he/she 

is not protected by momentum. 

 

Conclusion 

This paper explored different ways of incorporating momentum with the aim to make the Elo system 

more efficient. The Buffer system used sequential momentum build up to protect against later rating 

changes. Another approach was the Switching momentum system, which altered the  -factor used 

when on streaks. Both of these systems improved on the speed at which true ratings are obtained, 

at the expense of stability of the assigned ratings. 

 

The Deficit system tracks the Elo system and creates deficits when a streak is broken, halting all 

rating movements until the deficit is recovered, or the initial unnatural break is proved to be a 
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natural one. This system had stability almost in line with the Elo system, while addressing one of its 

flaws. From this it could be stated that the Deficit system is more effective than the Elo system, as it 

has the same strengths minus one of the weaknesses. The addition of momentum, in all three of the 

above mentioned systems, didn’t complicate calculations to a large extent. All three of the tested 

systems required only the current rating and the current momentum to be recorded for players, as 

opposed to only recording the current rating as is the case with the Elo system. Rating adjustments 

can be done without the need of considerable computing powers and players will be able to 

calculate rating changes themselves. This is important to ensure transparency of the systems. 

 

In conclusion, it was found that momentum could be used to make the basic Elo rating system more 

effective. 

 

Problems with adding momentum 

Adding a momentum component to ratings, can lead to adverse selection. Large negative holdings of 

momentum could affect the morale of players, to such an extent that they might drop out of 

tournaments. The same could apply to players with high momentum holdings, adverse selection 

could occur where players choose only to enter some tournaments that seems beneficiary to them. 

Negative momentum holdings could also be an unattractive prospect to new rating environments, 

making it hard to implement the system in practice. 

 

Continued adapting of systems using momentum could result in a loss of simplicity, which could also 

hinder the process of implementing rating systems to new environments outside of chess. 

 

Further research 

This paper only provided a brief outline of possible methods to implement momentum to create 

rating systems based on the Elo system, endeavouring to make it more effective. There remains 

space to thoroughly test these systems with various changes the parameters used, for example, the 

Deficit system could be changed to adjust the  -factor on streaks. In this paper, only two player 

environments were considered. It is of interest to investigate how these systems would respond in 

tournament environments, or independent groups of players with one or two players interchanging. 

The latter would give insight to how the ratings of the two independent groups vary relative to the 

ratings in the other group. 
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It is important to note that the system Elo system, as well as the adjusted systems proposed, hold 

great potential for measuring team games and games with more than two players (or teams), and is 

additionally not restricted to win, draw or loss outcomes, but can be used in rating systems with 

score-based games as well. An analysis of the Elo and the proposed ratings systems under these 

conditions should be carried out in future.   

 

The rating systems could also be used to rate games of archived tournaments to see how the 

outcome would have been affected. Real world application to recreational environments could also 

be considered to identify possible problems caused by social dynamics. 
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