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Abstract

In this paper the probability matching prior for a linear contrast of Poisson parameters is

derived, this prior is extended in such a way that it is also the probability matching prior for the

average of Poisson parameters. This research is an extension of the work done by Stamey &

Hamilton (2006). A comparison is made between the confidence intervals obtained by Stamey &

Hamilton (2006) and the intervals derived by us when using the Jeffreys’ and probability matching

priors. A weighted Monte Carlo method is used for the computation of the Bayesian confidence

intervals, in the case of the probability matching prior. In the last section of this paper hypothesis

testing about two Poisson means is considered. The power and size of the test, using Bayesian

methods, is compared to tests used by Krishnamoorthy & Thomson (2004). For the Bayesian

methods the Jeffreys’ prior, probability matching prior and two other priors are used.

Keywords: Bayesian intervals, Poisson parameters, Power and size of test, Probability matching
prior, Weighted Monte Carlo method.

1 Introduction

Research has been done on improving confidence intervals for discrete data. Barker (2002) made an
attempt to find approximate confidence intervals for a single Poisson rate. Stamey & Hamilton (2006)
considered three interval estimators for linear functions of Poisson rates, a Wald interval, a t interval
with Satterwhaite’s degrees of freedom and a Bayesian interval using non-informative priors. We
are going to consider another Bayesian interval using a probability matching prior. The probability
matching prior will be derived by using the method proposed by Datta & Ghosh (1995), they derived
the differential equation which a prior must satisfy if the posterior probability of a one sided credibility
interval for a parametric function and its frequentist probability agree up to O

(
n−1) , where n is the

sample size.
Krishnamoorthy & Thomson (2004) addressed the problem of hypothesis testing about two Pois-

son means. They compared the conditional test (C - test) to a test based on estimated p - values (E
- test). Krishnamoorthy & Thomson (2004) considered the size and the power of these tests. We
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are going to use Bayesian methods, using the Jeffreys’ prior, the probability matching prior, a prior

which is proportional to λ− 1
4

1 λ− 1
4

2 , and a prior which is proportional to λ− 3
8

1 λ− 3
8

2 . The results obtained
from the Bayesian methods will be compared to the results obtained by Krishnamoorthy & Thomson
(2004).

In the next section the probability matching prior for a linear contrast of Poisson parameters is
derived. This prior will be extended in such a way that it can be used as the probability matching
prior for the average of Poisson parameters. In Section 3 a weighted Monte Carlo simulation method
is described to obtain Bayesian confidence intervals in the case of the probability matching prior, and
in Section 4 an example and simulation results will be given and discussed.

2 Probability Matching Prior for a Linear Contrast of Poisson
Parameters

Consider a sample from k populations. Let X i be an observation from population i. Then X1,X2, . . . ,Xk

will be independent Poisson distributions such that X i ∼ P(λi) , for i = 1,2, . . . ,k. Where λi is the ex-
pected number of events per unit sample. We assume that the interest is in a linear combination of
Poisson rates. In general we can define such a linear function of Poisson parameters as ξ = ∑k

i=1 aiλi,

where ai is the known coefficient value.

Theorem 1 The probability matching prior for ξ = ∑k
i=1 aiλi, a linear contrast of Poisson param-

eters (i.e. ∑k
i=1 ai = 0), is given by

πPM (λ ) = πPM (λ1,λ2, . . . ,λk) ∝

{
k

∑
i=1

a2
i λi

} 1
2

. (1)

Proof. The likelihood function is given by

L(λ ) =
k

∏
i=1

e−λi
λ xi

i
xi!

.

The Fisher information matrix is well known , the inverse of the Fisher information matrix is then
given by

F−1 (λ ) = diag
[

λ1 λ2 . . . λk

]
.

We are interested in a probability matching prior for t (λ ) = ξ = ∑k
i=1 aiλi, a linear contrast of

Poisson parameters, where ∑k
i=1 ai = 0.

Now

∇′
t (λ ) =

[
∂ t(λ )
∂λ1

∂ t(λ )
∂λ2

· · · ∂ t(λ )
∂λk

]
=

[
a1 a2 · · · ak

]
.
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Also

∇′
t (λ )F−1 (λ ) =

[
a1λ1 a2λ2 · · · akλk

]
and

∇′
t (λ )F−1 (λ )∇t (λ ) =

k
∑

i=1
a2

i λi.

Define

η ′ (λ ) =
∇′

t (λ )F−1 (λ )√
∇′

t (λ )F−1 (λ )∇t (λ )

=
[

η1 (λ ) η2 (λ ) · · · ηk (λ )
]

where ηi (λ ) = aiλi√
k
∑

i=1
a2

i λi

(i = 1,2, . . . ,k) .

The prior π (λ ) is a probability matching prior if and only if the differential equation
k
∑

i=1

∂
∂λi

{ηi (λ )π (λ )}= 0 is satisfied.

The differential equation will be satisfied if π (λ ) is

πPM (λ ) ∝
{

k
∑

i=1
a2

i λi

} 1
2

. �

When using the probability matching prior, the posterior distribution of λ is given by

πPM (λ |data) ∝

{
k

∑
i=1

a2
i λi

} 1
2 k

∏
i=1

λ xi
i e−λi. (2)

Corollary 1.

If ∑k
i=1 ai ̸= 0, the following equation can be used for a probability matching prior

π̃PM (λ ) ∝

{
k

∑
i=1

a2
i λi

} 1
2 k

∏
i=1

λ−1
i (3)

and the posterior distribution of λ will be

π̃PM (λ |data) ∝

{
k

∑
i=1

a2
i λi

} 1
2 k

∏
i=1

λ xi−1
i e−λi. (4)

The Jefrreys’ prior, πJ, is given by

πJ (λ ) ∝ |F (λ )|
1
2 =

(
k

∏
i=1

λi

)− 1
2

. (5)

Where F (λ ) is the information matrix connected with the likelihood function.
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When using the Jeffreys’ prior, the posterior distribution of λ is given by

πJ (λ |data) ∝

(
k

∏
i=1

λi

)− 1
2 k

∏
i=1

λ xi
i e−λi =

k

∏
i=1

λ xi− 1
2

i e−λi. (6)

The posterior distribution of λ is thus the product of k independently distributed Gamma
(
xi +

1
2 ,1
)

variates.

In some cases the exact posterior distribution of ξ =
k
∑

i=1
aiλi can be derived. For example if

a1 = a2 = . . .= ak =
1
k . The following theorem can now be proved.

Theorem 2 If πJ (λ |data) =
k
∏
i=1

e−λiλ
xi−

1
2

i
Γ(xi+

1
2)

, then the posterior distribution of ξ̃ = 1
k

k
∑

i=1
λi is

πJ

(
ξ̃ |data

)
=

k

k
∑

i=1
xi+

k
2

Γ
(

k
∑

i=1
xi +

k
2

) z̃

k
∑

i=1
xi+

k
2−1

e−kz̃. (7)

Proof. ξ =
k
∑

i=1
aiλi. The moment generating function of ξ is

Mξ (t) = E
(

eξ t
)
= E

e
t

k
∑

i=1
aiλi


=

{
k

∏
i=1

1
Γ
(
xi +

1
2

)}ˆ ∞

0
· · ·
ˆ ∞

0
e

t
k
∑

i=1
aiλi k

∏
i=1

{
e−λiλ xi+

1
2−1

i

}
dλ1 . . .dλk

= C
(ˆ ∞

0
eta1λ1e−λ1λ x1+

1
2−1

1 dλ1

)
· · ·
(ˆ ∞

0
etakλke−λkλ xk+

1
2−1

k dλk

)

where C =

{
∏k

i=1
1

Γ(xi+
1
2)

}
.

Consider

I =

ˆ ∞

0
etaiλie−λiλ xi+

1
2−1

i dλi

=

ˆ ∞

0
e−λi(1−ait)λ xi+

1
2−1

i dλi
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Let λi (1−ait) = y,∴ λi =
(

1
1−ait

)
y and dλi =

(
1

1−ait

)
dy.

∴ I =

ˆ ∞

0
e−y
(

1
1−ait

)xi+
1
2−1

yxi+
1
2−1
(

1
1−ait

)
dy

=

(
1

1−ait

)xi+
1
2
ˆ ∞

0
e−yyxi+

1
2−1dy

=

(
1

1−ait

)xi+
1
2

Γ
(

xi +
1
2

)

Therefore Mξ (t) =
k
∏
i=1

(
1

1−ait

)xi+
1
2
.

If a1 = a2 = . . .= ak =
1
k , then

Mξ̃ (t) =
( k

k−t

)∑k
i=1 xi+

k
2 , which is the moment generating function of a Gamma distribution.

Therefore

πJ

(
ξ̃ |data

)
=

k∑k
i=1 xi+

k
2

Γ
(
∑k

i=1 xi +
k
2

) ξ̃ ∑k
i=1 xi+

k
2−1e−kξ̃ 0 < ξ̃ < ∞.�

3 The Weighted Monte Carlo Method in the Case of ξ = ∑k
i=1 aiλi

In this section a weighted Monte Carlo method is described which will be used for simulation from
the posterior distribution in the case of the probability matching prior. This method is especially
suitable for computing Bayesian intervals. It does not require knowing the closed form of the marginal
posterior distribution of ξ , only the kernel of the posterior distribution of {λ1,λ2, . . . ,λk} is needed.

As mentioned by Chen & Shao (1999), Kim (2006), Smith & Gelfand (1992), Guttman & Men-
zefricke (2003), Skare et al. (2003) and Li (2007) the weighted Monte Carlo (sampling - importance
re-sampling (SIR)) algorithm aims at drawing a random sample from a target distribution π, by first
drawing a sample from a proposal distribution q, and from this a smaller sample is drawn with sample
probabilities proportional to the importance ratios π/q. For the algorithm to be efficient, it is impor-
tant that q is a good approximation for π. This means that q should not have too light tails when
compared to π. In the case of credibility intervals it is not even necessary to draw the smaller sample.
The weights (sample probabilities) are however important.

If a uniform prior is put on λ , the posterior (proposal) distribution is

q(λ |data) ∝
k
∏
i=1

λ xi
i e−λi

In the case of the probability matching prior, the posterior (target) distribution is

πPM (λ |data) ∝
{

k
∑

i=1
a2

i λi

} 1
2 k

∏
i=1

λ xi
i e−λi , if ∑k

i=1 ai = 0,

or

π̃PM (λ |data) ∝
{

k
∑

i=1
a2

i λi

} 1
2 k

∏
i=1

λ xi−1
i e−λi , if ∑k

i=1 ai ̸= 0.
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The sample probabilities are therefore proportional to

πPM (λ |data)
q(λ |data)

=

{
k

∑
i=1

a2
i λi

} 1
2

if ∑k
i=1 ai = 0,

or

π̃PM (λ |data)
q(λ |data)

=

{
k

∑
i=1

a2
i λi

} 1
2 k

∏
i=1

λ−1
i if ∑k

i=1 ai ̸= 0.

The normalised weights are

ωl =

{
k
∑

i=1

(
a2

i λi
)(l)} 1

2

n
∑

l=1

{
k
∑

i=1

(
a2

i λi
)(l)} 1

2
if ∑k

i=1 ai = 0 for l = 1,2, . . . ,n,

or

ωl =

{
k
∑

i=1

(
a2

i λi
)(l)} 1

2 k
∏
i=1

(
λ−1

i
)(l)

n
∑

l=1

[{
k
∑

i=1

(
a2

i λi
)(l)} 1

2 k
∏
i=1

(
λ−1

i
)(l)] if ∑k

i=1 ai ̸= 0 for l = 1,2, . . . ,n.

A straightforward way of doing the weighted Monte Carlo (WMC) method was proposed by Chen
& Shao (1999).

Details of the Monte Carlo method are as follows:

1. Obtain a Monte Carlo sample
{(

λ (l)
1 ,λ (l)

2 . . . ,λ (l)
k

)
; l = 1,2, . . . ,n

}
from the proposal distribu-

tion q(λ |data) and calculate ξ (l) =
k
∑

i=1
(aiλi)

(l) for l = 1,2, . . . ,n.

2. Sort
{

ξ (l),(l = 1,2, . . . ,n)
}

to obtain the ordered values ξ [1] ≤ ξ [2] ≤ ·· · ≤ ξ [n].

3. Each simulated ξ value has an associated weight. Therefore compute the weighted function
ω(l) associated with the lth ordered ξ [l] value.

4. Add the weights up from left to right (from the first on) until one gets
n1
∑

l=1
ω(l) = α/2. Write

down the corresponding ξ [n1] value and denote it as ξ(α/2). Add the weights up from right to left

(from the last back) until one gets
n
∑

l=n2

ω(l) = α/2. Write down the corresponding ξ [n2] value

and denote it as ξ(1−α/2).

5. The 100(1−α)% Bayesian confidence interval is:(
ξ(α/2),ξ(1−α/2)

)
.
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4 Example and Simulation Studies

4.1 Example

Stamey & Hamilton (2006) considered an example where they compared four intervals. We are going
to compare two Bayesian intervals, using Jeffreys’ prior and a probability matching prior, with the
four intervals from Stamey & Hamilton (2006). They considered the number of fatal motor vehicle
accidents involving driving while intoxicated (DWI) during six major holidays for the year 2000.
They obtained the data from the Crash Records Bureau of the Texas Department of Public Safety.
The data are in Table 1.

Stamey & Hamilton (2006) used the following methods: a Wald interval, a t interval with Sat-
terthwaite’s degrees of freedom, and a Bayes interval using non-informative priors. In Table 2 the
four methods used by Stamey & Hamilton (2006) to obtain 95% confidence intervals can be seen, as
well as the two Bayesian methods that we considered. The purpose of this experiment was to esti-
mate the number of DWI involved fatal accidents per holiday, and also to see if less such accidents
occur during the summer holidays than during the winter holidays. Please note that the data are taken
from the Crash Records Bureau of the Texas Department of Public Safety, the summer holidays are
therefore Memorial Day, July 4 and Labor Day, and the winter holidays are Thanksgiving, Christmas
and New Year’s Eve. Table 2 indicates the 95% confidence intervals for the two linear functions.

Table 1: Number of DWI involved fatal motor vehicle accidents during six major holidays (2000)
Holiday No. of Accidents
Memorial Day 0
July 4 5
Labor Day 2
Thanksgiving 11
Christmas 8
New Year’s Eve 9

From Table 2 it can be seen that the Wald interval and the Student’s t interval imply the the average
number of DWI - involved fatal accidents per holiday do not exceed four, while the Bayes intervals
imply that the average number exceeds four. The upper limits of the Bayesian methods exceed eight,
while the Wald and Student’s t upper limits are less than eight. For the contrast between the summer
holidays and the winter holidays, it is noted that all the intervals are considerably greater than zero,
which indicates that fatal accidents were more common in winter than in the summer. The Bayesian
methods that we suggested compare well with the other intervals.
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Table 2: 95% Confidence intervals for the contrasts for DWI - involved fatal motor vehicle accidents
Contrast Wald Student’s Bayes Bayes

t with t

Avg. No. of DWI Accidents/ Holiday (3.9 , 7.77) (3.87 , 7.80) (4.31 , 8.35) (4.29 , 8.38)
c = (1/6,1/6,1/6,1/6,1/6,1/6)

Winter vs. Summer (3.13 , 10.87) (3.07 , 10.93) (2.97 , 11.03) (2.91 , 11.09)
c = (−1/3,−1/3,−1/3,1/3,1/3,1/3)

Contrast Jeffreys’ Probability
prior matching

prior
Avg. No. of DWI Accidents/ Holiday (4.18 , 8.25) (4.66 , 8.63)

c = (1/6,1/6,1/6,1/6,1/6,1/6)

Winter vs. Summer (2.77 , 10.36) (2.30 , 10.25)
c = (−1/3,−1/3,−1/3,1/3,1/3,1/3)

4.2 Simulation Study I

In this section we are going to look into the expected widths and the coverage probabilities of six
methods for constructing confidence intervals. To examine the coverage percentages the following
simulation procedure was proposed by Stamey & Hamilton (2006). They first created Poisson means
λi, i = 1, . . . ,k, from a Uniform distribution on the interval (0−5) , for a given number of theoretical
populations k. They then simulated X i ∼ P(λi) , i = 1, . . . ,k, and compared the confidence intervals
for each of the four methods based on the drawn observations and on the specified contrast coefficients
ai, i = 1, . . . ,k. To obtain the coverage probabilities the percentage of times over 100000 draws that
each confidence interval contains the true value of the contrast ξ = ∑k

i=1 aiλi were calculated and to
obtain the expected widths the average width of each interval were calculated.

From Table 3 it can be seen that the Wald interval is overall the poorest performer when all the
Poisson rates are expected to be small, because the coverage never reached 95%. Stamey & Hamilton
(2006) used the t distribution, to widen the intervals, but also did not get completely satisfactory
results. When using the student’s t distribution, they still got coverage results that are below nominal,
but in most cases they were close to nominal, except for the case where k = 5. According to Stamey
& Hamilton (2006) the Bayes procedure based on the Jeffreys’ non-informative prior is performing
the best for the small - rate cases. The coverage is above or at nominal for every case. The interval
is also in many cases narrower on average than the interval based on the student’s t. The interval
based on student’s t using the Bayesian prior estimator also has coverage above nominal in every
case, but is wider than the Bayes interval using the standard normal coefficient. The procedures using
the Jeffreys’ and probability matching priors, the last three columns from Table 3, compare well with
the other procedures. The average widths compare well with the other procedures. In Table 3, the

column Bayes PMP gives the results when the prior, πPM (λ ) ∝
{

k
∑

i=1
a2

i λi

} 1
2

, is used and the column
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Bayes PMP* gives the results when the prior, π̃PM (λ ) ∝
{

k
∑

i=1
a2

i λi

} 1
2

∏k
i=1 λ−1

i , is used.

Table 3: Average coverage and width for contrasts where λi ∈ (0,5)
Contrast Wald Student’s Bayes Bayes Bayes Bayes Bayes

t with t Jef PMP PMP*
k = 2

(1,−1) 91.1% 98.3% 96.9% 99.1% 96.1% 95.66% 95.32%
8.40 10.09 9.28 11.27 9.44 10.16 9.59(1

2 ,
1
2

)
91.2% 97.8% 96.7% 99.2% 95.6% 96.22%
4.12 5.08 4.64 5.63 4.53 4.46

k = 3(
1,−1

2 ,−
1
2

)
93.5% 96.4% 96.5% 98.2% 95.9% 96.06% 95.19%
7.24 8.31 8.05 9.32 8.20 8.68 8.16(1

3 ,
1
3 ,

1
3

)
91.6% 95.7% 96.7% 98.3% 94.8% 95.61%
3.46 3.85 3.83 4.28 3.80 3.64

k = 4(1
2 ,

1
2 ,−

1
2 ,−

1
2

)
94.8% 96.7% 97.1% 98.2% 95.5% 96.16% 95.49%
6.05 6.51 6.68 7.20 6.81 7.05 6.59(

1,−1
3 ,−

1
3 ,−

1
3

)
92.2% 94.8% 95.9% 97.5% 95.5% 96.44% 95.76%
6.74 7.78 7.55 8.73 7.73 8.15 7.65(1

4 ,
1
4 ,

1
4 ,

1
4

)
92.7% 95.1% 96.1% 97.4% 93.4% 95.73%
3.02 3.25 3.38 3.60 3.33 3.14

k = 5(1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)
93.1% 94.8% 95.5% 96.6% 93.7% 95.52%
2.72 2.87 3.00 3.17 2.99 2.82(

1,−1
4 ,−

1
4 ,−

1
4 ,−

1
4

)
91.2% 93.8% 95.4% 97.1% 94.6% 96.88% 95.85%
6.48 7.56 7.28 8.50 7.39 7.80 7.34(1

3 ,
1
3 ,

1
3 ,−

1
2 ,−

1
2

)
94.6% 96.1% 96.9% 97.8% 96.7% 96.21% 95.56%
5.53 5.89 6.10 6.51 6.21 6.38 5.99

Stamey & Hamilton (2006) also considered another simulation study, to see what impact larger
expected counts will have on the intervals. They used exactly the same method as in the previous
simulation study, the only difference is that in this case the Poisson rates were generated from a
Uniform distribution on the interval (5−10) . In the previous simulation study the Poisson rates were
generated from a Uniform distribution on the interval (0−5) . The results (coverage percentages and
interval widths) calculated by them are given in the first four columns of Table 4. In the last three
columns the results are given when using the Jeffreys’ and probability matching priors. In Table 4, the

column Bayes PMP gives the results when the prior, πPM (λ ) ∝
{

k
∑

i=1
a2

i λi

} 1
2

, is used and the column

Bayes PMP* gives the results when the prior, π̃PM (λ ) ∝
{

k
∑

i=1
a2

i λi

} 1
2

∏k
i=1 λ−1

i , is used.
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Table 4: Average coverage and width for contrasts where λi ∈ (5,10)
Contrast Wald Student’s Bayes Bayes Bayes Bayes Bayes

t with t Jef PMP PMP*
k = 2

(1,−1) 95.1% 96.1% 95.9% 96.7% 94.8% 94.76% 93.48%
15.01 15.68 15.53 16.22 15.69 16.24 15.66(1

2 ,
1
2

)
93.4% 94.6% 95.3% 96.5% 94.2% 95.09%
7.51 7.84 7.76 8.11 7.70 7.58

k = 3(
1,−1

2 ,−
1
2

)
94.5% 95.5% 95.4% 96.3% 95.6% 95.02% 93.88%
13.00 13.55 13.44 14.03 13.43 13.87 13.39(1

3 ,
1
3 ,

1
3

)
93.9% 94.7% 95.5% 96.1% 95.9% 95.06%
6.46 6.33 6.36 6.54 6.28 6.20

k = 4(1
2 ,

1
2 ,−

1
2 ,−

1
2

)
95.1% 95.6% 95.8% 96.3% 95.5% 95.00% 94.52%
10.68 10.91 11.04 11.26 11.12 11.27 10.91(

1,−1
3 ,−

1
3 ,−

1
3

)
94.0% 95.1% 94.7% 95.8% 94.1% 95.00% 94.66%
12.24 12.85 12.67 13.29 12.80 13.06 12.60(1

4 ,
1
4 ,

1
4 ,

1
4

)
94.2% 94.8% 95.4% 95.9% 94.8% 94.71%
5.34 5.45 5.52 5.63 5.50 5.36

k = 5(1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5

)
94.4% 94.8% 95.2% 95.6% 94.2% 94.74%
4.78 4.86 4.94 5.02 4.91 4.76(

1,−1
4 ,−

1
4 ,−

1
4 ,−

1
4

)
93.6% 95.0% 94.5% 95.7% 95.5% 95.46% 94.64%
11.83 12.49 12.24 12.92 12.19 12.55 12.15(1

3 ,
1
3 ,

1
3 ,−

1
2 ,−

1
2

)
95.0% 95.4% 95.7% 96.2% 95.3% 95.35% 94.42%
9.75 9.94 10.08 10.28 10.1 10.27 9.93

As in the previous simulation study the Wald interval is again overall the poorest performer.
Stamey & Hamilton (2006) could not clearly state whether the interval based on the Bayes or the
interval based on the student’s t performs the best in this case. Both have coverages that are slightly
below nominal for some contrasts, but in most cases the coverage is usually quite close to nominal.
From the second last column of Table 4, the probability matching prior, compares well with the other
procedures in the cases where there is a linear contrast of Poisson parameters. This results in cover-
age at or just above nominal level in each case, the interval widths also compare well with the other
procedures used.

4.3 Simulation Study II - Comparing Two Poisson Means

Krishnamoorthy & Thomson (2004) considered the problem of hypothesis testing about two Poisson
means. They compared the usual conditional test (C - test) to a test based on estimated p - values
(E - test). The C - test is due to Przyborowski & Wilenski (1940) and it is based on the conditional
distribution of X1 given X1 +X2, which follows a Binomial distribution whose success probability is
a function of the ratio λ 1/λ 2.
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Here

X1 =
n1

∑
i=1

X1i ∼ P(n1λ1) ,

independently distributed of

X2 =
n2

∑
i=2

X2i ∼ P(n2λ2) (8)

where X11,X12, . . . ,X1n1 and X21,X22, . . . ,X2n2 are independent samples, respectively from P(λ1)

and P(λ2) distributions.

The p -value for testing

H0 : λ1 −λ2 ≤ d vs Ha : λ1 −λ2 > d (9)

is P
(
TX1,X2 ≥ Tk1,k2 |H0

)
which involves the unknown parameter λ2. Here

TX1,X2 =
X1/n1 − X2/n2 −d√

V̂X

is the pivot statistic for the testing problem and for given (n1,k1,n2,k2), the observed value of the
pivot statistic TX1,X2 is given by

Tk1,k2 =
k1/n1 − k2/n2 −d√

V̂k

where

V̂X =
X1/n1

n1
+

X2/n2

n2

and V̂k is defined similarly with X replaced by k.

For given k1 and k2 an estimate of λ 2 is given by

λ̂2k =
k1 + k2

n1 +n2
− dn1

n1 +n2
.

Using this λ̂2k Krishnamoorthy & Thomson (2004) estimated the p - value P
(
TX1,X2 ≥ Tk1,k2 |H0

)
by

∞

∑
x1=0

∞

∑
x2=0

e−n1(λ̂2k+d)
{

n1

(
λ̂2k +d

)}x1

x1!

e−n2λ̂2k

(
n2λ̂2k

)x2

x2!
I
[
Tx1,x2 ≥ Tk1,k2

]
(10)

where I [·] denotes the indicator function. For given nominal level α , the test rule is to reject H0

in 9 whenever the estimated p - value in 9 is less than α . In view of 8, without loss of generality, we
can take n1 = n2 = 1.
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Krishnamoorthy & Thomson (2004) compared these two tests by looking at the size and the
power of the tests at different nominal levels and also at different values for λ1 and λ2. They found
that the E - test is almost exact and that it is more powerful than the C - test. We are going to
compare three Bayesian procedures to the tests used in Krishnamoorthy & Thomson (2004). For
the Bayesian procedure we will use the Jeffreys’ prior, the probability matching prior, a third prior:

πA (λ ) ∝ λ− 1
4

1 λ− 1
4

2 and a fourth prior: πB (λ ) ∝ λ− 3
8

1 λ− 3
8

2 .

From Theorem 1, the probability matching prior is given by

πPM (λ1,λ2) ∝
{

2
∑

i=1
a2

i λi

} 1
2

=
√

λ1 +λ2.

When using the probability matching prior, the posterior distribution of λ1,λ2 is given by

πPM (λ1,λ2 |x1,x2 ) ∝

{
2

∑
i=1

a2
i λi

} 1
2 2

∏
i=1

λ xi
i e−λi.

The Jeffreys’ prior, πJ, is given by

πJ (λ1,λ2) ∝ |F (λ1,λ2)|
1
2 =

(
2

∏
i=1

λi

)− 1
2

= λ− 1
2

1 λ− 1
2

2 .

Where F (λ1,λ2) is the information matrix connected with the likelihood function.

When using the Jeffreys’ prior, the posterior distribution of λ1,λ2 is given by

πJ (λ1,λ2 |x1,x2 ) ∝

(
2

∏
i=1

λi

)− 1
2 2

∏
i=1

λ xi
i e−λi =

2

∏
i=1

λ xi− 1
2

i e−λi.

The posterior distribution of λ1,λ2 is thus the product of 2 independently distributed Gamma
(
xi +

1
2 ,1
)

variates.

The third prior, πA, is given by

πA (λ1,λ2) ∝ λ− 1
4

1 λ− 1
4

2 .

When using this prior, the posterior distribution of λ1,λ2 is given by

πA (λ1,λ2 |x1,x2 ) ∝

(
2

∏
i=1

λi

)− 1
4 2

∏
i=1

λ xi
i e−λi =

2

∏
i=1

λ xi− 1
4

i e−λi.

The posterior distribution of λ1,λ2 is thus the product of 2 independently distributed Gamma
(
xi +

3
4 ,1
)

variates.

The fourth prior, πB, is given by

πB (λ1,λ2) ∝ λ− 3
8

1 λ− 3
8

2 .
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When using this prior, the posterior distribution of λ1,λ2 is given by

πB (λ1,λ2 |x1,x2 ) ∝

(
2

∏
i=1

λi

)− 3
8 2

∏
i=1

λ xi
i e−λi =

2

∏
i=1

λ xi− 3
8

i e−λi.

The posterior distribution of λ1,λ2 is thus the product of 2 independently distributed Gamma
(
xi +

5
8 ,1
)

variates.

Rice (1995) gives the following definition for the size of a test, which is also known as a type I
error:

H0 may be rejected when it is true. Such an error is called a type I error, and its probability is
denoted by α .

In Figures 1 - 3, we compare the size of the tests using Bayesian procedures to the two tests from
Krishnamoorthy & Thomson (2004). The Bayesian simulation procedure in the case of the probability
matching prior is as discussed in Section 3. The size of the tests as a function of λ = λ1 = λ2 at the
three different nominal level under the null hypothesis H0 : λ1−λ2 = 0 will be given in Figures 1 - 3.
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Figure 1: Size of the tests at the 5% nominal level.

From Figure 1 it can be seen that the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , reaches the nominal level when λ1 =

λ2 = 5 and from there onwards it attains this level. Where the Jeffreys’ and probability matching priors
reach the nominal level at λ1 = λ2 = 2, and then only at λ1 = λ2 = 10 again, from there onwards

it attains this level. The prior, πB ∝ λ− 3
8

1 λ− 3
8

2 , is an improvement on the Jeffreys’ and probability
matching priors. From Krishnamoorthy & Thomson (2004) the C - test never reaches the nominal
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level, and the E - test reaches the nominal level only at λ1 = λ2 = 10. We must however mention
that the graphs for the E - and C - tests are scanned in using a Matlab program. This means that
some small technical errors may occur in the graphs. In general one can say that the Jeffreys’ and
probability matching priors tend o give Type 1 error rates that are somewhat larger than the chosen

alpha. The error rates of the priors πA ∝ λ− 1
4

1 λ− 1
4

2 and πB ∝ λ− 3
8

1 λ− 3
8

2 seem to be more accurate.
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Figure 2: Size of the tests at the 10% nominal level.

From Figure 2 it can be seen that the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , reaches the nominal level when λ1 =

λ2 = 4 and from here onwards it attains this level. Where the Jeffreys’ prior and the prior, πB ∝
λ− 3

8
1 λ− 3

8
2 , reach the nominal level at λ1 = λ2 = 1, and then only at λ1 = λ2 = 5 again, from there

onwards it attains this level. The probability matching prior follows a similar pattern, but it reaches
the nominal level at λ1 = λ2 = 1, and then only at λ1 = λ2 = 10 again, from there onwards it attains
this level. From Krishnamoorthy & Thomson (2004) the C - test never reaches the nominal level, and
the E - test reaches the nominal level λ1 = λ2 = 1, and then only at λ1 = λ2 = 13 again, from there
onwards it attains this level.

From Figure 3 it can be seen that the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , reaches the nominal level when λ1 =

λ2 = 4.5 and from here onwards it attains this level. Where the Jeffreys’ and probability matching
priors never stay constant at the nominal level, it fluctuates most of the time above the nominal level.

The prior, πB ∝ λ− 3
8

1 λ− 3
8

2 , follows a similar pattern but for a lesser extent than that of the Jeffreys’ and
probability matching priors. Figure 3 however enlarges the fluctuation of the observed error rate. A
more direct comparison is to plot the error rate on the same scale. In terms of absolute deviations the
Jeffreys’ and probability matching priors are not doing worse as α decreases. The mean deviations for
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the Jeffreys’ prior from the nominal α values 0.01, 0.005 and 0.001 are 0.009, 0.0014 and 0.000412
respectively. From Krishnamoorthy & Thomson (2004) the C - test never reaches the nominal level,
and the E - test also reaches the nominal level at λ1 = λ2 = 3, and then at λ1 = λ2 = 5 again, from
there onwards it attains this level.
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Figure 3: Size of the tests at the 1% nominal level.

From Figures 1 - 3, it can be seen that the Bayesian procedures compare relatively well with the
E - test from Krishnamoorthy & Thomson (2004). From the four Bayesian procedures, the procedure

when using the prior πA ∝ λ− 1
4

1 λ− 1
4

2 and πB ∝ λ− 3
8

1 λ− 3
8

2 give the best results. The C - test is the poorest
performer.

In Figures 4 - 6, we compare the power of the tests using Bayesian procedures to the two tests
from Krishnamoorthy & Thomson (2004). The power of the tests as a function of λ1 at the nominal
level α = 0.05 under the alternative hypothesis Ha : λ1 −λ2 > 0 will be given in Figures 4 - 6.

Rice (1995) gives the following definition for a type II error:

H0 may be accepted when it is false. Such an error is called a type II error, and its probability is
denoted by β .

The probability that H0 is rejected when it is false is called the power of the test, the power equals
1−β .
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Figure 4: Power of the test as a function of λ1 when λ2 = 0.1.
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Figure 5: Power of the test as a function of λ1 when λ2 = 2.

From Figure 4 it can be seen that the power from the test when using the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 ,

is smaller than the power of the tests when using the Jeffreys’ prior, probability matching prior and
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the prior, πB ∝ λ− 3
8

1 λ− 3
8

2 . The Jeffreys’ prior, probability matching prior and the prior, πB ∝ λ− 3
8

1 λ− 3
8

2 ,
and the E- test give almost exactly the same results. From Krishnamoorthy & Thomson (2004) the
power of the E- test is larger than the power of the C - test.

From Figure 5 it can be seen that the power from the test when using the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , is
still a bit smaller than the power of the tests when using the Jeffreys’ prior, probability matching prior

and the prior, πB ∝ λ− 3
8

1 λ− 3
8

2 . The Jeffreys’ and probability matching priors give almost exactly the

same results. The prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , and the E- test give almost exactly the same results. From
Krishnamoorthy & Thomson (2004) the power of the E - test is larger than the power of the C - test.
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Figure 6: Power of the test as a function of λ1 when λ2 = 10.

From Figure 6 it can be seen that the power from the test when using the prior, πA ∝ λ− 1
4

1 λ− 1
4

2 , is
almost the same as the power of the tests when using the Jeffreys’ prior, probability matching prior and

the prior, πB ∝ λ− 3
8

1 λ− 3
8

2 . From Krishnamoorthy & Thomson (2004) the power of the E - test is still a
bit larger than the power of the C - test, but they are almost equal to each other. The four tests using
Bayesian methods and the E - test all give almost exactly the same results. We can conclude from
the Bayesian procedures and from the methods by Krishnamoorthy & Thomson (2004), that as the
sample sizes increase, i.e. as the values of λ1 and λ2 increase, the powers of the tests are increasing.
Also, as the values of λ1 and λ2 increase, the difference between the powers of the different tests are
smaller. The Bayesian procedures compare well with the procedures by Krishnamoorthy & Thomson
(2004). From Figures 4 -6 it is also clear that the powers of Jeffreys’ and probability matching priors
are larger than those of the E - test. This could be expected because the type 1 error rates of these two
priors are usually somewhat larger that the chosen alpha value.
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5 Conclusion

In this paper the probability matching prior for a linear contrast of Poisson parameters, ξ = ∑k
i=1 aiλi,

(i.e. ∑k
i=1 ai = 0) was derived. We also indicated what the probability matching prior should be when

∑k
i=1 ai ̸= 0. We compared the four approximate confidence intervals for linear contrasts of Poisson

rates proposed by Stamey & Hamilton (2006) to confidence intervals using Bayesian procedures,
when using the probability matching prior. Simulation studies have shown that the Wald interval
performs the poorest. The probability matching prior performs also satisfactory. We also addressed
the problem of hypothesis testing about two Poisson means, by looking at the size and power of
different tests. We compared three Bayesian procedures to two procedures used by Krishnamoorthy
& Thomson (2004). We used the Jeffreys’ prior, the probability matching prior, a third prior which

is proportional to λ− 1
4

1 λ− 1
4

2 and a fourth prior which is proportional to λ− 3
8

1 λ− 3
8

2 and compared it to
their results. The Bayesian procedures compared well with the procedures used by Krishnamoorthy
& Thomson (2004). The C - test performed the worst of the five tests.
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