Improved regression-type estimation of the index of
a stable distribution using the characteristic

function

J. Martin van Zyl

Abstract Refinements with respect to heteroscedasticith@fresiduals is made to the regression
estimation method, based on the sample charadatdtigsttion, to estimate the index and scale
parameter of the stable distribution. The refineztpdure leads to estimates where the bias is

decreased significantly.
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1 Introduction

The purpose of this work is to make a refinemenhé&regression estimation
method based on the characteristic function prapbgekoutrouvellis (1980).
The procedure derived in his work leads to a resgpeasmodel with
heteroscedasticity of the regression error terndstlis aspect is improved. By
designing the model in such a way that the variarfi¢be error terms is a
minimum, a significant decrease in the bias ofdasimated parameters was also

found.

The characteristic functiom(t) of the stable distribution is given by

logp(t)=-0° |t [ {L-iBsign(t)tanfm /2)}+iut,a # 1,
and logg(t)=-0” |t [ {L-iBsign(t)log(|t D}+imt, a=1.
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The parameters are the indexJ (0, 2], scale parametar >0, coefficient of
skewnessf0[-1,1] and modey . The symmetric case witlr =0, = 0 will be

considered in this work. The notation and reviewased on the work of Weron,
p915 in the book by (Gentle, Hardle, Mori, ed9042). Koutrouvellis (1980)

made use of the properties of the characteristiction and using the fact that

|ot) F= expE 2% t 1 derived the model

log(-log(l¢t)f )= log(&* }+a log(t |, (1.1)

a simple linear regression model can be formed
Y SM+aa +&,. (1.2)

The characteristic function is estimated for a givalue of t, for a sample of size
n i.i.d. observations,...,x,, as¢,(t) =%Ze”x" ,andy, =log(-log(j@ t.)F)),
j=1

m=1log(20”), w, = log(lt, |),&.an error term. Koutrouvellis (1980) suggested
usingt, = 7ik/25k =1,...K, and optimal values of K was suggested for various

sample sizes and's.

An expression for the covarianoev(k}g] ¢ )f |&n . )1 and thus the variance of
|42%(tj )F is given by Koutrouvellis (1980). This expression igeeomplicated
and depends on the unknown parameters, and thusaigog(-log(|¢, (DY D))

making weighted regression problematic.

Much research was done on using an approximate eoaarimatrix and
generalized least squares to estimate the parameteesbEsger and
McDunnough (1981) considered the asymptotic joint itigtion of

At), ..ot ). An excellent overview of this approach is given inpheer by

Besbeas and Morgan (2008). They suggested arithepet@ing instead of
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choosing uniformly spaced t's over an interval and tp@ach yielded good

results.

It is shown that the residual variance is highly hetexdastistic with respect to t,
and that the t's suggested by Koutrouvellis (1980), isdstrnase over the
interval where the residual variance is changing rasst function of the t's. This
might lead to a decrease in the efficiency, and alsarecbestimates of the

variances of the estimated parameters.

An interval where the variance of the residuals is alnsonstant and small is
suggested in this work. The variance of the resida&sfor a given t and the true
parameters, is estimated using simulated samples. Rissidua sample was

calculated using the true parametergas y, —m-aa,, and from these

residuals the variancevar (&,) = var (¢, |t,0,a), was estimated.

The simulation study suggests approximate constant amchom residual
variances fort [J[0.5,1]. With K equally spaced t’s in these intervals

(Koutrouvellis 1980). Performing the regression using Kies of t chosen in this

interval, resulted in a much smaller bias of the esgdhpairameters.

2. Estimation of the residual variance

Using the true parameters and simulated samples, aésidu a given t and a
simulated sample was calculated using equation (1.2¢. v@riance of the
residuals ofM =1000 samples of sizen = 200each, with respect to t is shown.
The data was simulated with=0.7,1.5,0 = 0.1,1.0,2. and =0, = 0.

Approximate constant residual variance was found in htgrvals, the one for t
between 0.5 and 1.0, the other for t larger tharrtaioepoint in the region of 2 -
4, depending on the values @f and o . The error variance is smallest in the
interval 0.5 to 1.0. Note that heteroscedasticity watiltlbe present in these

intervals.
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The covariance matrices of the estimated parameterbevilven. These are
calculated from the M=1000 estimated parameters ubageigression method on

the intervalst 0[0.5,1.0],t O [3.0,5.0 respectively. K denote the optimal number

of observations as suggested by Koutrouvellis (198@) Kanniformly chosen t's
will be chosen over in the interval§1[0.5,1.0],t 0 [3.0,5.0 to estimate the

parameters. The estimated covariance matrices of tinea¢sd parameters on the

two intervals respectivelyh anda , will be denoted byﬁblandﬁb2 ,

(®),, = var(h), @),,= var@ ), @ ),= ¢ ),,= covf th .

The true parameters are used to calculate a resrdnathe simulated

observations, for examplé? =7 |t,0,a = covE, ,...£, t @ ¢ ), where

£ |t=y,-m-alogt), m=log(20°),y, = logt- log(ig €)1))i = 1..M .
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Fig. 1 Estimated residual variances for given valuets of =0.7,0 = 0.1n= 20C
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& = 0.0360 0.014 & = 0.1439 - 0.09
0.0148 0.072 27\~ 0.0926 0.066
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Fig. 2 Estimated residual variances for given values,a¥ =0.7,0 = 1.0n= 20C
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& = 0.0181 0.014 &, = 0.5684 - 0.39
0.0145 0.042 2 (- 0.3986 0.290

For the cases considered in figures 1 and 2 with0.7, Koutrouvellis (1980) the
optimal K was 30, and the suggested t's are betweebDdrd 3.7699, an
interval where the variances are heteroscedastisticeStimaation of m was
stable, buto estimated using the second interval was unstable ang man

extremely large values occurred in both cages0.1,1.C.
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Fig. 3 Estimated residual variances for given valuets of =1.5,0 = 0.1n = 200
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Fig. 4 Estimated residual variances for given valuets of =1.5,0 = 1.0n= 20C
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For the cases considered in figures 3 and 4, Kouthiay£980) suggested using
K=11 and the suggested t's are between 0.1257 and3,.88 interval where the
variances are highly heteroscedastistic. The estimatianwads unstable using

the interval 3.0 to 5.0 foo =1.0, 2.Cand many extremely large estimated values
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occurred. The estimated parameters using the secomghinteas extremely

biased.

In figure 5 the estimated residual variance for t gigeplotted against log(t).
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Fig. 5 Estimated residual variances plotted againsttipgf =1.5,0 = 1.0n= 20C

From the above figures it can be seen that the residuainces reaches a
minimum and are reasonably constant or homoscedastie intdrval
t[0[0.5,1.0].

3 Comparison between estimation procedures

In this section a simulation study was conducted to contparperformance of
estimation using the interval 0.5 and 1.0 with estimattben choosing

t, =7k/25k =1,..K . Three values ob was investigatedg =0.1,1.0,2.(. The

numbers of t's was chosen as K, as suggested byrd{oellis (1980). Thus for
example the interval1[0.5,1] will mean thatt, =0.5+ (0.5/K k k= 0,..K- .
Samples from symmetric distributions with location paranetes were
considered. The results are based on 5000 simdatagdles each time. The
MSE and bias was calculated with respect to the truenpeter. For very small
values ofa , negative estimates may occur, and in such a casesiadjusted to

0.3. This happened in a very small proportion of cdsss,than one in a hundred
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when a =0.5. No adjustment was made if the estimate was larger thahiéh

also occurred in a small proportion far close to 2.

N=200, a
0=0.1,=0u=C 0.5-1.0 interval Koutrouvelis
a Mean| Bias | MSE| Mean Bias | MSE
1.9 (K=9) 1.9535 -0.0535 0.0471 1.9685 -0.0685 BM0P
1.7 (K=10) 1.8027 -0.102f 0.1610 1.8549 -0.1%49 0811
1.5 (K=11) 1.6167 -0.116f 0.2287 1.6889 -0.1839 6011
1.3 (K=22) 1.3838 -0.0838 0.2273 1.41B8 -0.1130 88
1.1 (K=24) 1.1523 -0.0528 0.1630 1.17B1 -0.0731 587
0.9 (K=28) 0.9225 -0.0225 0.1120 0.92B9 -0.0289 208)
0.7 (K=30) 0.7229 -0.0225 0.0734 0.7182 -0.0132 100
0.5 (K=86) 0.5331] -0.0331 0.0391 0.5048 -0.0048 0800

Table1l Comparison of estimation procedures@fwith respect to bias and MSE,

0=0.1,n= 20C

n=200, &
oc=1,4=0u=0 0.5 - 1.0 interval Koutrouvelis

a Mean| Bias | MSE| Mean Bias | MSE
1.9 (K=9) 1.9021] -0.0021 0.0094 1.90p4 -0.0064 @800
1.7 (K=10) 1.698§ 0.0012 0.0191 1.70F7 -0.0077 2rQ1
1.5 (K=11) 1.5011 -0.0011 0.0261 1.5080 -0.0080 1800
1.3 (K=22) 1.2956 0.0044 0.0330 1.24F3 0.0527 @Q13
1.1 (K=24) 1.0998 0.0002 0.0386 1.0668 0.0340 (@Q09
0.9 (K=28) 0.9007 -0.0007 0.0432 0.8742 0.0258 TBAO
0.7 (K=30) 0.7088 -0.0088 0.0423 0.69{15 0.0085 %700
0.5 (K=86) 0.5151 -0.0151 0.0310 0.4584 0.0416 4800

Table2 Comparison of estimation proceduresafwith respect to bias and MSE,

0=1.0,n= 20C
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n=800, &
0=2,=0u=0| 05-1.0 interval Koutrouvelis
a Mean| Bias | MSE| Mean Bias | MSE
1.9 (K=9) 1.8474 0.052¢6 0.0614 1.8282 0.0719 0.0108
1.7 (K=10) 1.6782 0.0218 0.0474 1.62p3 0.0737 @BQ11
1.5 (K=11) 1.4917 0.0088 0.0362 1.4381 0.0619 @BQ09
1.3 (K=16) 1.2936 0.0064 0.0276 1.1481 0.1519 (@B026
1.1 (K=18) 1.0956 0.0044 0.0214 0.9997 0.1003 ®&Q13
0.9 (K=22) 0.8977 0.00283 0.0183 0.8358 0.0650 (@006
0.7 (K=24) 0.6988 0.0012 0.0161 0.66R3 0.0377 (6003
0.5 (K=68) 0.4993 0.0007 0.0118 0.4607 0.0393 @002

Table3 Comparison of estimation proceduresa@fwith respect to bias and MSE,

o=2.0,n= 20C

In the following three tables, the estimatets using the two procedures are

compared.
n=200,5
0=014=0u=C 0.5-1.0 interval Koutrouvelis
a Mean| Bias | MSE| Mean Bias | MSE
1.9 (K=9) 0.1063 -0.0063 0.0043 0.10F9 -0.0079 @300
1.7 (K=10) 0.1163 -0.0168 0.0017 0.1210 -0.02100005
1.5 (K=11) 0.1220 -0.0220 0.0037 0.1272 -0.0272 0800
1.3 (K=22) 0.1202] -0.0202 0.0035 0.11p7 -0.0127 0D40
1.1 (K=24) 0.1173 -0.0178 0.0062 0.1091 -0.0091 0DIQ
0.9 (K=28) 0.1144 -0.0144 0.0069 0.1089 -0.0039 0080
0.7 (K=30) 0.1176 -0.0176 0.0084 0.10p4 -0.0024 008)
0.5 (K=86) 0.1249 -0.0249 0.0105 0.1012 -0.0012 0080

Table 4 Comparison of estimation procedures@fwith respect to bias and MSE,

0=0.1n= 20C
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n=200,0

o=1,4=0u=0 0.5 - 1.0 interval Koutrouvelis
a Mean| Bias | MSE| Mean Bias | MSE

1.9 (K=9) 0.9957| 0.0043 0.0036 0.9964 0.0036 0.0035
1.7 (K=10) 0.9959 0.0041 0.0030 0.9973 0.0027 @B004
1.5 (K=11) 0.9955 0.0045 0.0069 0.9965 0.0035 @006
1.3 (K=22) 0.9901 0.0099 0.0096 0.96p8 0.0392 @008
1.1 (K=24) 0.9884 0.0116 0.0132 0.9716 0.0284 @009
0.9 (K=28) 0.9834 0.0166 0.0235 0.9767 0.0243 011
0.7 (K=30) 0.9847 0.0158 0.0405 0.99p8 0.0092 017
0.5 (K=86) 0.9795 0.0205 0.0689 1.0373 -0.0373 845

Table 5 Comparison of estimation procedures@fwith respect to bias and MSE,

0=1.0,n= 20C.

n=800,0
c=2,=0u=0 0.5 - 1.0 interval Koutrouvelis

a Mean| Bias | MSE| Mearn Bias | MSE
1.9 (K=9) 2.0102] -0.0102 0.0062 1.94p7 0.0503 (3008
1.7 (K=10) 2.0053 -0.0058 0.0069 1.9484 0.0916 @0Q0
1.5 (K=11) 2.0057 -0.0057 0.0091 1.9559 0.0441 @100
1.3 (K=16) 2.0067 -0.0067 0.0125 1.92f1 0.0729 3841
1.1 (K=18) 2.0083 -0.0088 0.0183 1.9590 0.0410 2041
0.9 (K=22) 2.0134 -0.013%4 0.0300 0.8350 0.0650 @RA0
0.7 (K=24) 2.0278 -0.0278 0.0534 2.0230 -0.0230 2440
0.5 (K=68) 2.0442 -0.0442 0.0981 2.1682 -0.1632 1021

Table6 Comparison of estimation proceduresa@fwith respect to bias and MSE,

0 =2.0,n=80C

It can be seen that for especially larger valugb@indexr , the suggested
interval 0.5 to 1.0 for t, leads to much betteutesswith respect to bias and also
MSE. Fora <1the Koutrouvellis (1980) procedure is stable andhnhbe better
to use.
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It was found that the estimated variance of thpeslasing the usual regression
estimator lead to totally incorrect estimated vaces of the estimated parameters,
showing that there is still much heteroscedasticithe interval 0.5 to 1.0.
Bootstrap estimates of the variance of the slapgyielded much better estimates

for a single sample.

4 Conclusions

The interval proposed outperforms those deriveddmytrouvellis (1980) with
respect to bias. Refinements can be made to this, wuith respect to the number
of t's used in the regression. This method is naintpler than those using an
approximate covariance matrix. The simulation stsidgws that the method
performs well with respect to bias and MSE oventiele range of parameters

commonly encountered in practical problems.

The ideal would be to not only lower the bias Hebdahe MSE and research using
principles of optimal experimental design appliadtier can maybe lead to such

an estimation technique.
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