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Improved regression-type estimation of the index of 

a stable distribution using the characteristic 

function  

     

J. Martin van Zyl                                      

 

Abstract  Refinements with respect to heteroscedasticity of the residuals is made to the regression 

estimation method, based on the sample characteristic function, to estimate the index and scale 

parameter of the stable distribution. The refined procedure leads to estimates where the bias is 

decreased significantly. 
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1 Introduction 

The purpose of this work is to make a refinement to the regression estimation 

method based on the characteristic function proposed by Koutrouvellis (1980). 

The procedure derived in his work leads to a regression model with 

heteroscedasticity of the regression error terms and this aspect is improved. By 

designing the model in such a way that the variance of the error terms is a 

minimum, a significant decrease in the bias of the estimated parameters was also 

found. 

 

The characteristic function ( )tφ of the stable distribution is given by  

 

             log ( ) | | {1 ( ) tan( / 2)} , 1,t t i sign t i tα αφ σ β πα µ α= − − + ≠  

and        log ( ) | | {1 ( ) log(| |)} , 1.t t i sign t t i tα αφ σ β µ α= − − + =  
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The parameters are the index (0,2]α ∈ , scale parameter 0σ > , coefficient of 

skewness [ 1,1]β ∈ −  and mode µ . The symmetric case with 0, 0µ β= =  will be 

considered in this work. The notation and review is based on the work of Weron, 

p915 in the book by  (Gentle, Härdle, Mori, eds , 2004). Koutrouvellis (1980) 

made use of the properties of the characteristic function and using the fact that 

2| ( ) | exp( 2 | | )t tα αφ σ= −  derived the model 

 

         2log( log(| ( ) | )) log(2 ) log(| |)t tαφ σ α− = + ,                 (1.1) 

 

a simple linear regression model can be formed   

 

         k k ky m αω ε= + + .                                                        (1.2) 

 

The characteristic function is estimated for a given value of t, for a sample of size 

n i.i.d. observations 1,..., nx x , as 1

1

ˆ ( ) j

n
itx

n n
j

t eφ
=

= ∑ , and 2ˆlog( log(| ( ) | ))k n ky tφ= − , 

log(2 ), log(| |),k k km tασ ω ε= = an error term. Koutrouvellis (1980) suggested 

using / 25, 1,...,kt k k Kπ= = , and optimal values of K was suggested for various 

sample sizes and 'sα .  

 

An expression for the covariance 2 2ˆ ˆcov(| ( ) | ,| ( ) | )n j n kt tφ φ  and thus the variance of 

2ˆ| ( ) |n jtφ  is given by Koutrouvellis (1980). This expression is quite complicated 

and depends on the unknown parameters, and thus also 2ˆ(log( log(| ( ) | )))n jvar tφ−  

making weighted regression problematic. 

 

Much research was done on using an approximate covariance matrix and 

generalized least squares to estimate the parameters. Feuerberger and 

McDunnough (1981) considered the asymptotic joint distribution of 

1( ),..., ( )Kt tφ φ . An excellent overview of this approach is given in the paper by 

Besbeas and Morgan (2008).  They suggested arithmetic spacing instead of 
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choosing uniformly spaced t’s over an interval and this approach yielded good 

results.  

 

It is shown that the residual variance is highly heteroscedastistic with respect to t, 

and that the t’s suggested by Koutrouvellis (1980), is in most case over the 

interval where the residual variance is changing most as a function of the t’s. This 

might lead to a decrease in the efficiency, and also incorrect estimates of the 

variances of the estimated parameters.  

 

An interval where the variance of the residuals is almost constant and small is 

suggested in this work. The variance of the residuals,'sε  for a given t and the true 

parameters, is estimated using simulated samples.  Residuals for a  sample was 

calculated using the true parameters as k k ky mε αω= − − , and from these 

residuals the variance,  ( ) ( | , , )k kvar var tε ε σ α= , was estimated. 

 

The simulation study suggests approximate constant and minimum residual 

variances for [0.5,1]t ∈ . With K equally spaced t’s in these intervals 

(Koutrouvellis 1980). Performing the regression using K values of t chosen in this 

interval, resulted in a much smaller bias of the estimated parameters.  

 

2.  Estimation of the residual variance 

 

Using the true parameters and simulated samples, residuals for a given t and a 

simulated sample was calculated using equation (1.2).  The variance of the 

residuals of 1000M =  samples of size 200n = each, with respect to t is shown. 

The data was simulated with 0.7,1.5, 0.1,1.0,2.0α σ= =  and 0, 0.β µ= =   

 

Approximate constant residual variance was found in two intervals, the one for t 

between 0.5 and 1.0, the other for t larger than a certain point in the region of  2 - 

4, depending on the values of α  and σ . The error variance is smallest in the 

interval 0.5 to 1.0.  Note that heteroscedasticity would still be present in these 

intervals. 
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The covariance matrices of the estimated parameters will be given. These are  

calculated from the M=1000 estimated parameters using the regression method on 

the intervals [0.5,1.0], [3.0,5.0]t t∈ ∈  respectively. K denote the optimal number 

of observations as suggested by Koutrouvellis (1980), and K uniformly chosen t’s 

will be chosen over in the intervals [0.5,1.0], [3.0,5.0]t t∈ ∈  to estimate the 

parameters. The estimated covariance matrices of the estimated parameters on the 

two intervals respectively, ̂m  and α̂ , will be denoted by 1Φ̂ and 2Φ̂  , 

11 22 12 21
ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) var( ), ( ) var( ), ( ) ( ) cov( , )m mα αΦ = Φ = Φ = Φ = . 

 

The true parameters are used to calculate a residual from the simulated 

observations, for example  2 2
1ˆ ˆ | , , cov( ,..., | , , ),t t Mt tσ σ σ α ε ε α σ= = , where 

| log( )j jt y m tε α= − − , 2ˆlog(2 ), log( log(| ( ) | )), 1,...,j nm y t j Mασ φ= = − = .  
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Fig. 1  Estimated residual variances for given values of t, 0.7, 0.1, 200.nα σ= = =  

 

1 2

0.0360 0.0148 0.1439 0.0926ˆ ˆ
0.0148 0.0726 0.0926 0.0668

−   
Φ = Φ =   −   

. 
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Fig. 2  Estimated residual variances for given values of  t, 0.7, 1.0, 200.nα σ= = =  

 

 

1 2

0.0181 0.0145 0.5684 0.3986ˆ ˆ
0.0145 0.0423 0.3986 0.2900

−   
Φ = Φ =   −   

. 

 

 

For the cases considered in figures 1 and 2 with 0.7α = , Koutrouvellis (1980) the 

optimal K was 30, and the suggested t’s are between 0.1257 and 3.7699, an 

interval where the variances are heteroscedastistic. The estimation of m was 

stable, but σ estimated using the second interval was unstable and many 

extremely large values occurred in both cases 0.1,1.0σ = . 
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Fig. 3  Estimated residual variances for given values of t, 1.5, 0.1, 200.nα σ= = =  

 

1 2

0.1042 0.0229 0.0002 0.0020ˆ ˆ
0.0229 0.2163 0.0020 0.0396

−   
Φ = Φ =   −   

. 
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Fig. 4  Estimated residual variances for given values of t, 1.5, 1.0, 200.nα σ= = =  

 

1 2

0.0151 0.0084 0.8192 0.5987ˆ ˆ
0.0084 0.0269 0.5987 0.4469

−   
Φ = Φ =   −   

. 

 

For the cases considered in figures 3 and 4, Koutrouvellis (1980) suggested using 

K=11 and the suggested t’s are between 0.1257 and 1.3823, an interval where the 

variances are highly heteroscedastistic. The estimation of σ was unstable using 

the interval 3.0 to 5.0 for 1.0,2.0σ = and many extremely large estimated values 
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occurred. The estimated parameters using the second interval was extremely 

biased.  

 

In figure 5 the estimated residual variance for t given is plotted against log(t). 
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Fig. 5  Estimated residual variances plotted against log( t), 1.5, 1.0, 200.nα σ= = =  

 

 

From the above figures it can be seen that the residual variances reaches a 

minimum and are reasonably constant or homoscedastic in the interval 

[0.5,1.0]t ∈ .  

 

3  Comparison between estimation procedures 

 

In this section a simulation study was conducted to compare the performance of 

estimation using the interval 0.5 and 1.0 with estimation when choosing 

/ 25, 1,...,kt k k Kπ= = . Three values of σ was investigated, 0.1,1.0,2.0σ = . The 

numbers of t’s was chosen as K, as suggested by  Koutrouvellis (1980). Thus for 

example the interval [0.5,1]t ∈  will mean that 0.5 (0.5 / ) , 0,..., 1kt K k k K= + = − . 

Samples from symmetric distributions with location parameter zero were 

considered.  The results are based on 5000 simulated samples each time. The 

MSE and bias was calculated with respect to the true parameter. For very small 

values of α , negative estimates may occur, and in such a case it was adjusted to 

0.3. This happened in a very small proportion of cases, less than one in a hundred 
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when 0.5α = . No adjustment was made if the estimate was larger than 2, which 

also occurred in a small proportion for α  close to 2. 

  

 N=200, α̂  

0.1, 0, 0σ β µ= = =  0.5-1.0  interval Koutrouvelis 

α  Mean Bias MSE Mean Bias MSE 

1.9 (K=9) 1.9535 -0.0535 0.0421 1.9685 -0.0685 0.0257 

1.7 (K=10) 1.8027 -0.1027 0.1610 1.8549 -0.1549 0.1051 

1.5 (K=11) 1.6167 -0.1167 0.2287 1.6839 -0.1839 0.1611 

1.3 (K=22) 1.3838 -0.0838 0.2273 1.4138 -0.1130 0.0889 

1.1 (K=24) 1.1523 -0.0523 0.1650 1.1731 -0.0731 0.0537 

0.9 (K=28) 0.9225 -0.0225 0.1120 0.9289 -0.0289 0.0218 

0.7 (K=30) 0.7225 -0.0225 0.0734 0.7132 -0.0132 0.0102 

0.5 (K=86) 0.5331 -0.0331 0.0391 0.5048 -0.0048 0.0030 

 

Table 1  Comparison of estimation procedures of α  with respect to bias and MSE,  

0.1, 200nσ = = . 

 n=200, α̂  

1, 0, 0σ β µ= = =  0.5 – 1.0 interval Koutrouvelis 

α  Mean Bias MSE Mean Bias MSE 

1.9 (K=9) 1.9021 -0.0021 0.0094 1.9064 -0.0064 0.0068 

1.7 (K=10) 1.6988 0.0012 0.0191 1.7077 -0.0077 0.0127 

1.5 (K=11) 1.5011 -0.0011 0.0261 1.5080 -0.0080 0.0130 

1.3 (K=22) 1.2956 0.0044 0.0330 1.2473 0.0527 0.0131 

1.1 (K=24) 1.0998 0.0002 0.0386 1.0668 0.0340 0.0099 

0.9 (K=28) 0.9007 -0.0007 0.0432 0.8742 0.0258 0.0075 

0.7 (K=30) 0.7088 -0.0088 0.0423 0.6915 0.0085 0.0057 

0.5 (K=86) 0.5151 -0.0151 0.0310 0.4584 0.0416 0.0043 

 

Table 2  Comparison of estimation procedures of α  with respect to bias and MSE,  

1.0, 200nσ = = . 
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 n=800, α̂  

2, 0, 0σ β µ= = =  0.5 – 1.0  interval Koutrouvelis 

α  Mean Bias MSE Mean Bias MSE 

1.9 (K=9) 1.8474 0.0526 0.0614 1.8282 0.0719 0.0108 

1.7 (K=10) 1.6782 0.0218 0.0474 1.6263 0.0737 0.0113 

1.5 (K=11) 1.4917 0.0083 0.0362 1.4381 0.0619 0.0093 

1.3 (K=16) 1.2936 0.0064 0.0276 1.1481 0.1519 0.0268 

1.1 (K=18) 1.0956 0.0044 0.0214 0.9997 0.1003 0.0134 

0.9 (K=22) 0.8977 0.0023 0.0183 0.8358 0.0650 0.0069 

0.7 (K=24) 0.6988 0.0012 0.0161 0.6623 0.0377 0.0036 

0.5 (K=68) 0.4993 0.0007 0.0118 0.4607 0.0393 0.0026 

 

Table 3  Comparison of estimation procedures of α  with respect to bias and MSE,  

2.0, 200nσ = = . 

 

In the following three tables, the estimated 'sσ  using the two procedures are 

compared. 

 

 n=200, σ̂  

0.1, 0, 0σ β µ= = =  0.5 -1.0  interval Koutrouvelis 

α  Mean Bias MSE Mean Bias MSE 

1.9 (K=9) 0.1063 -0.0063 0.0003 0.1079 -0.0079 0.0003 

1.7 (K=10)  0.1163 -0.0163 0.0017 0.1210 -0.0210 0.0015 

1.5 (K=11) 0.1220 -0.0220 0.0037 0.1272 -0.0272 0.0030 

1.3 (K=22) 0.1202 -0.0202 0.0055 0.1127 -0.0127 0.0014 

1.1 (K=24) 0.1173 -0.0173 0.0062 0.1091 -0.0091 0.0011 

0.9 (K=28) 0.1144 -0.0144 0.0069 0.1039 -0.0039 0.0008 

0.7 (K=30) 0.1176 -0.0176 0.0084 0.1024 -0.0024 0.0008 

0.5 (K=86) 0.1249 -0.0249 0.0105 0.1012 -0.0012 0.0005 

 

Table  4  Comparison of estimation procedures of σ  with respect to bias and MSE,  

0.1, 200nσ = = . 
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 n=200, σ̂  

1, 0, 0σ β µ= = =  0.5 – 1.0 interval Koutrouvelis 

α  Mean Bias MSE Mean Bias MSE 

1.9 (K=9) 0.9957 0.0043 0.0036 0.9964 0.0036 0.0035 

1.7 (K=10) 0.9959 0.0041 0.0050 0.9973 0.0027 0.0046 

1.5 (K=11) 0.9955 0.0045 0.0069 0.9965 0.0035 0.0060 

1.3 (K=22) 0.9901 0.0099 0.0096 0.9608 0.0392 0.0080 

1.1 (K=24) 0.9884 0.0116 0.0152 0.9716 0.0284 0.0092 

0.9 (K=28) 0.9834 0.0166 0.0235 0.9757 0.0243 0.0116 

0.7 (K=30) 0.9847 0.0153 0.0405 0.9908 0.0092 0.0175 

0.5 (K=86) 0.9795 0.0205 0.0689 1.0373 -0.0373 0.0538 

 

Table  5  Comparison of estimation procedures of σ  with respect to bias and MSE,  

1.0, 200nσ = = . 

 

 

 n=800, σ̂   

2, 0, 0σ β µ= = =  0.5 – 1.0 interval Koutrouvelis 

α  Mean Bias MSE Mean Bias MSE 

1.9 (K=9) 2.0102 -0.0102 0.0062 1.9497 0.0503 0.0083 

1.7 (K=10) 2.0053 -0.0053 0.0069 1.9484 0.0516 0.0090 

1.5 (K=11) 2.0057 -0.0057 0.0091 1.9559 0.0441 0.0091 

1.3 (K=16) 2.0067 -0.0067 0.0125 1.9271 0.0729 0.0138 

1.1 (K=18) 2.0083 -0.0083 0.0183 1.9590 0.0410 0.0120 

0.9 (K=22) 2.0134 -0.0134 0.0300 0.8350 0.0650 0.0069 

0.7 (K=24) 2.0278 -0.0278 0.0534 2.0230 -0.0230 0.0244 

0.5 (K=68) 2.0442 -0.0442 0.0951 2.1632 -0.1632 0.1112 

 

Table 6  Comparison of estimation procedures of σ  with respect to bias and MSE,  

2.0, 800nσ = = . 

 

It can be seen that for especially larger values of the indexα , the suggested 

interval 0.5 to 1.0 for t, leads to much better results with respect to bias and also 

MSE. For 1α < the Koutrouvellis (1980) procedure is stable and might be better 

to use.  
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It was found that the estimated variance of the slope using the usual regression 

estimator lead to totally incorrect estimated variances of the estimated parameters, 

showing that there is still much heteroscedasticity in the interval 0.5 to 1.0.   

Bootstrap estimates of the variance of the slope (α ) yielded much better estimates 

for a single sample. 

 

 

4  Conclusions 

 

The interval proposed outperforms those derived by Koutrouvellis (1980) with 

respect to bias. Refinements can be made to this work, with respect to the number 

of t’s used in the regression. This method is much simpler than those using an 

approximate covariance matrix. The simulation study shows that the method 

performs well with respect to bias and MSE over the whole range of parameters 

commonly encountered in practical problems. 

 

The ideal would be to not only lower the bias but also the MSE and research using 

principles of optimal experimental design applied further can maybe lead to such 

an estimation technique.  
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