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Abstract 

One of the main objectives of the Eskom Risk Laboratory in the Department of 

Mathematical Statistic and Actuarial Science at the University of the Free State is to 

model and predict the rainfall in Bloemfontein. It has been shown that the rainfall in 

Bloemfontein greatly influence the water that flows into the Gariep dam. The water 

that flows into the Gariep dam is used by ESKOM for power generation purposes 

and the modelling of water inflow into the dam is therefore also one of the main 

interests of the Risk Laboratory. The rainfall in Bloemfontein is again influenced 

greatly by the Southern Oscillation Index of October month. It has been shown that if 

the SOI of October is incorporated into a hierarchical model the rainfall can be 

predicted which means the inflow can be predicted. The problem however remains 

that the SOI is quite volatile and the variation of the SOI needs to be taken into 

account before one can model the SOI to incorporate it into a hierarchal model to 

predict rainfall. In this paper we focus primarily on a method to model the SOI 

volatility.    
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1 Introduction  

It was shown in the ESKOM progress report of the Eskom Risk Laboratory, 

Department of Mathematical Statistic and Actuarial Science, University of the Free 

State in 2010 (available on request) that the October Southern Oscillation Index 

(SOI) is an indicator of rainfall in Bloemfontein. The SOI is computed from 

fluctuations in the surface air pressure difference between Tahiti and Darwin, 

Australia, The correlation between the October SOI of the previous year for the 

period 1970 – 2010 and the total Bloemfontein rainfall of the following year for the 



period 1971-2011from January to March (the rain season) is 0.3078. Figure 1 shows 

the linear fit of the October SOI against the total January to March rainfall.   

 

Figure 1:  Scatter plot of the previous year’s October SOI against the total 

January to March rainfall, of the following year, for Bloemfontein  

In the ESKOM progress report of the Eskom Risk Laboratory, Department of 

Mathematical Statistic and Actuarial Science, University of the Free State in 2011 

(available on request) Verster and De Waal showed that a hierarchical model, given 

below, can be used to predict the total rainfall in Bloemfontein by incorporating the 

October SOI of the previous year  
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  denotes the total rainfall in Bloemfontein from January to March, 1971 to 2011, 

and   denotes the October SOI of the previous year, 1970 to 2010. The conditional 

density in Equation (1) given by  
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denotes the Generalized t density with                    /   and    denotes a 

Normal density,     ,  
  ). 

The posterior predictive density of the total Bloemfontein rainfall given an October 

SOI of, for example, 20 can be constructed as shown in Figure 2. The mean of the 

density is an estimate of the total Bloemfontein rainfall given an October SOI of 20. 

The estimated mean is this example was 429.31 mm. 

 

Figure 2:  Predicted total January to March rainfall posterior density given an 

October SOI of 20 

 

2 Predicting SOI variation 

It is evident from the introduction that the SOI plays an important role in the 

prediction of rainfall in Bloemfontein. It is therefore important to model the SOI 

appropriately so that it can be incorporated into a hierarchical model to predict 

rainfall. To be able to model the SOI accurately the volatility and variation of the SOI 

need to the taken into consideration. This paper focuses mainly on the modelling of 

the SOI volatility that needs to be taken into consideration before any predictions can 

be made on the SOI. The following figure, taken from the internet, gives an idea of 

the variation one can expect in the sea-surface temperature.  



 

 

Figure 3:  The variation of Sea-surface temperature for July 2010 

Consider the Southern Oscillation Index (SOI) for October to February, say       . 

We assume that   is distributed multivariate normal,       . A large SOI data set is 

available at http://www.bom.gov.au/climate/current/soihtm1.shtml . Figure 4 shows 

the histograms of the SOI for the five months from 1876 to 2009. From the 

histograms of the SOI values for each month, the assumption of normality seems 

acceptable. 
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Figure 4:  Histograms of the SOI values obtained from the SOI dataset for each             

of the five months 

We now consider modelling the volatility of the SOI through a Wishart distribution. 

The Wishart distribution arises as the distribution of the sample covariance matrix for 

a sample from a Multivariate Normal. The Wishart distribution is defined as follows:  

If the columns of X(p,n) is distributed independently multivariate Normal  , Σ), then 

the joint density of the 
 

 
       elements of the symmetric positive definite random 

matrix          is distributed Wishart with n degrees of freedom. The density 

function of                (    ) is 
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where        denotes the exponent of the trace of the matrix and       denotes the 

multivariate gamma function (Wishart, 1928 and Anderson, 1958).The mean of A is 

  . 

The data on the SOI for 1876-2009 is used to estimate  . Since it is a large dataset, 

135 years, we assume that the estimate is the true  . Since we know that        , 

an estimate of   is  ̂  
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Suppose we are interested in the distribution of the total variation over the 5 months, 

thus that of     if        years are considered where   is distributed Wishart     . 

From the diagonal elements of  , we notice that the variances differ for the various 

months. January especially shows much larger variation than the other months. The 

exact distribution of     is given by the following equation  
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Equation (4) is calculated according the MATLAB algorithm mhg.m written by Koev 

and Edelman. The calculation of Equation (4) can be difficult and time consuming 

since it consists of hyper geometric functions and zonal polynomials. Equation (4) 

can easily be simulated by simulating a number of Wishart matrices and in each 

case calculating the trace of the Wishart matrix. The following figure shows a 

simulation of Equation (4) by simulating 500 Wishart        matrices and calculating 

their traces. The mean of the simulated total variation is              and the true 

mean is              . 

 

Figure 5:  Histogram of the trace of 500 simulated Wishart        matrices. 

 

3 Predicting a future Wishart matric A 

In this section we discuss the prediction of future SOI volatility by predicting a future 

Wishart matric with a Bayesian approach. The Jeffreys prior on     is  (     

   
 
 
      (Geisser, 1993, p. 192). The posterior distribution of     is Wishart(      ) 

given        with density function 
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where     ∑   
 
   . The posterior predictive density of a future      is then 
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Let        
      

  
 . Equation (6) can then be written as a matrix Beta type II 

density given as follows: 
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with parameters 
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 (de Waal, 1969). 

 

3.1 Illustration 

We start by constructing        covariance matrices             from the 

October to February SOI over        years (1900 – 1999).  A future matric     is 

predicted by 
 

      
  as follows: 
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.  

From the two matrices one can see that the predicted February variation is much 

smaller than the true February variation.  

A future Wishart matrix can also be predicted through simulation.  Simulate a large 

number of                  . For each simulated     ,        
      

  
  is 

obtained. The     obtained are substituted into the density function of the MBET2 

[Eq. (7)]. 7000 of the     are then drawn from the MBET2 density and transformed to 

     as for example given below  
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The results of the total variance (tr(    )) and the average monthly variance 

(
        

 
) for the predicted future Wishart and the true future Wishart is given in the 

table below.  

Table 1 Total variance and average monthly variance for the predicted future 

Wishart and the true future Wishart 

  ̂  

 
  

       
  

Predicted through 

Simulation 

Observed (True) 

Total variance 

(tr(   )) 

5149.4 5452.6 5822 

Average monthly 

variance (
       

 
) 

1029.9 1090.5 1164.4 

 

Once again the predicted variation is smaller than the true variation. To understand 

this outcome we look at the moving total variation average. The moving total 

variation average,        , for October to February for the years 1902 – 2011 is 

shown in Figure 6. From Figure 6 one can see that the variation has drastically 

increased over the last 40 years.  This pattern is not clear from Figure 7 that shows 

the moving average on the SOI values for the 5 months separately during the same 

period. 

 



  

Figure 6:  The moving total variation average,        , for October to February 

for the years 1902 – 2011 

 

Figure 7:  The moving average on the SOI values for the 5 months separately for 

October to February for the years 1902 – 2011 

 

4 Conclusion 

As mentioned in the introduction the SOI is a valid indicator of rainfall in 

Bloemfontein. The SOI can be incorporated into a hierarchical model that can be 

used to predict future rainfall. It is therefore important to model the SOI appropriately 



before rainfall can be predicted effectively. The SOI is predictable but the variation 

(volatility) of the SOI should be taken into consideration when modelling SOI. We 

have shown in this study that the volatility of the SOI can be modelled through the 

Wishart distribution.  
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