Estimation for Binomial Proportions from Pooled Samples
Using an Objective Prior

Lizanne Raubenheimer *
Department of Statistics, Rhodes University, Grahamstown, South Africa,
L.Raubenheimer@ru.ac.za

Abrie J. van der Merwe
Department of Mathematical Statistics and Actuarial Science, University of the Free State,
Bloemfontein, South Africa

Abstract

Group testing has been used in many fields of study, as individual testing can be too time
consuming and pooled testing is more cost-effective. Group testing is where units are pooled
together and tested as a group rather than individually. In this paper we will look into con-
fidence intervals for linear functions of binomial proportions from pooled samples. We will
investigate the performance of Bayesian confidence (credibility) intervals for a single propor-
tion as well as the difference of two binomial proportions estimated from pooled samples. An
objective (non-informative) prior, the Jeffreys prior, will be used. Results from the Bayesian
method will be compared to results from some known classical methods. These intervals will
be compared with each other in terms of coverage, left non-coverage, right non-coverage, sym-
metry and interval length.
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1 Introduction

In this paper we will look into confidence intervals for linear functions of binomial rates from
pooled samples. We will investigate the performance of Bayesian credibility intervals for a
single proportion as well as the difference of two binomial proportions estimated from pooled
samples. Group testing has been used in many fields of study, as individual testing can be too
time consuming and pooled testing is more cost-effective. Group testing is where units are
pooled together and tested as a group rather than individually. Biggerstaff (2008) used asymp-
totic methods to derive Wald, profile score and profile likelihood ratio intervals. Biggerstaff
(2008) also adapted the Wilson score-based interval of Newcombe. Tu et al. (1995) investi-
gated the maximum likelihood estimator for equal pool sizes. Hepworth (1996) considered the
sequential testing of groups of different sizes, by constructing exact confidence intervals for
problems involving unequal sized groups. Hepworth (2005) also considered asymptotic inter-
val estimation methods where groups are of different sizes. Hepworth (2005) investigated four
methods, two based on the distribution of the maximum likelihood estimate (MLE), one on
the score statistic and one on the likelihood ratio. Hepworth (2005) recommended the method
based on the score statistic with a correction for skewness. In Section 2 the Bayesian method
will be discussed, two simulation studies will be considered in Section 3. An application will
be discussed in Section 4 and the conclusion will be given in Section 5. For the simulation stud-
ies and the application, the results from the Bayesian method will be compared to the results
obtained by Biggerstaff (2008).



2 Prior Distribution for Binomial Proportions from Pooled
Samples

Assume that the proportion of successes in a given population is p. We will refer to an infected
individual as a success in a binomial trial. Using the notation from Biggerstaff (2008), let N
individuals be sampled independently from the population, and then be grouped into pools.
The size of a pool will be indicated by m;, fori =1,2,...,M, where M is the number of distinct
pool sizes, let n; be the number of pools of size m;, and let X; be the number of the n; pools
that is positive. Assume that X1,X>,...,Xys are independent binomial random variables with
X; ~ Bin(n;,1 — (1 —p)™).
The likelihood function is given by
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The Fisher information was derived by Walter et al. (1980), and is given by
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The Jeffreys prior is proportional to the square root of the determinant of the Fisher infor-
mation and is given by
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The posterior distribution is then given by
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IfM=1,m; =m,n =nand x| = x, it follows from Equation 1 that
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The posterior distribution when using the Jeffreys prior is given by
n(pldata) o [(1—p)™)"F2 7w [1 — (1 p)"]* 3 for0<p<l1. (4



Theorem 1. When 6 = (1— p)", the posterior distribution of 6 will be Beta (x+ 5,n—x+3),
Le.
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Proof. From Equation 4, the posterior distribution is given as
m(pldata) s [(1=p)"]" = (1= p)"] for0<p<1.

Let 6 = (1—p)™, then p=1— 0, and
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Transforming Equation 6, the posterior distribution for p =1 — @n can be determined,
do
here |— | =m (1 —p)" .
where i m(1—p)
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3 Simulation Studies

3.1 Simulation Study I - Single Proportion

In this section we will consider a simulation study for proportions from pooled samples. A
single proportion will be considered where M =1, M =2, M = 3 and M = 4. We will look
at coverage, left noncoverage, right noncoverage, symmetry and interval length. Biggerstaff
(2008) defines noncoverage symmetry as the difference in proportional noncoverage, i.e.

P [Left noncoverage| — P [Right noncoverage]

Symmetry =
Y Y P[Left noncoverage| 4 P[Right noncoverage]
with a negative value indicating mostly right noncoverage and a positive value indicating mostly
left noncoverage. A value of zero for symmetry indicates symmetric noncoverage.
We considered the different pool size combinations which was used by Biggerstaff (2008),
given in Table 1.



Table 1: Different pool combinations used for the simulation studies in the case of a single proportion.

Pool size, m | Number of pools, n

M=1 5 200
M=1 50 20

5 100
M=2 10 50

10 20
M=3 25 8

50 12

5 20

10 40
M=4 25 12

50 4

N =1000
p=1{0.001,0.0015,0.002,0.005,0.01}

Table 2 gives the results from Biggerstaff (2008) and the results obtained by us using the
Bayesian method. The first five intervals in Table 2 are from Biggerstaff (2008). The results in
Table 2 are averages taken over the different values for p and the different pool size combina-
tions as given in Table 1.

Table 2: Overall averages of coverage rates, noncoverages, symmetry and average lengths. Nominal
coverage is 95%.

Interval Coverage Left Right Symmetry | Length

noncoverage | noncoverage x1 000
MIR 0.8070 0.0010 0.1920 -0.99 6.0000
Wald 0.8140 0.0027 0.1830 -0.97 6.5000
Likelihood ratio (LRT) 0.9660 0.0188 0.0150 0.11 7.6000
Profile score 0.9480 0.0476 0.0040 0.84 8.0000
Skewness corrected score 0.9660 0.0205 0.0136 0.20 7.8000
Bayesian 0.9584 0.0158 0.0258 0.34 7.0659

From Table 2 we see that the coverage rates obtained by the MIR and Wald intervals are
far below the nominal level of 0.95, this was also stated by Biggerstaff (2008). The other four
intervals give coverages close to the nominal level, with the profile score and the Bayesian
intervals performing slightly better. The results obtained from the Bayesian method by us
compare well with the results obtained from the other researcher.

3.2 Simulation Study II - Two Proportions

In this section we will consider a simulation study for proportions from pooled samples for the
difference between two proportions. Biggerstaff (2008) considered the different combinations
given in Tables 1 and 3, and listed the average of the coverage, left noncoverage, right non-
coverage, noncoverage symmetry and mean length over all the different parameter values. For
the Bayesian method we only considered the two cases, M| =M, =1 and M| = M, =2, and
averaged over these values. Left noncoverage is interpretable as distal noncoverage probability
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and right noncoverage is interpretable as mesial noncoverage. It is desirable that these should
be equal.

Table 3: Different pool combinations used for the simulation studies in the case of a single proportion.

Pool size, m | Number of pools, n
M—=1 10 100
10 50
25 20
M=2 25 20
50 10
5 100
10 40
25 4
M =3 10 50 20
25 12 20
50 4 6
5 10] 10 10
10 20 | 10 10
M =4 25 14 | 22 10
50 8| 6 12
N =1000
p ={0.001,0.0015,0.002,0.005,0.01}

Steps used for the simulation study for the difference between two proportions: M| =M, =1
We use simulation to determine the properties of the posterior distribution of the difference
according to the following steps, for given values of p; and p», and for all possible values of x;
and xp:

e Step 1
Calculate the probabilities of outcomes x; and x, using the binomial distribution, and
thus P(x1 ,XQ) = P(xl)P(xz).

e Step 2
Simulate a sample of 100 000 from each of the two marginal posteriors of p; and p»,
using the beta distribution, using Equation 7.

e Step 3

Now construct a sample of 100 000 differences, p; — p2, and sort them.

e Step 4
Stepwise search the sorted sample for the shortest interval containing 95% of the obser-
vations, and record the interval, length and mean of the sample.

e Step 5

This is now available for every combination of x; and x;, as well as the probability. So
for the given values of p; and p», find all the intervals that cover the true value of p; — p»
and sum all the corresponding probabilities. This will give the coverage probability. In
the same way we find the distal and mesial probabilities and the average length.
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Steps used for the simulation study for the difference between two proportions: M; = M, =

2

The problem here is more complex and there are simply too many combinations of out-
comes when M is larger than one. Also we cannot use the beta distribution to simulate from
the marginal posteriors of the values of p.

We use the following steps:

Step 1

For a specific data set, say x = [x]] X2 X21 X22], we know the form of the marginal pos-
teriors of p; and p;, as given in Equation 8, so we discretise them by calculating their
values at small intervals (0.0001) and then normalise them. Where Equation 8 is given
for when M = 2, where m| =5, mp = 10, n; = 100 and ny = 50, that is 100 pools of size
5 and 50 pools of size 10.
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Step 2

Now we have a probability for every discrete outcome of p; and p,. Forming all possible
combinations of p; and p, and their associated probabilities by using a grid, we have a
distribution for p; — p; for the given x.

Step 3

After sorting, we can now search for the shortest 95% interval for p; — p> , using the
associated probabilities and also calculate the mean.

Step 4

Steps 1 to 3 should be done for all possible values of x. The probability of x is the product
of the individual binomial probabilities for given p; and p, .

Step 5§

For the given p; and p;,, we find all the values of x which yielded an interval that cov-
ers the true value of p; — p», and sum their probabilities. This will give the coverage
probability. In the same way we find the distal and mesial probabilities and the average
length.

Table 4 gives the results from Biggerstaff (2008) and the results obtained by us using the
Bayesian method. The first seven intervals in Table 4 are from Biggerstaff (2008).



Table 4: Overall averages of coverage rates, noncoverages, symmetry and average lengths for p; — p».

Nominal coverage is 95%.

Interval Coverage Left Right Symmetry | Length

noncoverage | noncoverage x1 000
MIR 0.9320 0.0580 0.0097 0.7100 9.8000
Wald 0.9340 0.0518 0.0139 0.5800 10.6000
Square-and-add Walter 0.9730 0.0126 0.0149 -0.0800 12.9000
Likelihood ratio (LRT) 0.9370 0.0269 0.0358 -0.1400 11.7000
Profile score 0.9630 0.0126 0.0245 -0.3200 15.4000
Skewness corrected score 0.9640 0.0146 0.0217 -0.1900 15.1000
Bias Skewness corrected score | 0.9640 0.0146 0.0217 -0.1900 15.1000
Bayesian 0.9663 0.0247 0.0090 0.4653 12.2760

The coverage rate for the Bayesian method is above the nominal level of 0.95, this is the
case for all the other intervals except for the MIR, Wald and likelihood ratio intervals. When
looking at the intervals with coverage rates above the nominal level, it can be seen that the
Bayesian interval gives the shortest interval.

4 Example - West Nile Virus

Biggerstaft (2008) considered an example where a comparison is made between West Nile
virus (WNYV) infection prevalences in field collected Culex nigripalpus mosquitoes trapped at
different heights. Biggerstaff (2008) derived asymptotic confidence intervals for the differ-
ence between two proportions estimated from pooled samples, where the sizes of the pools are
not equal. Biggerstaff (2008) considered seven confidence intervals: an interval based on the
minimum infection rate (MIR), the Wald interval, the profile score interval, the skewness cor-
rected score interval, the bias- and skewness-corrected score interval, square-and-add Walter
(SAW) interval and the profile likelihood interval. Table 5 summarises the data from Bigger-
staff (2008).

Table 5: Summary of Culex nigripalpus mosquitoes trapped at different heights of 6m and 1.5m.

Sample 1 Sample 2

height = 6m | height = 1.5m
Total 2021 1324
Number of pools 53 31
Average pool size 38.1321 42.7097
Minimum pool size 1 5
Maximum pool size 50 100
Number of positive pools 7 1

We used the Jeffreys prior to construct a 95% Bayesian (HPD) interval for each sample.
The results are shown in Table 6. Figure 1 shows a plot of the posterior distribution, using the
posterior distribution defined in Equation 7, for the two samples.



Table 6: 95% intervals and interval lengths for the proportions (per 1 000) of the two samples.

95% HPD Interval | Length | 95% Confidence Interval | Length
(Biggerstaff, 2008)
Sample 1 (1.444,6.959) 5.515 (1.653,7.408) 5.755
height = 6m
Sample 2 (0.019,3.002) 2.983 (0.044,3.670) 3.626
height = 1.5m

From Table 6 the Bayesian intervals are shorter than those obtained by Biggerstaff (2008).
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Figure 1: Posterior distribution of p.

For the mosquito data we draw random samples of 100 000 from each of the two posteri-
ors mentioned above and calculate the difference between the two proportions. We used the
Jeffreys prior to construct a 95% Bayesian (HPD) interval for the difference between the two
proportions. The results are shown in Table 7, the results for the first seven intervals are from
Biggerstaft (2008). In Table 7 we see that zero is just included in the 95% Bayesian (HPD)
Interval.

Table 7: 95% intervals and interval lengths for the difference between the two proportions (per 1 000).

95% Interval | Length
0.250, 5.667 5.920
0.165,6.182) | 6.347
0.746, 6.935 7.681

MIR
Wald
Profile score

(= )

(= )

(= )
Skewness corrected score (—0.572,6.824) | 7.396
Bias- and skewness-corrected score | (—0.570, 6.825) | 7.395
Profile likelihood (—0.355,6.729) | 7.084
Square-and-add Walter (—0.861,6.852) | 7.713
Bayesian (—0.403,6.528) | 6.931




The Bayesian interval compares relatively well with the others, all the intervals include 0.
The MIR, Wald and Bayesian intervals give shorter interval lengths than the other intervals. The
MIR and Wald intervals are known for giving poor coverage. So if we compare the Bayesian
interval to the other five intervals, the Bayesian interval is the shortest one.

5 Conclusion

In this paper we compared the proposed Bayesian method to results obtained by Biggerstaff
(2008). The Jeffreys prior was used for the Bayesian method. Simulation studies were consid-
ered as well as an example. The Bayesian method compared well with the other results, and
gave much better results that the Wald and minimum infection rate intervals. The Wald and the
minimum infection rate intervals performed the poorest.
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