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Abstract 

It is common practice in Extreme Value Theory to model observations, above a sufficiently 

large threshold, with a Peaks-Over-Threshold distribution, such as the Generalized Pareto 

distribution. The question remains: where should one choose the optimum threshold? 

Various literature discusses the problem of threshold selection, and the best method is still 

to be found. In this paper we consider choosing an optimum threshold using the Kullback-

Leibler deviance measure. The deviance between a Peaks-Over-Threshold distribution and 

its posterior predictive distribution is obtained at various threshold levels. We consider the 

optimum threshold as that threshold value where the Kullback-Leibler deviance measure is 

the closest to zero. Thus, the optimum threshold is chosen where the POT distribution, 

fitted to the observations above the threshold, and its posterior predictive distribution is the 

closest to one another. 

Keywords: Threshold, Kullback-Liebler, Extreme Value Theory, Peaks-Over-Threshold, 

Generalized Pareto distribution. 

Introduction 

In Extreme Value Theory (EVT) the exceedences above a high threshold is modelled through 

a Peaks-Over-Threshold (POT) distribution such as the Generalized Pareto distribution 

(GPD). The choice of optimum threshold remains debatable and much research has been on 

how to choose the best possible threshold for a given dataset.  A threshold is often chosen 

on a visual basis such as by means of the Pareto quantile plot (as discussed later in Sections 

1 and 2) and the Mean Residual Life plot. See for example, Beirlant et al. (2004), Coles 

(2001) and Smith (1985). Other literature on threshold selection include work done by 

Dupluis (1998), Guillou and Hall (2001), Thompson et al. (2009), Trancredi et al. (2006) and 

Verster and De Waal (2011) to name a few. 

In the present paper we introduce a new method for selecting the optimum threshold by 

considering the Kullback-Leibler (KL) deviance measure. The KL deviance measure (Kullback 

and Leibler, 1951) is a well-known measure from considering the deviance between models. 

In this paper we consider fitting a POT distribution to the observations above a selection of 

thresholds and the KL is used to select the best threshold. A Bayesian approach is 

considered and the KL deviance measure between the POT distribution and its posterior 
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predictive distribution is calculated for different thresholds. The threshold that results in the 

smallest (closest to zero) KL value is considered as the optimum threshold. 

Assume that the correct threshold is given by   and that the observations above   follow a 

known POT distribution with unknown parameter values. The KL deviance measure between 

the POT distribution and its posterior predictive distribution should be very close (in fact 

equal) to zero. If the threshold is incorrectly chosen at some value less than   it means that 

the POT distribution will be fitted to some observations that should not follow a POT 

distribution, thus the estimation of the parameters of the POT distribution will be incorrect 

and the KL between the POT distribution and its posterior predictive distribution will deviate 

more resulting in some value other than zero. If the threshold is incorrectly chosen at some 

value larger than  , the number of observations on which the POT distribution is fitted 

becomes smaller which leads to vague posteriors of the parameters and unstable estimates 

of the parameters. The KL between the POT distribution and its posterior predictive 

distribution will again deviate more from zero. Thus, we are searching for a threshold value 

with a KL close to zero. 

In Section 1 the Bounded Pareto is chosen as the POT distribution. The KL deviance measure 

between the bounded Pareto distribution and its posterior predictive distribution can be 

derived explicitly as shown in Section 1. In Section 2 we consider the more general case 

where the GPD is chosen as the POT distribution. Again the KL deviance measure between 

the GPD and its posterior predictive distribution is calculated. No explicit formula for the KL 

measure is available in the GPD case and it is therefore investigated through various 

simulation examples of well-known Pareto type distributions such as the t and the F 

distributions (where the extreme value index is known). 

In Section 3 a truncated Normal dataset where the tail is replaced with GPD values is 

investigated. The KL deviance measure method is applied to see whether the method 

correctly identifies the threshold. In Section 4 we continue to investigate the 

appropriateness of choosing the optimum threshold with the KL deviance measure in an 

extended simulation study where the threshold is known in advance (similar to the article by 

Thompson et al., 2009). We compare results with those of Thompson et al. (2009) and show 

that our method gives more reliable results than those obtained in previous papers. 

 

1 KL measure in the bounded Pareto case 

The density function of the bounded Pareto is given as follows: 
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where   
 

 
 (   ) describes the relative excesses over the threshold ( ). The posterior 

predictive density of a future  ̃      ( ) given a dataset   (                ) ordered 

under a Jeffreys prior,  ( )  
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(Beirlant et al., 2004). Equation 2 is the density function of the GPD with shape parameter 
 

 
 

and scale parameter  (   )      ∑    (        ) 
        (        ). The scale parameter 

is called the Hill estimate of  . The number of exceedences above the threshold   is given by 

  (Beirlant et al., 2004). 

At the optimum threshold level one would expect that the posterior predictive density of 

the bounded Pareto and the true bounded Pareto density, fitted above  , to be close to 

each other. Thus, the KL measure of deviance between the two densities should be close to 

zero. The KL deviance measure is defined as follows: 

         
 ( )

 (   ) 
         (3) 

where  ( ) is the density function and  (   ) is the posterior predictive density given the 

data.  It is known that the posterior predictive density of the log of the variable is GPD. One 

would expect that the KL measure between the density of the log of the variable and the 

posterior predictive density of the log of the variable should also be close to zero. Thus, we 

need to derive the KL measure of deviance between  ( ̃) and  ( ̃  )  defined as 
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For different values of   (the number of exceedences above the threshold) the KL measure 

closest to zero can be obtained. This is done numerically, as shown in the next example.  

1.1 Example 1  

It is known that the absolute t distribution is a heavy tailed distribution that belongs to the 

Fréchet-Pareto class of Extreme Value distributions with an extreme value index (EVI) of 
 

 
, 

where   is the degrees of freedom (Beirlant et al., 2004).  We simulate         |       

values and we assume that the observations above the threshold,  , follow a bounded 

Pareto distribution. Our aim is to estimate the optimum threshold by calculating the KL-
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measure (according to Equation 5) between the bounded Pareto densities and their 

predictive densities for different   (               ) and different threshold values 

(       ).  Each simulation is repeated 1000 times and the mean of the KL values for the 

different     against the different thresholds are shown in Figure 1. The KL measure that is 

the closest to zero (KL = 0) is obtained for        and      . 

A summary of the results are given in Table 1. Column 2 gives the KL values that are the 

closest to zero for the given values of   and Column 3 gives the number of observations 

above the threshold that corresponds to the KL measure in Column 2. Our conclusion is 

therefore that the optimum threshold should be chosen at the 24th largest observation. This 

result can now be compared with the threshold that would have been chosen if a visual 

approach was taken such as the method of the Pareto quantile plot. 

The Pareto quantile plot is defined as the scatter plot of the following points: 

(    
 

   
          )           . The Pareto quantile plot for a simulation of 500 

|       values are shown in Figure 2. An optimum threshold is considered as the observation 

on the y-axis where the plot starts to follow a linear pattern. We can estimate the threshold 

by looking at the leftmost point of the linear pattern. A straight line is drawn through the 

top 24 observations, as shown in Figure 2, and it seems visually appropriate to choose the 

threshold at the 24th observation.  

Since we know that the true EVI ( ) is 0.25 (   ) it seems as if the fit of the bounded Pareto 

overestimates the extreme value index in the case of the      | data. The GPD, which is a 

more general POT distribution, might be a better fit to consider. This is discussed in the next 

section.  

Table 1  Summary of simulation results 

  KL measure k 

    0.2500     0.2024      6 

    0.2600     0.1632      6 

    0.2700     0.1254      6 

    0.2800     0.0891      6 

    0.2900     0.0540      6 

    0.3000     0.0201      6 

    0.3100     0.0004     16 

    0.3200     0.0000     24 
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    0.3300     0.0014     32 

    0.3400     0.0008     39 

    0.3500     0.0005     48 

 

Figure 1 Mean KL values for different values of   and  .      

 

Figure 2 The Pareto quantile plot to choose the optimum threshold.       
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2 KL measure in the GPD case 

In this section we assume that the observations above a threshold are modelled through a 

GPD. A GPD is one of the most popular and well-known POT distributions in Extreme Value 

Theory. See for example Coles (2001). The distribution function of the GPD is given as 

follows: 

 ( )    (  
  

 
)
    

        (6) 

where       (   ) describes the excesses over the threshold,  , and   
  

 
  . The 

distribution function (6) can also be written in terms of two parameters as follows: 

 ( )    (  
  

  
)
    

        (7) 

where       (Ledford and Tawn, 1996). If the threshold is considered as fixed we only 

have one unknown parameter,  . This distribution (Equation 7) is more convenient to work 

with (since it has less parameters) and we consider this distribution throughout the paper.  

The posterior predictive density of a future observation  , given the 

data   (                ), is as follows: 

 (   )         (   )                                                (8) 

Equation 8 cannot be solved explicitly, as in the bounded Pareto case, but the posterior 

predictive density can be simulated by taking the mean of the densities at      for a large 

number of   values that are simulated from the posterior distribution of the GPD (Equation 

10) and plugged into the density function.  Equation 8 thus simplifies to   
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                                                      (9) 

where m is a large number of simulated   values. 

The posterior distribution of the GPD is given as follows  

 (   )       (   ) ( )    (
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where   ( )    
 

  
     is the maximal data information (MDI) prior of the GPD (Beirlant et 

al. 2004).  

The KL measure of deviance between the GPD density and the posterior predictive density 

of the GPD is given as 

      ̂    
 ( )

 ̂(   ) 
     ( ̂ )   ̂         ( ̂(   )) .              (11) 
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2.1 Example 2  

A similar dataset as in the bounded Pareto case is simulated from the absolute t distribution 

with     and      . The Pareto quantile plot is shown in Figure 3.  A straight line is 

drawn through the last observations on the plot and indicates that a threshold will more or 

less be chosen at    (   )         with     . 

We now consider choosing the threshold with the KL measure (Equation 11) for different 

values of    (       ) where   indicates the number of observations above  . For each 

  value the observations above the threshold are assumed to be GPD distributed and 1 000 

  values are simulated from the GPD posterior distribution (Equation 10). These 1 000 

simulated parameter values are plugged into Equation 9 to estimate the posterior predictive 

density. The KL measure (Equation 11) is then calculated where  ̂ is taken as the mean of 

the 1 000 simulated    . 

Figure 4 shown the KL measures at different   values for one simulated |       dataset. For 

this simulation the KL measure closest to zero (KL = -0.0882) is obtained at      (which is 

in line with the threshold chosen with the Pareto quantile plot). At     , the parameter is 

estimated as:  ̂        . The estimate of   is very close to the true EVI of 0.25. 

Figure 5 shows the histogram of the 1 000     at the threshold,     . Figure 6 shows the 

estimated  ̂   (at the different values of   (1:200)) plotted against the different   values. 

From the figure one can see that an estimate of   in the area of 0.25 will be obtained more 

or less at a k value between 5 and 100. For a k value outside this interval   will be estimated 

incorrectly as some other value significantly larger than 0.25. Thus, if the threshold is 

selected incorrectly it negatively influences the estimation of the gamma parameter.  
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Figure 3 The Pareto quantile plot to choose the optimum threshold visually.     

 

Figure 4 KL values plotted against different   values. 
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Figure 5 The 1 000 simulated   values. 

 

Figure 6   values plotted against different  ̂ values. 
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The simulation process is now repeated 1 000 times for the same dataset that was 

simulated at the beginning of Example 2. Each time the   estimates are re-simulated and 

the optimum threshold is obtained through the KL measure. The outcomes are given in  

Table 2. The first column gives the mean of the 1 000 optimum     that were selected 

together with the 95% confidence interval in Column 2. Columns 3 and 4 give the mean 

estimate of the 1 000  ̂   together with the 95% confidence interval. The histograms of the 

1 000 simulated     and  ̂   are shown in Figure 7. 

Table 2  Summary of simulation results 

         for    ̂        for  ̂ 

37.7340 [36; 39] 0.2869 [0.2793; 0.2908] 

 

 

Figure 7 The histograms of the 1 000 simulated  ̂   and      

Next we simulate 1 000 different |       datasets each with       and we estimate the 

optimum threshold level through the KL measure. The results are shown in Table 3 and the 

histograms of the 1 000 simulated     and  ̂   are shown in Figure 8. 
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Figure 8 The histograms of the 1 000 simulated     and  ̂   

Table 3  Summary of simulation results 

         for    ̂        for  ̂ 

31.5750         0.3422                 

 

The degrees of freedom is now changed to    ,  1 000 different |       datasets each with 

      were simulated and we estimated the optimum threshold level through the KL 

measure. The true EVI is 0.5. The results are shown in Table 4 and the histograms of the 

1 000 simulated     and  ̂   are shown in Figure 9. 

 

 

Figure 9 The histograms of the 1 000 simulated     and  ̂   

Table 4  Summary of simulation results 

         for    ̂        for  ̂ 

25.1810         0.4369                 

 

From these simulation examples the KL deviance measure between the GPD and the 

posterior predicted distribution (fitted to observations above the threshold of the absolute t 

distribution) seems to be working well in choosing the optimum threshold. The  ̂ estimate 

at the optimum chosen threshold does not seem to be too far off from the true EVI.  
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Extreme Value distributions with an extreme value index (EVI) of 
 

  
 (Beirlant et al., 2004).  

We again consider choosing the threshold with the KL measure for different values of    

(       ). A similar simulation study is conducted as in the case of the absolute t 

distribution. 

Figure 11 shows the KL measures at different k values for one simulated       dataset. For 

this simulation the KL measure closest to zero (KL = 0) is obtained at      (which is in line 

with the threshold chosen with the Pareto quantile plot in Figure 10, where the threshold is 

chosen roughly at     (   )). At     , the parameter is estimated as  ̂         . The 

estimate of   is very close to the true EVI of 0.5 which is an indication that our threshold is 

chosen accurately. Figure 12 shows the histograms of the 1 000     simulated at the 

threshold     .  

 

Figure 10 The Pareto quantile plot to choose the optimum threshold visually.     
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Figure 11 KL values plotted against different   values. 

  

Figure 12 The 1 000 simulated   values. 
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Next we simulate 1 000 different      datasets each with       and we estimate the 

optimum threshold level through the KL measure. The results are shown in Table 5 and the 

histograms of the 1 000 simulated     and  ̂   are shown in Figure 13. 

Table 5  Summary of simulation results 

         for    ̂        for  ̂ 

29.3060         0.5952                 

 

 

Figure 13 The histograms of the 1 000 simulated     and  ̂   

The degrees of freedom is now changed to      and     ,  1 000 different      datasets 

each with       were simulated and we estimate the optimum threshold level through 

the KL measure. The true EVI is 0.4. The results are shown in Table 6 and the histograms of 

the 1 000 simulated     and  ̂   are shown in Figure 14. 

Table 5  Summary of simulation results 

         for    ̂        for  ̂ 

28.9670         0.5240                 
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Figure 14 The histograms of the 1 000 simulated     and  ̂   

Again the KL deviance measure between the GPD and the posterior predicted distribution 

(fitted to observations above the threshold of the F distribution) seems to be working well in 

choosing the optimum threshold. The  ̂ estimate at the optimum chosen threshold does not 

seem to be too far off from the true EVI.  

3 KL measure in a truncated case (the threshold is known) 

In the previous simulation examples an optimum threshold was chosen and although we are 

confident that the threshold was chosen appropriately with the KL deviance measure we 

have no proof that the optimum threshold is indeed the true threshold. In the next example 

we create the scenario where a data set from a Normal distribution is simulated. The tail of 

the distribution is then replaced with observations simulated from a GPD distribution. Since 

the Normal distribution is not heavy tailed but the GPD is, the threshold is the point above 

which the Normal data is replaced with the GPD.  In the next simulation example we 

investigate whether the KL deviance measure chooses the threshold correctly.   

3.1 Example 4 

A standard Normal dataset of 500 observations is simulated and the largest 40 observations 

are replaced with simulated GPD observations with        and   the largest standard 

Normal observation (from the 460 that are left after truncation) + 0.1. 

Figure 15 shows the KL measures at different values of k (  = 3:100) for one simulation. The 

KL measure closest to zero is obtained at     , which is close to the true threshold of 

    . At      the parameter was estimated as   ̂        , which is also close to the 

true EVI of 0.25. 

The simulation is repeated 1000 times, each time a new standard Normal dataset was 

simulated and the optimum threshold was chosen through the KL measure. The results are 

shown in Table 6 and the histograms of the 1000 simulated     and     are shown in Figure 

16.    

Table 6  Summary of simulation results 

         for    ̂        for  ̂ 

34.2190         0.2692                 
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Figure 16 The histograms of the 1 000 simulated     and  ̂   

From the simulation example above the threshold was chosen fairly accurately with the KL 

measure the true threshold and EVI are both included in the 95% confidence interval.  

 

4 A comparative simulation study between the KL measure and a method used by 

Thompson et al. 2009 

In this section we repeat the automated threshold selection experiment described in 

Thompson et al. (2009) and perform our own automated selection procedure in tandem on 

every simulated data set. Thus, we obtain both a formal evaluation of the effectiveness of 

our approach and a direct comparison to the existing method. 

In their experiment the samples are generated as follows: Simulate a large number of values 
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above       with values from a GPD with parameters              and      . In 
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median and the 98th percentile. For each threshold they estimate the parameters using the 

method of maximum likelihood and apply transformations to the sets of parameters to 

arrive at a set of numbers that should be Normally distributed. They apply tests for 

Normality over the range of thresholds and base their threshold choice on the p-values 

generated by the test. 

For our algorithm we consider only the last 50 of these candidate thresholds. For each 

threshold we simulate 2 000 sets of parameters based on the observations exceeding the 

threshold only. For each set of parameters we obtain a value from the predictive posterior. 

We then combine the parameter and predictive posterior simulations to obtain a value for 

the KL deviance measure. Finally, we select the threshold that produced the minimum 

absolute KL value. 
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In total we considered 10 000 samples (of size 2 000 each) and applied both algorithms to 

each sample. For our algorithm we considered both the standard GPD where   is free to 

vary, and the simplified GPD (    ). 

We calculated the root mean square error (RMSE) and mean error (ME) as measures of 

accuracy and bias respectively. The error is calculated as the difference between the chosen 

threshold and the true threshold (known from construction) in terms of number of 

exceedences above the threshold. The results are given in Table 7 below. 

Table 7  Summary of experiment results (10 000 samples) 

Measure Method of Thompson et al. KL of 3 parameter GPD KL of 2 parameter GPD 

RMSE 269.6 141.6 40.8 

ME 173.5 -139.5 30.0 

 

It is clear from the observed results, viewed either per sample or in summary (as above) that 

the KL measure performs very well in terms of its ability to isolate the correct threshold 

value. 

 

5 Conclusion 

Often in Extreme Value Theory observations above a sufficiently large threshold are 

modelled with a Peaks-Over-Threshold distribution, such as the Generalized Pareto 

distribution. The choice of optimum threshold and the method used to obtain the optimum 

threshold has been the topic of discussion, with a lot of debate around it.   

In this paper the emphasis falls on choosing an optimum threshold by using the Kullback-

Leibler deviance measure between the GPD and its posterior predictive distribution, fitted 

to observations above a threshold. The threshold that results in a KL measure closest to zero 

is considered the optimum threshold. We have shown through various simulation examples 

and simulation studies that the KL deviance measure can successfully be used in a Bayesian 

context to select an optimum threshold. When compared with the method of Thompson et 

al., 2009 our method gave more reliable results.   
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