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Abstract

In this paper we apply Bayes factors to grouped data. Group testing is where units

are pooled together and tested as a group rather than individually. The Bayes factor is the

ratio of the posterior probabilities of the null and the alternative hypotheses divided by the

ratio of the prior probabilities for the null and the alternative hypotheses. A beta prior will

be used, also known as a conjugate prior for the binomial distribution. An application to

mosquito data will be considered, where a comparison is made between West Nile virus

(WNV) infection prevalences in field collected Culex nigripalpus mosquitoes trapped at

different heights.
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1 Introduction

In Bayesian terminology we are not testing, but doing model comparison. Jeffreys (1961) intro-

duced and developed the Bayesian approach to hypothesis testing. See Kass & Raftery (1995)

and Robert et al. (2009) for a detailed discussion and explanation of Bayes factors, where they

emphasize different points on Bayes factors. In this paper we will focus on Bayes factors for

grouped data, where model comparison will be made for two proportions from grouped data.

Group testing is where units are pooled together and tested as a group rather than individu-

ally. Group testing is also known as pooled testing, where pooled testing was introduced by

Dorfman (1943). Dorfman (1943) used group testing for medical screening purposes to iden-

tify infected individuals. Bayes factors will be applied to an example by Biggerstaff (2008),

where a comparison was made between West Nile virus (WNV) infection prevalences in field

collected Culex nigripalpus mosquitoes trapped at different heights.
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Not much has been done in literature from a Bayesian point of view on group testing.

Hanson et al. (2006) used a two-stage sampling procedure and developed a Bayesian method

that allows for sampling multiple sites in a specific region. Gastwirth & Johnson (1994) used

independent beta priors. Chick (1996) used the beta(α,β ) prior for obtaining posterior distri-

butions of the unknown proportion p. The methods were applied to grouped test data for gene

transfer experiments and limiting dilution assay data for immunocompetency studies.

Notation, the likelihood function and some theoretical aspects will be considered in Section

2. Bayes factors will be discussed and shown in Section 3, simulation studies will be considered

in Section 4 and the application will be considered in Section 5. The discussion and conclusion

will be given in Section 6.

2 Notation and Likelihood Function for Binomial Propor-

tions from Pooled Samples

Assume that the proportion of successes in a given population is p. We will refer to an infected

individual as a success in a binomial trial.

The following notation will be used in this paper:

N - number of individuals to be sampled independently from the population

mi - the size of a pool where i = 1,2, . . . ,M

M - the number of distinct pool sizes

ni - the number of pools of size mi

X i - the number of the ni pools that is positive.

In the case of grouped data assume that X1,X2, . . . ,XM are independent binomial random

variables with parameters ni and 1− (1− p)mi , i.e. X i ∼ Bin(ni,1− (1− p)mi) .

The likelihood function is given by

L(p |data) =
M

∏
i=1

 ni

xi

{[1− (1− p)mi]xi [(1− p)mi]ni−xi
}

∝

M

∏
i=1

{
[1− (1− p)mi]xi [(1− p)mi]ni−xi

}
. (1)
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In this paper we are interested in comparing two proportions, say p1 and p2. The likelihood

function will then be

L(p1, p2 |x1,x2 ) =
2

∏
i=1

Mi

∏
j=1

 ni j

xi j

{[1− (1− pi)
mi j ]xi j [(1− pi)

mi j ]ni j−xi j
}

∝

2

∏
i=1

Mi

∏
j=1

{
[1− (1− pi)

mi j ]xi j [(1− pi)
mi j ]ni j−xi j

}
. (2)

A conjugate prior to the binomial distribution is used. Conjugacy may be defined as a joint

property of the prior and the likelihood function that provides a posterior from the same dis-

tribution family as the prior, (Robert, 2001). Statisticians make use of conjugate priors to be

certain that the posterior is predictable in its form. Consider a beta prior, i.e. pi ∼ Beta(α,β )

for the p’s

π (p1, p2) =
2

∏
i=1

Γ(α +β )

Γ(α)Γ(β )
pα−1

i (1− pi)
β−1 . (3)

3 Bayes Factors

The Bayes factor is the ratio of the posterior probabilities of the null and the alternative hy-

potheses divided by the ratio of the prior probabilities for the null and the alternative hypotheses

(Robert, 2001). The classical approach to hypothesis testing is not probability based; one could

not place a probability on a hypothesis because a hypothesis is not a random variable in the

frequentist sense. Using a frequentist approach, one has to make do with quantities like the p -

value where this is conditional on H0 being true. We do not know if H0 is true, the real question

is actually P(H0 is true |data) . The Bayesian wants to find a probability that H0 is true. The

Bayes factor is a summary of the evidence provided by the data in favour of a scientific theory,

represented by a statistical model, as opposed to another (Kass & Raftery, 1995).

In Bayesian terminology we are not testing in the classical sense, but we are comparing

two possible models. This is also known as model comparison or Bayes factor analysis. For

example, comparing model f (x |θ0,γ ) with model f (x |θ ,γ ), where θ is the unspecified pa-

rameter and γ is a nuisance parameter. In this instance we are interested in testing H0 : θ = θ0
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against H1 : θ 6= θ0, where H0 is the null hypothesis and H1 the alternative hypothesis. Instead

of calling the two options hypotheses, we shall call them models M0 and M1 , respectively.

The probability that M0 is the ’correct’ model will then be calculated.

3.1 Two Samples with M1 = M2 = 1

We first consider the simplest case where n1 = n2 = n and m1 = m2 = m. The n’s can be

different, as long as the m’s are the same. Then the equality of the p’s is equivalent to the

model M0 : θ1 = θ2 = θ , which will be compared to the model M1 : θ1 6= θ2. Here we have θ =

(1− p)m. Under M0 the prior on θ is beta(α,β ) , while under M1 we have two independent

beta(α,β ) priors.

The Bayes factor in favour of M0 is given by

B01 =

´ 1
0 L(θ |x,M0 )π (θ)dθ´ 1

0

´ 1
0 L(θ1,θ2 |x1,x2,M1 )π (θ1)π (θ1)dθ1dθ2

=
f (x |M0 )

f (x1,x2 |M1 )

=
B(x+α,2n− x+β )

B(α,β )
÷ B(x1 +α,n− x1 +β )B(x2 +α,n− x2 +β )

B(α,β )2

=
B(x+α,2n− x+β )B(α,β )

B(x1 +α,n− x1 +β )B(x2 +α,n− x2 +β )
,

where x = x1 + x2.

Another approach to calculate Bayes factors, is to use fractional Bayes factors. This was

proposed by O’Hagan (1995). Here one uses part of the information from the data to create

proper priors from improper priors. It uses a fraction of the likelihood to obtain proper priors.

If we let α = β = 1/2 i.e. considering a beta(1/2,1/2) prior for the p’s, we actually make use

of the Jeffreys prior. In this case the Jeffreys prior is proper, and there is no need to make

use of the fractional Bayes factor. If we let α = β = 0 i.e. considering a beta(0,0) prior for

the p’s, we actually make use of the Haldane prior. This prior was introduced by Haldane

(1932). According to Zellner (1977) the Haldane prior is popular due to the posterior mean

being equal to the maximum likelihood estimator. In this case the Haldane prior is improper,

and we can’t use the Bayes factor and therefore have to make use of partial Bayes factors, to be

more specific the fractional Bayes factor. To create a proper prior for the parameters under the
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models, a fraction b of the likelihood should be used.

For illustration and comparison purposes we will consider the fractional Bayes factor when

using the Jeffreys and Haldane priors.

When using the Jeffreys prior, the fractional Bayes factor in favour of model M0 is given

by

B01 =
f F (x |M0 )

f F (x1,x2 |M1 )
=

f (x |M0 )

fb (x |M0 )
÷ f (x1,x2 |M1 )

fb (x1,x2 |M1 )

=
B(2n− x+ 1/2,x+ 1/2)

B(b(2n− x)+ 1/2,bx+ 1/2)
÷ B(n− x1 + 1/2,x1 + 1/2)B(n− x2 + 1/2,x2 + 1/2)

B(b(n− x1)+ 1/2,bx1 + 1/2)B(b(n− x2)+ 1/2,bx2 + 1/2)

=
B(2n− x+ 1/2,x+ 1/2)B(b(n− x1)+ 1/2,bx1 + 1/2)B(b(n− x2)+ 1/2,bx2 + 1/2)

B(b(2n− x)+ 1/2,bx+ 1/2)B(n− x1 + 1/2,x1 + 1/2)B(n− x2 + 1/2,x2 + 1/2)
.

When using the Haldane prior, the fractional Bayes factor in favour of model M0 is given

by

B01 =
f F (x |M0 )

f F (x1,x2 |M1 )
=

f (x |M0 )

fb (x |M0 )
÷ f (x1,x2 |M1 )

fb (x1,x2 |M1 )

=
B(2n− x,x)

B(b(2n− x) ,bx)
÷ B(n− x1,x1)B(n− x2,x2)

B(b(n− x1) ,bx1)B(b(n− x2) ,bx2)

=
B(2n− x,x)B(b(n− x1) ,bx1)B(b(n− x2) ,bx2)

B(b(2n− x) ,bx)B(n− x1,x1)B(n− x2,x2)
.

3.2 General Case for Two Samples

For the choice of prior given in the previous section, let α = β = 1/2 i.e. considering a

beta(1/2,1/2) prior for the p’s. Consider two models, M0 : p1 = p2 = p and M1 : p1 6= p2.

Under model M0, the likelihood will be

L(p |x,M0 ) ∝

2

∏
i=1

Mi

∏
j=1

{
[1− (1− p)mi j ]xi j [(1− p)mi j ]ni j−xi j

}
,

and the marginal likelihood is then

f (x |M0 ) =
1
π

ˆ 1

0
p−

1
2 (1− p)−

1
2 L(p |x,M0 )d p.
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Under model M1, the likelihood will be

L(p1, p2 |x1,x2,M1 ) ∝

2

∏
i=1

Mi

∏
j=1

[1− (1− pi)
mi j ]xi j [(1− pi)

mi j ]ni j−xi j ,

and the marginal likelihood is then

f (x1,x2 |M1 ) =
1

π2

ˆ 1

0

ˆ 1

0
p
− 1

2
i (1− pi)

− 1
2 L(p1, p2 |x1,x2,M1 )d p1d p2.

The Bayes factor in favour of M0 is given by

B01 =
f (x |M0 )

f (x1,x2 |M1 )

=
1
π

´ 1
0 p−

1
2 (1− p)−

1
2 L(p |x,M0 )d p

1
π2

´ 1
0

´ 1
0 p
− 1

2
i (1− pi)

− 1
2 L(p1, p2 |x1,x2,M1 )d p1d p2

.

If one assumes that the two models are equally likely before hand, i.e. P(M0) = P(M1) , the

posterior probability of model M0 is

P(M0 |x) =

(
1+

1
B01

)−1

.

4 Simulation Results for Two Samples with M1 = M2 = 1

Here we consider the simplest case where n1 = n2 = n and m1 = m2 = m. Then the equality

of the p’s is equivalent to the model M0 : θ1 = θ2 = θ , which will be compared to the model

M1 : θ1 6= θ2. Here we have θ = (1− p)m. Under M0 the prior on θ is beta(α,β ) , while

under M1 we have two independent beta(α,β ) priors. We consider two different prior here,

one where α = β = 1/2, the Jeffreys prior, and one where α = β = 1, the uniform prior. Figures

1 and 2 show the posterior probabilities for M0 when α = β = 1/2 as well as when α = β = 1.

This is for the selected value of x1 and a range of outcomes for x2 when n = 20,50,100,200.

In general the results look reasonable, with probabilities usually lower with the smaller values

of α and β , except when n is small.
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Figure 1: Posterior probabilities, P(M0 |x) given that x1 = 2 for n = 20 and 50.
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Figure 2: Posterior probabilities, P(M0 |x) given that x1 = 2 for n = 100 and 200.

We will now apply the fractional Bayes factor using the Jeffreys and Haldane priors when

b = 0.01, x1 = 2 and n = 20, 50, 100 and 200. The results are displayed in Table 1. In this case

the Jeffreys prior is proper, and there is no need to make use of the fractional Bayes factor. It is

used here just for comparison purposes.
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Table 1: Posterior probabilities, P(M0 |x) given that b = 0.01, x1 = 2 for n = 20,50,100 and 200.

Jeffreys Haldane Jeffreys Haldane Jeffreys Haldane Jeffreys Haldane
x2 n = 20 n = 50 n = 100 n = 200
0 0.5592 0.6414 0.6774 0.6971
1 0.7679 0.9748 0.8202 0.9746 0.8418 0.9745 0.8531 0.9745
2 0.7971 0.9755 0.8432 0.9749 0.8622 0.9748 0.8722 0.9747
3 0.7777 0.9708 0.8288 0.9701 0.8496 0.9700 0.8606 0.9700
4 0.7251 0.9604 0.7900 0.9603 0.8159 0.9604 0.8294 0.6905
5 0.6390 0.9412 0.7267 0.9433 0.7606 0.9440 0.7782 0.9445
6 0.5195 0.9068 0.6369 0.9150 0.6815 0.9175 0.7047 0.9188
7 0.3783 0.8457 0.5231 0.8692 0.5789 0.8756 0.6081 0.8787
8 0.2408 0.7422 0.3962 0.7975 0.4597 0.8115 0.4936 0.8180
9 0.1330 0.5851 0.2744 0.6928 0.3381 0.7190 0.3734 0.7312
10 0.0643 0.3914 0.1740 0.5558 0.2299 0.5977 0.2625 0.6171
11 0.0276 0.2139 0.1023 0.4029 0.1459 0.4579 0.1725 0.4841
12 0.0106 0.0959 0.0565 0.2616 0.0874 0.3204 0.1073 0.3496
13 0.0037 0.0363 0.0298 0.1535 0.0501 0.2055 0.0639 0.2331
14 0.0011 0.0120 0.0151 0.0830 0.0278 0.1226 0.0368 0.1450
15 0.0003 0.0034 0.0074 0.0423 0.0150 0.0692 0.0208 0.0857

The probabilities when using the Haldane prior are considerably higher than those from the

Jeffreys prior. In the case of the Haldane prior all x’s must be larger than zero, and b > 0. One

of the main questions is: What should the value of b be? We know that P(M0 |x)→ 1 when

b→ 0 and P(M0 |x)→ 0.5 when b→ 1, so the posterior probability can be manipulated by the

choice of b. The usual practice is to choose b ∝ n−1, and O’Hagan (1995) suggested b = q/n

where q is the minimal sample size.

5 Application

The Bayes factors discussed in the previous section will be applied to an example consid-

ered by Biggerstaff (2008). Biggerstaff (2008) considered an example where a comparison is

made between West Nile virus (WNV) infection prevalences in field collected Culex nigripal-

pus mosquitoes trapped at different heights. Table 2 summarises the data used by Biggerstaff

(2008). The general case for two samples will be considered here.
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Table 2: Summary of Culex nigripalpus mosquitoes trapped at different heights of 6m and 1.5m.

Sample 1 Sample 2
height = 6m height = 1.5m

Total 2 021 1 324
Number of pools 53 31
Average pool size 38.1321 42.7097
Minimum pool size 1 5
Maximum pool size 50 100
Number of positive pools 7 1

Using numerical integration, the Biggerstaff data yielded B01 = 2.3331 with corresponding

posterior probability of P(M0 |x) = 0.7000. This is moderate evidence in favour of model M0.

Using the sample and pool sizes as given in Biggerstaff (2008) where M1 = 19, with p1 =

0.004, we simulated 10 000 outcomes of the 19×1 vector x1. This was done by simulating

19 binomial observations, each with a sample size and a different probability, since the pool

sizes differ. The same was done with the second sample where M2 = 16, with p2 = 0.001.

Using numerical integration, the Bayes factors and posterior probabilities were calculated and

the histograms are shown in Figure 3.

The mean of B01 is 3.6241 and the mean posterior probability is 0.6202, still favouring a

single p slightly.

It is interesting to note that 626 of the 10 000 simulations gave the same result as the

Biggerstaff (2008) data, 7 positives from the samples with p1 and one positive from the samples

with p2, although not necessarily from samples with the same pool sizes. The range of posterior

probabilities for the 626 simulations is (0.6925 , 0.7208), with mean of 0.7030. So the pools

from which the positive observations come do not have a large affect on the posterior.
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Figure 3: Histograms of the Bayes factor and posterior probabilities.

Kass & Raftery (1995) gave the following categories for interpreting the Bayes factor, B10:

log10 (B10) B10 Evidence against H0

0 to 0.5 1 to 3.2 Not worth more than a bare mention

0.5 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

> 2 > 100 Decisive

Using these scales and categories to judge the evidence against M0 for B01, we obtain the

following results:

• 85.12% of the time, the evidence was poor;

• 9.06% of the time, it was substantial;

• 5.49% of the time, it was strong;

• 0.33% of the time, it was decisive.
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6 Conclusion

In this paper we looked at the Bayes factor to grouped data. We also considered factional

Bayes factors. The Bayes factor was applied to an example considered in Biggerstaff (2008),

where a comparison was made between West Nile virus (WNV) infection prevalences in field

collected Culex nigripalpus mosquitoes trapped at different heights. The two sample case with

M1 = M2 = 1 was first considered, where two priors were used beta(α = 1/2,β = 1/2) and

beta(α = 1,β = 1) . The posterior probabilities were usually lower with the smaller values of

α and β , except for small n. For the fractional Bayes factor two priors were considered a

beta(α = 1/2,β = 1/2), Jeffreys prior, and a beta(α = 0,β = 0), Haldane prior. The probabil-

ities when using the Haldane prior are considerably higher than those from the Jeffreys prior.

For the general case a beta(1/2,1/2) prior was used for the Bayes factor. Using numerical

integration, the Bayes factors and posterior probabilities were calculated. The mean of B01 is

3.6241 and the mean posterior probability is 0.6202, favouring a single p slightly.
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