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ABSTRACT

Trials of the early bactericidal activity (EBA) of tuberculosis (TB) treatments assess the

decline, during the first few days to weeks of treatment, in colony forming unit (CFU)

count of Mycobacterium tuberculosis in the sputum of patients with smear-microscopy-

positive pulmonary TB. Profiles over time of CFU data have conventionally been mod-

elled using linear, bi-linear or bi-exponential regression. We propose a new bi-phasic

non-linear regression model for CFU data that comprises linear and bi-linear regression

models as special cases, and is more flexible than bi-exponential regression models. A

Bayesian non-linear mixed effects (NLME) regression model is fitted jointly to the data of

all patients from a trial, and statistical inference about the mean EBA of TB treatments

is based on the Bayesian NLME regression model. The posterior predictive distribution

of relevant slope parameters of the Bayesian NLME regression model provides insight into

the nature of the EBA of TB treatments; specifically, the posterior predictive distribu-

tion allows one to judge whether treatments are associated with mono-linear or bi-linear

decline of log(CFU) count, and whether CFU count initially decreases fast, followed by

a slower rate of decrease, or vice versa.
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1 INTRODUCTION

1.1 Early Development of Tuberculosis Treatment Regimens

Standard efficacy endpoints in pivotal Phase III trials of tuberculosis (TB) treatments

are the proportion of patients with positive sputum culture after 6 months of treat-

ment, and the proportion of patients experiencing relapse within a two-year follow-up

period (Mitchison, 2006; Mitchison and Davies, 2008). Proof of clinical efficacy of TB

treatments, therefore, generally requires lengthy and expensive clinical trials (Mitchison,

2006; Phillips and Fielding, 2008; Wallis et al., 2009). Furthermore, mono-therapy with

anti-TB drugs is often ineffective, mainly due to increasing incidence of drug-resistance

(Yang et al., 2011), so that TB is typically treated with combinations of bactericidal and

sterilising drugs (Diacon et al., 2012a). As Diacon et al. (2012a) state, “ideally [new

treatment] regimens would contain new drugs able to combat tuberculosis resistant to

currently available drugs, especially multidrug-resistant (MDR) tuberculosis ...”. Thus

one of the challenges in early development of new TB treatments is to identify promising

combinations of drugs for subsequent testing in pivotal clinical trials. Since the treat-

ment regimens may involve combinations of three or four drugs, including one or more

novel molecules, potentially large numbers of regimens need to be screened. One way to

do so efficiently and cost effectively is to assess the early bactericidal activity (EBA) of

those regimens.

1.2 Early Bactericidal Activity

An EBA trial assesses the decline, during the first few days to weeks of treatment, in

colony forming unit (CFU) count of Mycobacterium tuberculosis in the sputum of patients

with smear-microscopy-positive pulmonary TB (Diacon et al., 2012a). Such EBA trials
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are usually conducted during the early stage of drug development (Phase II).

An early definition of EBA was the “fall in counts/mL sputum/day [of CFU count]

during the first two days of treatment” (Mitchison and Sturm (1997) as cited in Donald

and Diacon (2008)). More generally, the EBA in a given patient over a time interval

from Day t1 to Day t2, i.e. EBA(t1 − t2), can be estimated as follows:

EBA(t1 − t2) = − log(CFUt2)− log(CFUt1)

t2 − t1
(1)

(see, e.g. Botha et al. (1996)). Here, log(CFUt1) and log(CFUt2) are the observed

log(CFU) counts at Day t1 and Day t2, respectively, where 0 ≤ t1 < t2 ≤ T , and

T is the length of the profile period over which serial sputum samples are collected.

Equation (1) represents a “model-free” estimate of EBA(t1− t2), since it is function only

of the observed log(CFU) counts at Day t1 and Day t2.

Alternatively, EBA(t1 − t2) can be estimated as:

EBA(t1 − t2) = − f̂(t2)− f̂(t1)

t2 − t1
(2)

where f(t) is a suitable regression function for log(CFU) count versus time, and f̂(t1)

and f̂(t2) are the associated fitted values at Day t1 and Day t2, respectively (see, e.g.

Jindani et al. (2003)).

The model-based estimate of EBA(t1 − t2) in Equation (2) has two potential ad-

vantages over the model-free estimate in Equation (1): Firstly, the EBA estimate in

Equation (1) uses information from only two CFU counts, namely those observed at

Day t1 and Day t2; in contrast, the whole series of observed CFU counts may be used to

estimate f(t1) and f(t2), with potential gains in precision for the model-based EBA es-

timate in Equation (2). Secondly, the model-free EBA estimate for a given time interval

(t1 − t2) can only be calculated if CFU counts are in fact available for these particular
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times; in contrast, the model-based estimate can be calculated (e.g. by extrapolating

the curve over time interval (t1 − t2)) even if CFU counts have not been observed at

Day t1 and Day t2, either because the study design did not specify data collection at

those times, or because of missing data.

We note that, if the regression function f(t) is linear over the whole profile period

[0, T ], then the EBA estimate in Equation (2) is given by minus one times the slope of

the regression of log(CFU) count against time. Indeed, both in vitro and in vivo studies

have suggested that anti-TB drugs eradicate a fixed proportion of TB bacteria per unit

time (Gillespie et al., 2002), at least over suitably short time intervals, which would

imply an exponential decay in CFU count, or equivalently, a linear decay in log(CFU)

count. Thus, if the decay of CFU counts over the whole interval [0, T ] is exponential

(equivalently, log-linear), the EBA estimate in Equation (2) over all sub-intervals (t1−t2)

of [0, T ] is constant, and equal to minus one times the slope of the linear regression line

of log(CFU) count versus time.

1.3 Need for Non-Linear Regression Models

Jindani et al. (2003) argued that “standard EBA” TB trials, namely those estimating

EBA(0-2), may fail to measure the sterilising activity of TB drugs: For example, mono-

therapy of pyrazinamide has been shown to be less bactericidal than that of isoniazid and

streptomycin during the first few days of treatment (EBA), but proves to eradicate TB

bacteria about the same rate afterwards (sterilisation). Thus, even though pyrazinamide

has weak EBA, its sterilising activity proves to be better than that of isoniazid and

streptomycin (Brindle et al., 2001; O’Brien, 2002). Based on these findings, Jindani et al.

(2003) suggested the extension of “standard EBA” trials to a treatment period of at least

5 to 7 days, in order to evaluate the sterilisation activity of anti-TB drugs. Currently,

the treatment and profile period for EBA trials typically is 14 days, with collection of one
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or two pre-treatment and serial post-treatment overnight sputum samples. EBA values

that are routinely reported for such TB trials include EBA(0-2), EBA(0-14), EBA(2-14),

EBA(7-14).

As mentioned above, over a suitably short time interval a TB drug typically erad-

icates a fixed proportion of TB bacteria per unit time, implying exponential decline of

CFU count over the time interval in question. Empirically, an exponential decline of

CFU counts (or a linear decline in log(CFU) counts) has indeed been observed for most

TB regimens, at least during the first few days of treatment, and certainly during the

first two days. Thus, EBA(0-2) can be estimated from a simple linear regression of

log(CFU) count versus time (see Equation (2)) (Brindle et al., 2001; Jindani et al., 2003;

Dietze et al., 2008). However, when the profile period of EBA trials, and associated

EBA calculations, covers time intervals significantly longer than 2 days, say 14 days,

then the assumption of a constant rate of decay over the whole time interval generally is

no longer valid. In fact, for many TB drugs, a significant difference between the rate of

decline over the first two days of treatment compared to the subsequent days has been

observed (Donald and Diacon, 2008): Usually, during the first few days of treatment,

log(CFU) counts decline with a fast rate, followed by a slower rate of decline during the

second phase. The decline in log(CFU) count can therefore be bi-phasic (Mitchison and

Davies, 2008) over a 14-day treatment period. Thus, for EBA trials with longer profile

periods, estimation of EBA generally requires some form of non-linear modelling that

appropriately reflects the bi-phasic nature of the regression of log(CFU) count against

time.

1.4 Non-Linear Regression Models Proposed in Literature

In order to account for the bi-phasic nature of log(CFU) count versus time curves, two

types of non-linear regression models have essentially been described in the literature,
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namely bi-linear and bi-exponential regression.

Diacon et al. (2012a, 2013) performed bi-linear regression of log(CFU) count against

time on a by-patient basis, with visual identification of the node parameter (or inflection

point), and assuming that the node was the same for all patients in a given treatment

group. Thus, the approach of Diacon et al. (2012a, 2013) did not accommodate between-

patient variation in the node. Accordingly, EBA was compared between treatment groups

using analysis of variance (ANOVA) of the resulting by-patient EBA estimates. Further-

more, it would seem preferable to estimate the node parameter from the data, rather

than determine it through visual inspection. In addition, it would seem preferable to fit

the model as a bi-linear mixed effects regression model.

Jindani et al. (2003) suggested that the switch of one rate of decline in log(CFU)

count to another might be smooth (rather than abrupt, as would be implied with a

bi-linear regression model). Modelling such a smooth transition, Gillespie et al. (2002)

and Jindani et al. (2003) used bi-exponential regression of CFU count against time,

while Davies et al. (2006a), Davies et al. (2006b) and Rustomjee et al. (2008) regressed

log(CFU) count, observed over 56 days of treatment, against the logarithm of a bi-

exponential function as a mixed effects regression model. However, in bi-exponential

regression models, the initial rate of decline in CFU count necessarily is greater than

the terminal rate. Thus, bi-exponential regression models do not seem adequate for

treatments (and individual profiles) which are associated with terminal rates of decline

that are faster than initial rates of decline. Such treatments have only been described

recently (Diacon et al., 2012a). The bi-exponential mixed effects regression model can fit

data beyond 14 days of treatment, e.g. for 56-day “serial sputum colony counts (SSCC)”

trials (Rustomjee et al., 2008). The trial discussed by Rustomjee et al. (2008) shows a

clear distinction between the EBA and longer term sterilising activity for each of the

treatment regimens: More specifically, per treatment group, the mean log(CFU) count
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over time suggests that the initial slope is substantially larger than the terminal slope.

In our experience, the attempt to fit such a model to data beyond the scope of 14-day

EBA trials results in convergence issues when the terminal slopes are greater than the

initial slopes.

1.5 Objectives and Outline of Present Paper

The observations in the above section indicate that non-linear regression models for

log(CFU) count versus time data published in the literature might require some modifi-

cation and generalisation. In this paper, we propose a new non-linear regression model

for log(CFU) count (Burger and Schall, 2014) that comprises linear and bi-linear regres-

sion models as special cases. The new regression model is bi-phasic, but allows for a

smooth transition between the two rates of decline in log(CFU) count. The regression

model approximates bi-exponential regression models, but is more flexible in the sense

that it allows for terminal rates of decline to be greater than initial rates of decline. The

model is implemented as a Bayesian non-linear mixed effects (NLME) regression model,

fitted jointly to the data of all patients from a trial. Statistical inference about the mean

EBA of TB treatments is based on the Bayesian NLME regression model. The posterior

predictive distribution of relevant slope parameters of the Bayesian NLME regression

model provides insight into the nature of the EBA of TB treatments; specifically, the

posterior predictive distribution allows one to judge whether treatments are associated

with mono-linear or bi-linear decline of log(CFU) count, and whether log(CFU) count is

predicted initially to decrease fast, followed by a slower rate of decrease, or vice versa.

Section 2 provides general aspects which should be considered when fitting regres-

sion models to CFU data. In Section 3 below we present and derive the non-linear

regression model, and in Section 4, we describe its implementation as a Bayesian NLME

regression model. In addition, the extension of the methodology to quantitative liquid
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culture data is discussed in Section 5. Section 6.1 summarises the results of an extensive

empirical investigation of the suitability of the model fitted on a by-patient basis, and

Section 6.2 is devoted to an application of the methodology to the data of a recently

published EBA study.

2 GENERAL CONSIDERATIONS

When fitting regression models to CFU data, the following three important aspects,

namely the identification of censored data, handling of sparse data profiles of individual

patients, and outliers should be considered:

• Variable: Provided that two CFU plate counts are associated with a given sputum

sample from two different plates, the log(CFU) counts are calculated as follows:

log(CFU) count = log10(Mean of two CFU plate counts× 20× 10dilution)

In the above formula, the factor 20 compensates for the dilution of the specimens

during the culture process, converting the result back to the actual CFU count

per mL.

• Censored data: CFU counts of zero must be identified and confirmed to be

“genuine”, i.e. genuine zero counts must be distinguished from missing CFU values,

or from contaminated or otherwise invalid data. Genuine zero counts are valid

data and should preferably be included in the analysis as censored observations

(Rustomjee et al., 2008). Here, zero CFU counts will be specified as a left censored

value of 1. Rationale: The smallest possible CFU count above zero is 1 for counts

from the one plate and zero for counts from the other plate with zero dilution,
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leading to a calculated log(CFU) count of:

log(CFU) count = log10([{0 + 1}/2]× 20× 100) = log10(10) = 1

log(CFU) counts associated with CFUs which are too numerous to count (TNTC)

should preferably be right censored at the corresponding upper limit of quantifica-

tion (ULOQ).

• Sparse data: When the data for a given patient is sparse, several problems might

occur when fitting the regression model to the data of individual patients.

– Over-fit of the regression model: It might be inappropriate to fit two slope

parameters when there are only 4 or 5 data points.

– Slope parameters cannot be identified: When data are available only either

in the early part or in late part of the study period, it might not be possible

to identify and estimate both slope parameters.

– The node cannot be identified: If the data in the middle of the study period

are missing, the node parameter cannot be identified (which can imply that

the slope parameters cannot be identified).

– Convergence problems when trying to fit the regression model.

• Outliers: Outliers in log(CFU) counts might be present in the data due to erro-

neous sampling or reporting of the data, or such values might be true observations,

but of extreme nature. As suggested by Gillespie et al. (2002), when individual

fitting of the regression function to log(CFU) count is of concern, it is important

to exclude implausible data points, i.e. data points causing irregularities in the

pattern of an individual patient’s CFU counts over time (which do not adhere to

the expected biologic pattern of CFU counts over time). Such outliers may produce
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unreliable parameter estimates, which may subsequently jeopardise the validity of

the statistical inference of EBA.

It is therefore certain that statistical inferences based on regression modelling of CFU

count over time need be robust to the aspects listed above.

3 LINEAR, BI-LINEAR AND BI-PHASIC REGRESSION MODEL

In this section, we propose a bi-phasic non-linear regression model for log(CFU) count

versus time data (Burger and Schall, 2014). We start with a regression model with

constant rate of change (mono-exponential or log-linear regression model), and then

generalise to a bi-linear regression model incorporating two rates of change (initial and

late). Accordingly, we derive a bi-phasic regression model allowing for smooth transition

from the first to the second phase.

3.1 Constant Rate of Change: Linear Regression Model

In the following, let y = y(t) be the CFU count at time t, and similarly, let µ = µ(t)

denote the expected CFU count at time t. If we assume that the rate of change in

expected CFU count is proportional to µ, we obtain the following well-known differential

equation:

d µ

d t
= −λ∗ · µ (3)

Here λ∗ > 0 is the proportionality constant and characterises the rate of decrease. From

Equation (3), it follows that:

1

µ
dµ = −λ∗ dt (4)
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Integrating both sides of Equation (4), we have

∫
1

µ
dµ = −

∫
λ∗ dt with solution:

ln(µ) = −
∫
λ∗ dt = α∗ − λ∗ · t (5)

where ln(·) is the natural logarithm. Equivalently to Equation (5), we can write:

µ = eα
∗ · e−λ∗·t (6)

Based on Equation (6), we can postulate the following multiplicative mono-exponential

regression model for y, namely:

y = eα
∗ · e−λ∗·t · eε

where eε is a multiplicative error term at time t. However, often CFU counts y are

transformed logarithmically before model fitting, which leads to the log-linear regression

model:

log(y) = α− λ · t+ ε (7)

where log(y) = log10(y) is, by convention for this type of data, the logarithm to the

base of 10, and therefore α = α∗/ ln(10) (intercept parameter) and λ = λ∗/ ln(10) (slope

parameter). In our experience, after log-transformation, the variance of log(CFU) count

over time is stable, so that the assumption of constant variance for the residual term ε

seems appropriate.

3.2 Variable Rate of Change: Bi-Linear and Bi-Phasic Regression Models

As mentioned above, the majority of log(CFU) count versus time profiles over 14 days

of treatment is bi-phasic. If this is the case, the rate of change in log(CFU) count itself
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changes over time. In general, if we allow λ∗ in Equation (3) to be a function of time,

namely λ∗(t), then Equation (5) becomes ln(µ) = −
∫
λ∗(t) dt, or equivalently, in terms

of the logarithm to the base 10:

log(µ) = −
∫
λ(t) dt (8)

where λ(t) = λ∗(t)/ ln(10).

3.2.1 Step Function: Bi-Linear Regression Model

When λ(t) in Equation (8) is a step function (see Figure 3.1a), we have:

λ(t) = λ1; t ≤ κ

λ(t) = λ2; t > κ (9)

Then:

log(µ) = α− λ1 · t; t ≤ κ

log(µ) = α + (λ2 − λ1) · κ− λ2 · t; t > κ

which leads to the conventional bi-linear regression model for log(CFU) count, namely:

log(y) = α− λ1 · t+ ε; t ≤ κ

log(y) = α + (λ2 − λ1) · κ− λ2 · t+ ε; t > κ (10)

Here, the parameter α and κ is the intercept and node parameter of the regression curve,

respectively, and the slopes λ1 and λ2 characterise the linear decline on or before the

node (t ≤ κ) and after the node (t > κ), respectively.
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Lastly, we note it is convenient to write the regression model in Equation (10) in

terms of the parameters β1 = (λ1 + λ2)/2 and β2 = (λ2 − λ1)/2, which are, respectively,

the average of and half the difference between the two rate constants λ1 and λ2. Then

Equation (10) becomes:

log(y) = α− β1 · t+ β2 · t+ ε; t ≤ κ

log(y) = α− β1 · t− β2 · (t− 2κ) + ε; t > κ (11)

3.2.2 Hyperbolic Tangent Function: Bi-Phasic Regression Model

As has been pointed out by Jindani et al. (2003), the switch from one rate of decline in

log(CFU) count to another might be smooth, rather than abrupt as is implied with by

the bi-linear regression model in Equation (10). In order to model a smooth transition,

we can use a monotonic function that interpolates between the early rate of decline, λ1,

and the late rate of decline, λ2. For example, a class of such functions is formed by linear

transformations of cumulative distribution functions (Seber and Wild, 1989).

In the following, we model λ(t) using the hyperbolic tangent function:

λ(t) =
λ1 + λ2

2
+
λ2 − λ1

2
· e

t−κ
γ − e−

t−κ
γ

e
t−κ
γ + e−

t−κ
γ

(12)

The hyperbolic tangent function in Equation (12), shown in Figure 3.1b, is essentially

a smooth version of the step function in Equation (9). For small t, λ(t) tends to λ1,

i.e. limt→0 λ(t) = λ1, and similarly, for large t, the function λ(t) tends to λ2, i.e.

limt→∞ λ(t) = λ2. Furthermore, λ(κ) = (λ1 + λ2)/2, so that κ can be viewed as the

“node” of the function λ(t). Lastly, the parameter γ governs the “smoothness” of the

transition from rate λ1 to rate λ2. With λ(t) as in Equation (12), we obtain µ = µ(t) as

14



Figure 3.1: Example Plot of Rate of Change in Expected log(CFU) Count (λ(t)) Over
Time (Days)

(a) Step Function

(b) Hyperbolic Tangent Function
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the integral in Equation (8), namely:

log(µ) = α− λ1 + λ2

2
· t− λ2 − λ1

2
· γ · ln

(
e
t−κ
γ + e−

t−κ
γ

e
κ
γ + e−

κ
γ

)

Thus we have the following bi-phasic non-linear regression model for log(y):

log(y) = α− λ1 + λ2

2
· t− λ2 − λ1

2
· γ · ln

(
e
t−κ
γ + e−

t−κ
γ

e
κ
γ + e−

κ
γ

)
+ ε (13)

Note that, for small t (and small γ relative to κ), the term e
t−κ
γ tends to zero, while

the term e−
t−κ
γ becomes large. Thus, for small t (t ≤ κ), log(µ) declines approximately

linearly with slope −λ1. Vice versa, for large t, the term e
t−κ
γ becomes large, while the

term e−
t−κ
γ tends to 0. Thus, for large t, (t ≥ κ), log(µ) declines approximately linearly

with slope −λ2.

In summary, the regression model in Equation (13) is a “smooth” version of the bi-

linear regression model in Equation (10). (In fact, the regression model in Equation (10)

is a special case of the regression model in Equation (13) when γ → 0.) The parame-

ters λ1 and λ2 can therefore be interpreted as the “early” and “late” rates of decline,

respectively, while the parameter α is the intercept of the regression curve. Furthermore,

γ characterises the “smoothness” of the transition from the early to the terminal decay

curve, and κ is the node parameter. Furthermore, for small t (when λ1 > λ2 > 0),

the variable y (i.e. CFU count on the original scale) is approximated by an exponen-

tial function C1 · e−λ1·t, where C1 = exp
(
α− λ2−λ1

2
·
[
κ− γ · ln

{
e
κ
γ + e−

κ
γ

}])
and for

large t, the variable y is approximated by an exponential function C2 · e−λ2·t, where

C2 = exp
(
α + λ2−λ1

2
·
[
κ+ γ · ln

{
e
κ
γ + e−

κ
γ

}])
. In that sense, the regression model in

Equation (13) approximates bi-exponential regression models.
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Lastly, when β1 = (λ1 + λ2)/2 and β2 = (λ2 − λ1)/2, Equation (13) becomes:

log(y) = α− β1 · t− β2 · γ · ln

(
e
t−κ
γ + e−

t−κ
γ

e
κ
γ + e−

κ
γ

)
+ ε (14)

The regression models in Equation (13) and Equation (14) can be fitted to the log(CFU)

count versus time data of individual patients using maximum likelihood (ML) estima-

tion (similar to conventional “by-patient” regression modelling by Diacon et al. (2012a,

2013)). Relevant EBA parameters can accordingly be estimated for each patient based

on these model fits.

It should be noted that the regression models in Equation (13) and Equation (14)

are similar to models proposed by Bacon and Watts (1971); Griffiths and Miller (1973);

Ratkowsky (1983); Grossman et al. (1999), which also have two intersecting line segments

as a limiting case; these models comprise parameterisations different to our proposed

model.

4 BAYESIAN FIT OF REGRESSION MODELS

4.1 Model 1: Bi-Phasic – Student t Errors and ‘Default’ Wishart Priors

We propose a bi-phasic hierarchical Bayesian NLME regression model for log(CFU) count

versus time (Burger and Schall, 2014), fitted jointly to the data of all patients from a

given trial.

We start by specifying an NLME regression model for the log(CFU) counts. Let

yijk be the CFU count for patient i = 1, . . . , Nj in treatment group j = 1, . . . , J at

time-point k = 1, . . . , Kij, and let tijk be the corresponding measurement time. Then,
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based on Equation (14), we write the following NLME regression model:

log(yijk) = αij − β1ij · tijk − β2ij · γij · ln

e tijk−κijγij + e
−
tijk−κij

γij

e
κij
γij + e

−
κij
γij

+ εijk (15)

The parameters of the regression model in Equation (15) are analogous to those of the

“by-patient” regression model in Equation (14).

The subsections below provide a full specification of the random effects and prior

distributions of the regression model in Equation (15).

Random Effects

The vectors µij = (αij, β1ij, β2ij)
′ of intercept and slope parameters are assumed inde-

pendent across patients (i.e. independent across indices i and j), with tri-variate normal

distributions as follows:

µij ∼ N(µj ,Ωµj) (16)

In Equation (16), µj = (αj, β1j, β2j)
′

are vectors of mean intercepts and slopes, and Ωµj

are the associated covariance matrices, namely:

Ωµj =


σ2
αj Covj(αij, β1ij) Covj(αij, β2ij)

Covj(αij, β1ij) σ2
β1j

Covj(β1ij, β2ij)

Covj(αij, β2ij) Covj(β1ij, β2ij) σ2
β2j


Furthermore, the parameters κij and γij are assumed to follow truncated normal distri-

butions, independent of each other, and independent of µij , as follows:

κij ∼ TN(κj, σ
2
κj) · I(Lκ ≤ κij ≤ Uκ)

γij ∼ TN(γj, σ
2
γj) · I(Lγ ≤ γij ≤ Uγ) (17)
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In Equation (17), I(x) denotes an indicator function taking the value 1 if x is true, and

0 otherwise, and Lκ, Uκ, Lγ and Uγ are the pre-specified lower bound and upper bound

for parameters κij and γij, respectively.

Finally, the residuals εijk are assumed to follow independent Student t distributions,

independent of µij , κij and γij, as follows:

εijk ∼ T (0, σ2
εj, vj) (18)

where σ2
εj and vj are scale parameters and degrees of freedom, respectively, from the

corresponding Student t distribution. The specification of the Student t distribution can

accommodate heavily tailed residual errors which, in this regard, is more flexible than

the normal distribution.

A subset of CFU counts might be reported as zero or “no count” values. Genuine

zero counts will typically occur when, for a given patient profile, CFU counts are observed

over time to decline to near zero values, just prior to observing one or more zero counts.

Thus, genuine zero counts will typically occur towards the end of a CFU count versus

time profile. When regressing log(CFU) count against time using Equation (15), the

log(CFU) counts corresponding to zero count can be specified as a left-censored value of

1 (formally, log(yijk) < 1) (Rustomjee et al., 2008).

Prior Distributions

In order to complete the Bayesian specification of the NLME regression model described

above, proper but vague prior distributions are assigned to all unknown parameters of

the NLME regression model.

Firstly, multivariate normal and Wishart prior distributions are specified, respec-
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tively, for µj and Ω−1
µj in Equation (16), namely:

µj ∼ N(0, 104 × I3) (19)

Ω−1
µj ∼ W (3, 3×Rj) (20)

where 0 = (0, 0, 0)′ and I3 denotes the 3× 3 identity matrix. Rj represent 3× 3 inverse

scale matrices.

One challenge is the choice of an appropriate prior distribution for the covariance

matrix of the vectors of intercept and slope parameters µij , i.e. Ωµj . We used the

methodology by Kass and Natarajan (2006), referred to as the “default” Wishart prior,

for choosing Rj . This methodology relates to the choice of Rj in the application of

generalised linear mixed effects regression modelling, and is derived from the data di-

rectly (hence, the resulting posterior distribution does make double use of the data).

The inverse scale matrix Rj is derived by selecting the weight which the mean of the

“shrinkage” prior, i.e. 0, should contribute towards its posterior (where “shrinkage” rep-

resents µij −µj). Under the assumption that the node and smoothness parameters are

fixed at κp = (Uκ +Lκ)/2 and γp = (Uγ +Lγ)/2, respectively (which are the prior mean

for κj and γj, respectively (see below)), the regression model with normally distributed

errors in Equation (15) reduces to a linear mixed effects regression model, for which Rj

are derived as follows:

Rj = c ·

 1

Nj · σ̃2
εj

Nj∑
i=1

Z
′

ij ·Zij

−1

(21)

where σ̃2
εj are the ML estimates of σ2

εj when assuming the regression model is homoge-

neous across all patients (i.e. disregarding random effects such that αij = αj, β1ij = β1j
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and β2ij = β2j). The matrices Zij are defined as follows:

Zij =



1 −tij1 −γp · ln

(
e

tij1−κp
γp +e

−
tij1−κp
γp

e
κp
γp +e

−
κp
γp

)
...

...
...

1 −tijk −γp · ln

(
e

tijk−κp
γp +e

−
tijk−κp

γp

e
κp
γp +e

−
κp
γp

)
...

...
...

1 −tijKij −γp · ln

(
e

tijKij
−κp

γp +e
−
tijKij

−κp
γp

e
κp
γp +e

−
κp
γp

)


We used c = 2.5, causing the mean of the ‘shrinkage” prior, i.e. 0, to have little contri-

bution towards its posterior. The choice of c = 2.5 is equivalent to setting the interval

between the lowest and highest possible values for the relative contribution matrix of the

mean of the “shrinkage” prior (to its posterior) to 28.6%.

The parameters κj, γj, σ
2
κj and σ2

γj (see Equation (17)) are assumed to follow

uniform prior distributions, namely κj ∼ U(Lκ, Uκ), γj ∼ U(Lγ, Uγ), σ
2
κj ∼ U(Lσ2

κj
, Uσ2

κj
)

and σ2
γj ∼ U(Lσ2

γj
, Uσ2

γj
), where Lσ2

κ
, Uσ2

κ
, Lσ2

γ
, Uσ2

γ
are the pre-specified lower bound and

upper bound for parameters σ2
κj and σ2

γj, respectively.

Finally, the scale parameters σ2
εj and degrees of freedom vj in Equation (18) are

respectively assigned inverse gamma prior distributions, namely σ2
εj ∼ IG(10−4, 10−4),

and uniform prior distributions, namely vj ∼ U(2, 100).

For a typical 14-day EBA study, the hyper parameters of the prior distributions

can be chosen as follows: Lκ = 2, Uκ = 11 (to avoid over-fit of the first few and last

few observations over time), Lγ = 0.1, Uγ = 2 (allowing for smooth transition between

a few successive data points), Lσ2
κ

= 0.01, Uσ2
κ

= 30, Lσ2
γ

= 0.01 and Uσ2
γ

= 5 (providing

weakly informative prior distributions for the scale parameters σ2
κj and σ2

γj).
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4.2 Model 2: Bi-Phasic – Student t Errors and ‘Frequentist’ Wishart Priors

To assess the sensitivity of results to the choice of Rj , we fitted Model 1 as a linear

mixed effects regression model under the assumption that the node and smoothness

parameters (i.e. κij, κj, γij and γj) are fixed at (Uκ+Lκ)/2 and (Uγ+Lγ)/2, respectively.

We calculated the “frequentist” estimates for Ωµj via ML estimation (using the SAS R©

procedure PROC NLMIXED) to serve as Rj .

4.3 Model 3: Bi-Phasic – Normal Errors and ‘Default’ Wishart Priors

Model 1 can incorporate the assumption that the residual errors follow normal distribu-

tions (i.e. instead of Student t distributed residual errors), i.e. εijk ∼ N(0, σ2
εj), where

σ2
εj are the corresponding residual variances following inverse gamma prior distributions,

namely σ2
εj ∼ IG(10−4, 10−4).

4.4 Model 4: Bi-Phasic – Normal Errors and ‘Frequentist’ Wishart Priors

The sensitivity of results to the choice of Rj in Model 3 can be assessed using the

“frequentist” approach specified for Model 2.

4.5 Model 5: Bi-Linear – Student t Errors and ‘Default’ Wishart Priors

Based on Equation (11), we can postulate the following bi-linear mixed effects regression

model:

log(yijk) = αij − β1ij · tijk + (−1)Jijk+1 · β2ij · tijk + 2 (Jijk − 1) · β2ij · κij + εijk (22)

where Jijk = 1 + step (tijk − κij), and step (x) denotes a function taking the value 0

if x ≤ 0, and 1 otherwise. The parameters of the regression model in Equation (22)

are analogous to those of the “by-patient” regression model in Equation (11), and the
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specification of its random effects and prior distributions are similar to those of Model 1.

4.6 Model 6: Bi-Linear – Normal Errors and ‘Default’ Wishart Priors

Model 5 can incorporate the assumption that the residual errors follow normal distribu-

tions (i.e. instead of Student t distributed residual errors).

4.7 Model 7: Mono-Linear – Student t Errors and ‘Default’ Wishart Priors

The conventional linear mixed effects regression model can we written as follows:

log(yijk) = αij − λij · tijk + εijk (23)

The parameters of the regression model in Equation (23) are analogous to those of the

“by-patient” regression model in Equation (7), and the specification of its random effects

and prior distributions are similar to those of Model 1.

4.8 Model 8: Mono-Linear – Normal Errors and ‘Default’ Wishart Priors

Model 7 can incorporate the assumption that the residual errors follow normal distribu-

tions (i.e. instead of Student t distributed residual errors).

4.9 Posterior Predictive Distributions

The posterior predictive distribution of relevant slope parameters of the Bayesian NLME

regression model provides insight into the nature of the EBA of TB treatments; specifi-

cally, the posterior predictive distributions of β2j allow one to judge whether treatments

are associated with mono-linear or bi-phasic decline of log(CFU) count (depending on

whether a future β2j is likely to be close to or substantially different from zero), and

whether log(CFU) count initially decreases fast, followed by a slower rate of decrease

23



(if a future β2j is likely to be negative), or vice versa (if a future β2j is likely to be

positive). The simulation of the posterior predictive distribution of the future regres-

sion slopes β2fj (where the subscript f stands for “future patient”) can be implemented

in a straightforward manner using the Markov Chain Monte Carlo (MCMC) output of

the Gibbs sampling algorithm of the joint posterior distribution of the regression model

parameters.

4.10 Model Selection and Model Checking

Alternative NLME regression models can be explored via various Bayesian model selec-

tion tools, and may be fitted to assess:

• Alternative shapes of the log(CFU) count versus time profiles, e.g. assuming a

linear, bi-linear or bi-phasic relationship between log(CFU) count and time.

• The sensitivity of results to the choice of prior distributions.

• Alternative distributions for random effects and residuals (error terms).

In order to check our primary model (Model 1; Section 4.1), and to assess the aspects

listed above, we fitted the seven additional models (with alternative Bayesian specifica-

tions) specified in Section 4.2 through Section 4.8. The fit of each of the models was

checked using conditional posterior ordinates (CPOs) and their reciprocals (ICPOs).

Some detail is included in the appendix.

Two methods for discriminating between various regression models were considered:

The deviance information criterion (DIC) (Spiegelhalter et al., 2002) and Bayes factors

(Kass and Raftery, 1995).
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Deviance Information Criterion

The DIC is a model adequacy and goodness of fit measure, and is defined for Model M

as follows:

DIC(M) = 2D(θm,M)−D(θ̄m,M) = D(θ̄m,M) + 2pm (24)

where θm is a dm × 1 vector of model parameters, y is an n × 1 vector of observed

data, D(θm,M) = −2 ln(f(y|θm,M)) is the conventional deviance measure (i.e. minus

twice the log-likelihood), θ̄m and D(θm,M) are the mean of the posterior distribution

of θm and D(θm,M), respectively, and pm = D(θm,M) − D(θ̄m,M) is the number of

“effective” parameters.

The quantity DIC(M) is therefore a measure which takes both goodness of fit and

complexity of Model M into account, and is more appropriate to assess the predictability

of random effects in Model M (Spiegelhalter et al., 2003). The model with the smallest

DIC is considered to fit the data more appropriately. However, the DIC measure may

be unreliable in cases where θ̄m is an unreliable estimator of θm (Ntzoufras, 2009).

Bayes Factors

When comparing Model M0 and Model M1, based on the posterior probability of each

of the models given the data, the Bayes factor in favour of M0 is defined as follows:

B01 =
f(y|M0)

f(y|M1)
(25)

where y is an n× 1 vector of observed data, and f(y|M0) and f(y|M1) are the marginal

likelihoods of y under Model M0 and Model M1, respectively.

Unlike the DIC, Bayes factors do not explicitly include a term that penalises model

complexity, but rather incorporates the latter in the marginal likelihood of a given model
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automatically (Ward, 2008). Furthermore, the DIC compares models conditional on their

model parameters, whereas the Bayes factors compare models on a marginal basis.

In the case of NLME regression modelling, the marginal likelihoods in Equation (25)

need to be approximated. The Laplace-Metropolis approximation, in its general form,

for ln(f(y|M)) is given by the following expression (Ntzoufras, 2009):

ln(f̂(y|M)) =
1

2
dm ln(2π)+

1

2
ln |Rθm |+

dm∑
j=1

ln(sj)+
n∑
i=1

ln(f(yi|θ̄m,M))+
dm∑
j=1

ln(f(θ̄mj|M))

(26)

where θ̄mj and sj are the mean and standard deviation (SD), respectively, of the posterior

distribution of θmj, and |Rθm | is the determinant of the dm × dm correlation matrix of

the posterior distribution of θm. In mixed effects models, the calculation of the Laplace-

Metropolis marginal likelihood requires that the random effects included in each patient’s

likelihood function should be integrated out (Lewis and Raftery, 1997). The 5 random

effects (see Model 1) for each patient were marginalised using the multidimensional

integration library R2Cuba of the R project (R Core Team, 2014; Hahn et al., 2013).

The Laplace-Metropolis approximation in Equation (26) is based on asymptotic theory

of the normal distribution, and works well for symmetric posterior distributions of θm

(Ntzoufras, 2009).

4.11 Computational Issues

The OpenBUGS software (Version 3.2.2) is used to implement the MCMC Gibbs sam-

pling algorithm to draw samples from the joint posterior distribution of the model pa-

rameters (Gelfand and Smith, 1990; Gilks et al., 1996; Lunn et al., 2009). OpenBUGS

can be downloaded for free from URL http://www.openbugs.net/w/Downloads.

Due to the high dimensional nature of NLME regression models, by-patient pa-

rameter estimates, obtained from regression fits (such as Equation 14) for each patient
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individually (using SAS R© procedure PROC NLMIXED), were used as starting values for

the random effects. The posterior samples were thinned to reduce the autocorrelation

among posterior samples. Graphical convergence diagnostics, such as iteration and au-

tocorrelation plots, and the Brooks-Gelman-Rubin statistic (Brooks and Gelman, 1998)

for two parallel chains, were used to monitor convergence of posterior samples. Dis-

persed starting values for the second chain were provided to ensure convergence of the

two respective chains. Multidimensional integrals (for calculation of Laplace-Metropolis

marginal likelihoods) were calculated using libraries available in the R project.

5 EXTENSION TO QUANTITATIVE LIQUID CULTURE

Liquid culture is generally considered more sensitive than solid culture. In liquid culture,

the opportunity to count colonies of bacteria is not available, but the time it takes for

growth in liquid culture to register as a positive readout (time to positivity, or TTP)

is inversely related to the bacterial load of such cultures (Diacon et al., 2012b). Liq-

uid culture can therefore also be reported out quantitatively. Traditionally, serial TTP

data have been presented on a linear scale because the measure already incorporates a

growth function. A preliminary investigation of TTP data suggested that both TTP and

log(TTP) data increase linearly or bi-linearly over time (Diacon et al., 2012a). However,

the log-transformed TTP data versus time profiles suggest that the residual variance is

constant over the range of fitted values (as opposed to TTP data on the original scale).

That is, the logarithm is effective as variance stabilising transformation. We therefore

recommend the analysis of TTP data on the logarithmic scale instead.

When fitting regression models to TTP data, the following important aspects, in

addition to those applicable to CFU data, should be considered:

• Variable: Provided that two TTP values are associated with a given sputum
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sample from two different sets, log(TTP) is calculated as follows:

log(TTP) = log10(Mean of two TTP values)

• Censored data: TTP values might be reported as “negative” (i.e., no mycobac-

terial growth). The manufacturer’s recommended incubation time before reporting

a result as “negative” is 42 days (equivalently, 1008 hours). Thus the largest pos-

sible numeric TTP value that can be observed is 1008 hours, for an incubation

time of 1008 hours. When regressing log(TTP) against time, the log(TTP) val-

ues reported as “negative” are specified as right censored values. In an ongoing

Phase 3 study (REMoxTB), where sputa from approximately 2000 patients were

collected serially over 18 months of treatment and follow-up, only 6.8% of the re-

ported positive liquid cultures had TTP values exceeding 600 hours. The censoring

time could be chosen to be equal to the incubation time (1008 hours); however,

because experience suggests that TTP values reported above 600 hours are rare,

the following censoring rule is used: TTP values reported as “negative” should be

right-censored at 600 hours, or the maximum TTP value observed in the study,

whichever is greater.

The joint Bayesian NLME regression models discussed in Section 4 can be fitted to the

log(TTP) versus time data, however, incorporating a slight modification in the sign of

the slope parameters, i.e. “+ β1ij” and “+ β2ij” instead of “- β1ij” and “- β2ij”.
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6 EMPIRICAL STUDY AND EXAMPLE OF APPLICATION

6.1 Empirical Study

While theoretical considerations may assist in the derivation of a suitable regression

model for a certain type of data, the most important requirement for a good regression

model is that it should fit the data well. Thus, in deriving a regression model for CFU

count, we have started with an empirical study of a large number of log(CFU) count

versus time profiles from four EBA trials. The typical shapes of such profiles, identified

in the empirical study, confirm observations made previously by other authors and mo-

tivate the theoretical derivation of the bi-phasic non-linear regression model proposed in

Section 3.2.2.

For the purpose of this empirical study, we have had access to the data from four

EBA trials comprising of CFU count versus time profiles of a total of 291 patients. In

all four trials, CFU data were collected over a period of 14 days of treatment. Relevant

clinical trial characteristics of clinical trial protocol CL001, CL007, CL010 and NC001

are summarised in Table 6.1, including the total number of randomised patients, and the

number of randomised patients with complete profiles (data up to Day 14).

The log(CFU) count versus time profiles of all patients with complete profiles were

fitted, separately by patient, using the SAS R© procedure NLMIXED. Note that we used

only patients with complete data profiles since the primary purpose of the empirical study

was to judge the adequacy of the proposed bi-phasic model specifically when fitted to

14-day CFU count versus time profiles; naturally, when data profiles are (substantially)

shorter than 14 days (e.g. due to a patient dropping out of a trial early) a simple

mono-linear model will often be adequate.

Plots of the data together with by-patient fits of the bi-phasic regression model are
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included as Figure A.1 through Figure A.21 in the supplementary material. The residuals

were assumed to follow independent and identically distributed normal distributions, and

the lower and upper bounds of κ and γ were respectively set to Lκ = 2, Uκ = 11, Lγ = 0.1

and Uγ = 2.

Table 6.1: Characteristics of Clinical Trials Included in Empirical Study

Clinical Trial Scheduled Sample Days Treatment Group N n

CL001 Daily from Day -2 to Day 8; TMC207 100 mg 15 12

Day 10, Day 12, Day 14 TMC207 200 mg 15 13

TMC207 200 mg 15 13

TMC207 400 mg 15 14

Rifafour 8 6

Total 68 58

CL007 Daily from Day -2 to Day 4; PA-824 200 mg 15 12

Day 6, Day 8, Day 10, Day 12, PA-824 600 mg 15 12

Day 14 PA-824 1000 mg 16 15

PA-824 1200 mg 15 11

Rifafour 8 7

Total 69 57

CL010 Daily from Day -2 to Day 4; PA-824 50 mg 15 12

Day 6, Day 8, Day 10, Day 12, PA-824 100 mg 15 15

Day 14 PA-824 150 mg 15 14

PA-824 200 mg 16 14

Rifafour 8 8

Total 69 63

Note: Treatment Group: J = TMC207, J-Z = TMC207 + Pyrazinamide, J-Pa = TMC207 + PA-824,

Pa-Z = PA-824 + Pyrazinamide, Pa-Z-M = PA-824 + Pyrazinamide + Moxifloxacin, Rifafour = Ri-

fafour e-275 R©. N = Total number of randomised patients. n = Number of randomised patients with

complete profiles.
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Table 6.1: Characteristics of Clinical Trials Included in Empirical Study

Clinical Trial Scheduled Sample Days Treatment Group N n

NC001 Daily from Day -2 to Day 14 J 15 14

J -Z 15 12

J-Pa 15 12

Pa-Z 15 13

Pa-Z-M 15 10

Rifafour 10 8

Total 85 69

Total Total 291 247

Note: Treatment Group: J = TMC207, J-Z = TMC207 + Pyrazinamide, J-Pa = TMC207 + PA-824,

Pa-Z = PA-824 + Pyrazinamide, Pa-Z-M = PA-824 + Pyrazinamide + Moxifloxacin, Rifafour = Ri-

fafour e-275 R©. N = Total number of randomised patients. n = Number of randomised patients with

complete profiles.
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Studying the data profiles, we noted the following (see Table 6.2):

1. Over the profile period of 14 days, the log(CFU) count versus time profiles seem

either linear (for the minority of patients: 40 out of 247), or bi-phasic (for the

majority of patients: 207 out of 247). For an example of a (near) linear profile, see

Figure 6.1a; examples of clearly bi-phasic profiles are given in Figures 6.1b through

Figure 6.1d.

2. The rate of decline in log(CFU) count during the initial phase is greater than during

the terminal phase for the majority of bi-phasic profiles (e.g. Figure 6.1b); the rate

of decline in log(CFU) count during the initial phase is smaller than during the

terminal phase for the minority of bi-phasic profiles (e.g. Figure 6.1c).

3. The transition from the first to the second phase is smooth for a minority of bi-

phasic profiles (e.g. Figure 6.1d); a bi-linear regression model seems adequate for

the majority of bi-phasic profiles (e.g. Figure 6.1b and Figure 6.1c).

4. The average rate of decline in log(CFU) count during the initial phase is for some

treatment regimens greater than during the terminal phase. However, for one of

the newer compounds under investigation, bedaquiline (TMC207), and for some

treatment regimens containing TMC207 in combination with other drugs, the av-

erage rate of decline in log(CFU) count during the initial phase is smaller than

during the terminal phase.

5. Whatever the respective average rates of decline in log(CFU) count for a given

treatment regimen, rates of decline both during the initial and late phase exhibit

appreciable inter-individual variability; for individual patients, the rate of decline

in log(CFU) count during the initial phase might be smaller than during the late

phase, even though the respective average rates for the treatment regimen in ques-

tion might exhibit the reverse relationship.
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6. The time-point (node) at which the initial rate of decline changes to the terminal

rate of decline exhibits appreciable individual variability (possibly as a result of

little information for the estimation of the node parameter).

Figure 6.1: Fitted log(CFU) Counts Versus Time for Empirical Study
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Observations from the empirical study suggest the following:

• Bi-linear regression models seem adequate for the log(CFU) count versus time

profiles of many patients, but certainly not for all, since a substantial minority of

profiles exhibit a smooth transition between phases. Whatever the case may be, it

is preferable to fit a regression model that allows for a smooth transition between

phases, thereby allowing one to judge the adequacy of the bi-linear regression

model.

• Bi-linear regression models need to accommodate individual variation in the node,

and should estimate the node parameter from the data, rather than determining

it through visual inspection.

• Bi-exponential regression models are not adequate for treatments (and individual

profiles) which are associated with terminal rates of decline that are faster than

initial rates of decline.

• The log(CFU) count versus time profiles suggest that the residual variance is con-

stant over the range of fitted values, i.e. the logarithm is effective as variance

stabilising transformation.

On the whole, a visual inspection of the model fits suggests that the proposed regression

model generally fits the data well (see Figure A.1 through Figure A.21 in the supple-

mentary material).

6.2 Example of Application

We fitted the Bayesian NLME regression model in Equation (15) (Model 1) to the data

of the NC001 trial (see Table 6.2) (Diacon et al., 2012a), and compared its fit with that

of the alternative regression models (Model 2 through Model 8).
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Model Selection

Model comparison statistics for the various Bayesian NLME regression models fitted

are provided in Table 6.3. The model comparison statistics appear to be sensitive to

the choice of the hyper parameters of the Wishart prior distributions (‘default’ versus

‘frequentist’): This, however, is a well know drawback (Lindley, 1993) with the use of

Bayes factors. The DIC favours bi-linear models slightly over bi-phasic models, followed

by linear models. The marginal likelihood (Bayes factor) criterion favours linear models,

followed by bi-phasic and bi-linear models. Both the DIC and marginal likelihood (Bayes

factor) criteria favour models with Student t distributed errors over those with normally

distributed errors.

The ICPOs suggest all models fit the data reasonably well.
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Table 6.3: Comparison of Bayesian NLME Regression Models

DIC % ICPO < x

Model D(θm,M) D(θ̄m,M) pm DIC(M) ln(f̂(y|M)) x = 40 x = 70 x = 100

Model 1 1335.00 1144.00 191.00 1526.002 -1365.664 97.57 98.87 99.11

Model 2 1360.00 1158.00 202.70 1563.003 -1336.713 97.73 98.95 99.19

Model 3 1454.00 1273.00 180.70 1635.005 -1382.127 97.98 98.62 98.95

Model 4 1476.00 1282.00 194.40 1671.006 -1367.235 97.73 98.70 99.03

Model 5 1324.00 1127.00 197.20 1521.001 -1376.756 97.57 98.87 99.19

Model 6 1445.00 1257.00 187.40 1632.004 -1408.108 97.89 98.54 98.95

Model 7 1565.00 1398.00 167.50 1733.007 -1236.991 98.54 99.11 99.19

Model 8 1644.00 1481.00 162.50 1806.008 -1262.322 98.54 98.95 99.11

Note: CPO: Conditional posterior ordinate; ICPO: Reciprocal of CPO; DIC: Deviance information crite-

rion. Model 1: Bi-phasic: Student t errors and ‘default’ wishart priors. Model 2: Bi-phasic: Student t

errors and ‘frequentist’ wishart priors. Model 3: Bi-phasic: Normal errors and ‘default’ Wishart priors.

Model 4: Bi-phasic: Normal errors and ‘frequentist’ Wishart priors. Model 5: Bi-linear: Student t errors

and ‘default’ Wishart priors. Model 6: Bi-linear: Normal errors and ‘default’ Wishart priors. Model 7:

Mono-linear: Student t errors and ‘default’ Wishart priors. Model 8: Mono-linear: Normal errors and

‘default’ Wishart priors. Superscripts indicate the ranking of model comparison statistics from least

favoured (1) to most favoured (8).

Early Bactericidal Activity of Study Treatments

Posterior estimates and corresponding 95% Bayesian credibility intervals (BCIs) for the

mean EBA(t1 − t2) of Model 1, including pairwise comparisons versus Rifafour, are

presented in Table 6.4. Posterior estimates and corresponding 95% BCIs for the mean

regression model parameters of Model 1 are included as supplementary material to this

paper (Table B.1). Mean EBA(0−14) was significantly different from 0 for each treatment
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regimen. Treatment with Pa-Z-M had the highest bactericidal activity both over the

whole 14-day treatment period, and over the time intervals Day 0 to Day 2 and Day 2

to Day 14. These results can be compared to those published by Diacon et al. (2012a).

Posterior estimates and corresponding 95% BCIs for the mean log(CFU) count

versus time profiles of the six treatment regimens are presented for Model 1 in Figure 6.2a,

and for Model 2 through Model 8 as supplementary material to this paper (Figure B.1

to Figure B.7, respectively). The posterior estimates and corresponding 95% BCIs for

the mean log(CFU) count versus time profiles were similar for Model 1 to Model 8.

The posterior predictive distributions of the β2j (i.e. β2fj) based on Model 1 are

presented in Figure 6.2b for each treatment group. The estimates for the mean β2 and

β2f per treatment group suggest that the initial rate of decrease in CFU count for some

treatment groups containing TMC207 (i.e. J and J-Z) is slow, followed by a faster rate,

and vice versa for the treatment groups not containing TMC207 (Pa-Z and Pa-Z-M and

Rifafour). The decrease in mean log(CFU) count of J-Pa is effectively linear over time.

The estimates for the mean γ per treatment group suggest that the mean log(CFU)

count switches from one rate of decrease to another smoothly.
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Table 6.4: Model 1 – Inferential Statistics for Mean EBA(t1 − t2)

Mean Mean Versus Rifafour

Parameter Treatment n Estimate 95% BCI Estimate 95% BCI

EBAj(0− 14) J (N=15) 15 0.074 [0.010; 0.145] −0.073 [-0.185; 0.042]

J-Z (N=15) 15 0.133 [0.065; 0.204] −0.013 [-0.128; 0.101]

J-Pa (N=15) 15 0.101 [0.056; 0.146] −0.045 [-0.147; 0.055]

Pa-Z (N=15) 15 0.154 [0.100; 0.207] 0.007 [-0.098; 0.113]

Pa-Z-M (N=15) 15 0.248 [0.087; 0.430] 0.102 [-0.082; 0.304]

Rifafour (N=10) 10 0.146 [0.055; 0.238]

EBAj(0− 2) J (N=15) 15 −0.002 [-0.086; 0.084] −0.156 [-0.316; 0.000]

J-Z (N=15) 15 0.069 [-0.038; 0.170] −0.085 [-0.254; 0.081]

J-Pa (N=15) 15 0.105 [0.019; 0.187] −0.049 [-0.210; 0.105]

Pa-Z (N=15) 15 0.179 [0.079; 0.277] 0.025 [-0.142; 0.187]

Pa-Z-M (N=15) 15 0.313 [0.164; 0.460] 0.159 [-0.040; 0.355]

Rifafour (N=10) 10 0.154 [0.021; 0.290]

EBAj(2− 14) J (N=15) 15 0.086 [0.019; 0.170] −0.059 [-0.185; 0.075]

J-Z (N=15) 15 0.144 [0.066; 0.229] −0.001 [-0.132; 0.133]

J-Pa (N=15) 15 0.100 [0.053; 0.148] −0.044 [-0.160; 0.072]

Pa-Z (N=15) 15 0.149 [0.093; 0.203] 0.004 [-0.114; 0.124]

Pa-Z-M (N=15) 15 0.238 [0.046; 0.455] 0.093 [-0.124; 0.330]

Rifafour (N=10) 10 0.145 [0.037; 0.251]

Note: Treatment Group: J = TMC207, J-Z = TMC207 + Pyrazinamide, J-Pa = TMC207 + PA-824,

Pa-Z = PA-824 + Pyrazinamide, Pa-Z-M = PA-824 + Pyrazinamide + Moxifloxacin, Rifafour = Ri-

fafour e-275 R©. EBA(t1 − t2): Early bactericidal activity over Day t1 to Day t2; BCI: Bayesian credi-

bility interval. n = Number of patients in each category.

The OpenBUGS code for the implementation of Model 1 is included as supplemen-

tary material to this paper (Section C).
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Figure 6.2: Model 1 – Mean log(CFU) Count and Posterior Predictive Distributions

(a) Posterior Estimates and Corresponding 95% BCIs for Mean log(CFU) Count Over TimeALPBT1SIGSQ_1ALPBT1SIGSQ_1

(b) Posterior Predictive Distribution of β2 (i.e. β2f )
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7 DISCUSSION

EBA trials of TB treatments assess the decline, during the first few days to weeks

of treatment, in CFU count of Mycobacterium tuberculosis in the sputum of patients

with smear-microscopy-positive pulmonary TB (Diacon et al., 2012a). EBA trials are

a mainstay in the early clinical development of TB treatment regimens, and thus are

frequently performed.

The research reported in this paper was motivated by the need for a general and

flexible regression model for CFU count versus time data. Such data have conventionally

been modelled using linear, bi-linear or bi-exponential regression. Linear regression,

while potentially appropriate for some individual profiles, is not generally adequate since

many data profiles are clearly bi-phasic, at least for treatment and observation periods

longer than 2 to 7 days. Both bi-linear and bi-exponential models seem adequate for

many individual profiles, but the former do not allow for a smooth transition between

the initial and terminal phase of decline of CFU counts, while the latter cannot account

for drugs and individual profiles which are associated with terminal rates of decline that

are faster than initial rates of decline. Such terminal rates of decline have been described

only recently.

In this paper, we have proposed a bi-phasic non-linear regression model for CFU

data that comprises linear and bi-linear regression models as special cases, and is more

flexible than bi-exponential regression models. An extensive empirical study of a large

number of CFU count versus time profiles from a database of four EBA trials suggests

that the proposed model fits well virtually all individual profiles. We have implemented

the model as a Bayesian NLME regression model, fitted jointly to the data of all patients

from a trial. One advantage of the Bayesian implementation of the model is that for

patients with incomplete and sparse profiles (due to missing data), it is generally plausible
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as “strength is borrowed” from the remainder of the data, which manifests as random

effects estimates are shrunken towards the overall mean.

Statistical inference about the mean EBA of TB treatments is based on the Bayesian

NLME regression model. The posterior predictive distribution of relevant slope parame-

ters of the Bayesian NLME regression model provides insight into the nature of the EBA

of TB treatments; specifically, the posterior predictive distribution of slope parameters

allows one to judge whether treatments are associated with mono-linear or bi-linear de-

cline of log(CFU) count, and whether log(CFU) count initially decreases fast, followed

by a slower rate of decrease, or vice versa. In this regard, our analysis of data from the

NC001 trial confirms that TMC207, somewhat unusually among anti-TB treatments, is

a drug associated with a terminal rate of decline in CFU count that is faster than the

initial rate of decline.

Our primary Bayesian implementation of the regression model was based on the

Student t error distribution and the so-called “default” Wishart prior for the covariance

matrix of the random intercept and slope parameters. However, the fit of alternative

specifications of error and prior distributions was also explored. It seems that the Stu-

dent t distribution, which allows for heavier tails than the normal distribution, better

accommodates occasional outliers seen in the data. The DICs favour bi-linear mod-

els slightly over bi-phasic models, followed by linear models, whereas the Bayes factors

favour linear models, followed by bi-phasic and bi-linear models. Given the different

verdicts, it should be noted that the DIC compares models conditional on their model

parameters (for which their random effects are likely to enhance model fit), whereas the

Bayes factors compare models on a marginal basis. With our analysis, the Bayes factors

prefer the simplest model (i.e. linear) over the more refined models (i.e. bi-phasic and bi-

linear), whereas the DICs prefer the latter. Note that the linear model cannot establish

to which extent the bactericidal activity between initial and later phases of treatment
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differs, and investigation of this difference is a crucial aspect of EBA studies.

In summary, the bi-phasic model (Model 1) proposed here empirically fits well all

individual data profiles studied and, according to the marginal likelihood (Bayes factor)

criterion, is favoured over the bi-linear model. Furthermore, the bi-phasic model allows

one to quantify differences in early and late rates of decline of CFU counts, which is of

some importance in characterising the mode of action of anti-TB treatments.

44



REFERENCES

Bacon, D. W. and Watts, D. G. (1971), ‘Estimating the transition between two intersecting straight

lines’, Biometrika 58, 525–534.

Botha, F. J. H., Sirgel, F. A., Parkin, D. P., Van De Wal, B. W., Donald, P. R. and Mitchison, D. A.

(1996), ‘Early bactericidal activity of ethambutol, pyrazinamide and the fixed combination of isoniazid,

rifampicin and pyrazinamide (Rifater) in patients with pulmonary tuberculosis’, South African Medical

Journal 86(2), 155–158.

Brindle, R., Odhiambo, J. A. and Mitchison, D. A. (2001), ‘Serial counts for Mycobacterium tuberculosis

in sputum as surrogate markers for the sterilising activity of rifampicin and pyrazinamide in treating

pulmonary tuberculosis’, BMC Pulmonary Medicine 1(1), 2.

Brooks, S. P. and Gelman, A. (1998), ‘General methods for monitoring convergence of iterative simula-

tions’, Journal of Computational and Graphical Statistics 7, 434–455.

Burger, D. A. and Schall, R. (2014), ‘A Bayesian non-linear mixed effects re-

gression model for the characterisation of early bactericidal activity of tu-

berculosis drugs’, Journal of Biopharmaceutical Statistics (published online).

URL: http://www.tandfonline.com/doi/abs/10.1080/10543406.2014.971170#.VGOTH_mUeVM.

Davies, G. R., Brindle, R., Khoo, S. H. and Aarons, L. J. (2006a), ‘Use of nonlinear mixed-effects analysis

for improved precision of early pharmacodynamic measures in tuberculosis treatment’, Antimicrobial

Agents and Chemotherapy 50, 3154–3156.

Davies, G. R., Khoo, S. H. and Aarons, L. J. (2006b), ‘Optimal sampling strategies for early pharma-

codynamic measures in tuberculosis’, Journal of Antimicrobial Chemotherapy 58, 594–600.

Diacon, A. H., Dawson, R., Von Groote-Bidlingmaier, F., Symons, G., Venter, A., Donald, P. R.,

Conradie, A., Erondu, N., Ginsberg, A. M., Egizi, E., Winter, H., Becker, P. and Mendel, C. M. (2013),

‘Randomized dose-ranging study of the 14-day early bactericidal activity of bedaquiline (TMC207) in

patients with sputum microscopy smear-positive pulmonary tuberculosis’, Antimicrobial Agents and

Chemotherapy 57(5), 2199–2203.

45



Diacon, A. H., Dawson, R., Von Groote-Bidlingmaier, F., Symons, G. Venter, A., Donald, P. R., Van

Niekerk, C., Everitt, D., Winter, H., Becker, P., Mendel, C. M. and Spigelmin, M. K. (2012a), ‘14-

Day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: A

randomized trial’, The Lancet 380, 986–993.

Diacon, A. H., Maritz, J. S., Venter, A., Van Helden, P. D., Dawson, R. and Donald, P. R. (2012b),

‘Time to liquid culture positivity as a substitute for colony counting on agar plates in early bactericidal

activity studies of antituberculosis agents’, Clinical Microbiology and Infection 18(7), 711–717.

Dietze, R., Hadad, D. J., McGee, B., Molino, L. P. D., Maciel, E. L. N., Peloquin, C. A., Johnson, D. F.,

Debanne, S. M., Eisenach, K., Boom, W. H., Palaci, M. and Johnson, J. L. (2008), ‘Early and extended

early bactericidal activity of linezolid in pulmonary tuberculosis’, American Journal of Respiratory and

Critical Care Medicine 178, 1180–1185.

Donald, P. R. and Diacon, A. H. (2008), ‘The early bactericidal activity of anti-tuberculosis drugs: A

literature review’, Tuberculosis 88(Suppl 1), S75–S83.

Geisser, S. and Eddy, W. F. (1979), ‘A predictive approach to model selection’, Journal of the American

Statistical Association 74, 153–160.

Gelfand, A. E. and Smith, A. F. M. (1990), ‘Sampling-based approaches to calculating marginal densi-

ties’, Journal of the American Statistical Association 85, 398–409.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996), Markov Chain Monte Carlo in Practice,

Chapman and Hall, London, UK.

Gillespie, S. H., Gosling, R. D. and Charalambous, B. M. (2002), ‘A reiterative method for calculating

the early bactericidal activity of antituberculosis drugs’, American Journal of Respiratory and Critical

Care Medicine 166, 31–35.

Griffiths, D. A. and Miller, A. J. (1973), ‘Hyperbolic regression - A model based on two-phase piecewise

linear regression with a smooth transition between regimens’, Communications in Statistics 2, 561–569.

Grossman, M., Hartz, S. M. and Koops, W. J. (1999), ‘Persistency of lactation yield: A novel approach’,

Journal of Dairy Science 82(10), 2192–2197.

46



Hahn, H., Bouvier, A. and Kiu, K. (2013), R2Cuba: Multidimensional Numerical Integration. R package

Version 1.0-11.

URL: http://CRAN.R-project.org/package=R2Cuba

Jindani, A., Doré, C. J. and Mitchison, D. A. (2003), ‘Bactericidal and sterilizing activities of antitu-

berculosis drugs during the first 14 days’, American Journal of Respiratory and Critical Care Medicine

167, 1348–1354.

Kass, R. E. and Natarajan, R. (2006), ‘A default conjugate prior for variance components in generalized

linear mixed models (comments on article by Browne and Draper)’, Bayesian Analysis 1(3), 535–542.

Kass, R. E. and Raftery, A. E. (1995), ‘Bayes factors’, Journal of the American Statistical Association

90, 773–795.

Lewis, S. M. and Raftery, A. E. (1997), ‘Estimating Bayes factor via posterior simulation with Laplace-

Metropolis estimator’, Journal of the American Statistical Association 92, 648–655.

Lindley, D. V. (1993), ‘On presentation of evidence’, Mathematical Scientist 18, 60–63.

Lunn, D. J., Spiegelhalter, D. J., Thomas, A. and Best, N. G. (2009), ‘The BUGS project: Evolution,

critique and future directions’, Statistics in Medicine 28, 3049–3067.

Mitchison, D. A. (2006), ‘Clinical development of anti-tuberculosis drugs’, Journal of Antimicrobial

Chemotherapy 58, 494–495.

Mitchison, D. A. and Davies, G. R. (2008), ‘Assessment of the efficacy of new anti-tuberculosis drugs’,

The Open Infectious Diseases Journal 2, 59–76.

Mitchison, D. A. and Sturm, W. A. (1997), The measurement of early bactericidal activity, in A. Malin

and K. P. W. J. McAdam, eds, ‘Bailliere’s Clinical Infectious Diseases: Mycobacterial Diseases Part II’,

Bailliere Tindall, London, pp. 185–206.

Ntzoufras, I. (2009), Bayesian Modeling Using WinBUGS, John Wiley & Sons, Inc., Hoboken, New

Jersey.

Phillips, P. and Fielding, K. (2008), ‘Surrogate markers for poor outcome to treatment for tuberculosis:

Results from extensive multi-trial analysis’, The International Journal of Tuberculosis and Lung Disease

12, S146–S147.

47



R Core Team (2014), R: A Language and Environment for Statistical Computing, R Foundation for

Statistical Computing, Vienna, Austria.

URL: http://www.R-project.org/

Ratkowsky, D. A. (1983), Nonlinear Regression Modeling: A Unified Practical Approach, Marcel Dekker,

New York.

Rustomjee, R., Lienhardt, C., Kanyok, T., Davies, G. R., Levin, J., Mthiyane, T., Reddy, C., Sturm,

A. W., Sirgel, F. A., Allen, J., Coleman, D. J., Fourie, B., A., M. D. and the Gatifloxacin for TB (OFLO-

TUB) Study Team (2008), ‘A Phase II study of the sterilising activities of ofloxacin, gatifloxacin and

moxifloxacin in pulmonary tuberculosis’, The International Journal of Tuberculosis and Lung Disease

12(2), 128–138.

Seber, G. A. F. and Wild, C. J. (1989), Nonlinear Regression, Wiley Press, New York.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002), ‘Bayesian measures of

model complexity and fit (with discussion)’, Journal of the Royal Statistical Society 64, 583–640.

Spiegelhalter, D. J., Thomas, A., Best, N. G. and Lunn, D. (2003), ‘WinBUGS User Manual, Version

1.4’. URL: http://www.politicalbubbles.org/ bayes_beach/manual14.pdf.

O’Brien, R. J. (2002), ‘Studies of the early bactericidal activity of new drugs for tuberculosis: A help

or a hindrance to antituberculosis drug development?’, American Journal of Respiratory and Critical

Care Medicine 166, 3–4.

Wallis, R. S., Doherty, T. M., Onyebujoh, P., Vahedi, M., Laang, H., Olesen, O., Parida, S. and Zumla, A.

(2009), ‘Biomarkers for tuberculosis disease activity, cure, and relapse’, The Lancet Infectious Diseases

9, 162–172.

Ward, E. J. (2008), ‘A review and comparison of four commonly used Bayesian and maximum likelihood

model selection tools’, Ecological Modelling 211, 1–10.

Yang, Y., Li, X., Zhou, F., Jin, Q. and Gao, L. (2011), ‘Prevalence of drug-resistant tubercu-

losis in mainland china: Systematic review and meta-analysis’, PLoS ONE 6(6), e20343. URL:

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0020343.

48



APPENDIX

Model checking can include the assessment of the predictive performance of the regression

model using the posterior predictive distribution of replicated data yf . The goodness of

fit between replicated and observed data can be assessed accordingly (Ntzoufras, 2009).

The posterior predictive distribution of yf is given by the following expression:

f(yf |y) =

∫
f(yf ,θ|y)dθ =

∫
f(yf |θ)f(θ|y)dθ (27)

where yf , y and θ represent a r × 1, n× 1 and d× 1 vector of replicated and observed

data, and model parameters, respectively.

The aforementioned approach has been criticised because of its double use of the

data, and as a result, Geisser and Eddy (1979) proposed the use of the leave-one-out

cross-validation predictive distribution instead, namely:

f(yi|y[i]) =

∫
f(yi|θ)f(θ|y[i])dθ (28)

where y[i] represents the vector y with the ith observation (i.e. yi) omitted.

The quantity f(yi|y[i]) in Equation (28) is also known as the conditional posterior

ordinate, and can be estimated by the following:

ĈPOi =

(
1

L

L∑
l=1

1

f(yi|θ(l))

)−1

(29)

where θ(l) represents the vector of posterior MCMC samples from θ at iteration l. The

ĈPOi estimate can be interpreted as the harmonic mean of the probability distribution

of yi for each θ(l), where l = 1, 2, . . . , L following the simulation burn-in period.

A large number of small ĈPOi estimates would indicate a poor fit of the candidate
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model. Such ĈPOi estimates can also be used to identify possible outliers in the data.

Conversely, the reciprocal of ĈPOi, or ̂ICPOi, can also be used to assess model fit.

Estimates of ĈPOi > 40 and ĈPOi > 70 highlight possible or extreme outliers in the

data, respectively (Ntzoufras, 2009).
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SUPPLEMENTARY MATERIAL

A EMPIRICAL STUDY
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Figure A.1: Observed and Fitted log(CFU) Count
Trial CL001, Treatment TMC207 100 mg
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Figure A.2: Observed and Fitted log(CFU) Count
Trial CL001, Treatment TMC207 200 mg
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Figure A.3: Observed and Fitted log(CFU) Count
Trial CL001, Treatment TMC207 300 mg
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Figure A.4: Observed and Fitted log(CFU) Count
Trial CL001, Treatment TMC207 400 mg
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Figure A.5: Observed and Fitted log(CFU) Count
Trial CL001, Treatment Rifafour
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Figure A.6: Observed and Fitted log(CFU) Count
Trial CL007, Treatment PA-824 200 mg
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Figure A.7: Observed and Fitted log(CFU) Count
Trial CL007, Treatment PA-824 600 mg
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Figure A.8: Observed and Fitted log(CFU) Count
Trial CL007, Treatment PA-824 1000 mg
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Figure A.9: Observed and Fitted log(CFU) Count
Trial CL007, Treatment PA-824 1200 mg
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Figure A.10: Observed and Fitted log(CFU) Count
Trial CL007, Treatment Rifafour
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Figure A.11: Observed and Fitted log(CFU) Count
Trial CL010, Treatment PA-824 50 mg
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Figure A.12: Observed and Fitted log(CFU) Count
Trial CL010, Treatment PA-824 100 mg
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Figure A.13: Observed and Fitted log(CFU) Count
Trial CL010, Treatment PA-824 150 mg
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Figure A.14: Observed and Fitted log(CFU) Count
Trial CL010, Treatment PA-824 200 mg
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Figure A.15: Observed and Fitted log(CFU) Count
Trial CL010, Treatment Rifafour
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Figure A.16: Observed and Fitted log(CFU) Count
Trial NC001, Treatment J
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Figure A.17: Observed and Fitted log(CFU) Count
Trial NC001, Treatment J-Z
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Figure A.18: Observed and Fitted log(CFU) Count
Trial NC001, Treatment J-Pa
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Figure A.19: Observed and Fitted log(CFU) Count
Trial NC001, Treatment Pa-Z
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Figure A.20: Observed and Fitted log(CFU) Count
Trial NC001, Treatment Pa-Z-M
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Figure A.21: Observed and Fitted log(CFU) Count
Trial NC001, Treatment Rifafour
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B EXAMPLE OF APPLICATION: ADDITIONAL RESULTS

Table B.1: Model 1 – Inferential Statistics for Regression Model Parameters

Mean

Parameter Treatment n Estimate 95% BCI

αj J (N=15) 15 5.965 [5.362; 6.578]

J-Z (N=15) 15 5.912 [5.416; 6.392]

J-Pa (N=15) 15 6.535 [5.909; 7.152]

Pa-Z (N=15) 15 5.934 [5.380; 6.498]

Pa-Z-M (N=15) 15 5.844 [5.131; 6.560]

Rifafour (N=10) 10 5.507 [4.923; 6.094]

β1j J (N=15) 15 0.081 [0.029; 0.132]

J-Z (N=15) 15 0.116 [0.057; 0.174]

J-Pa (N=15) 15 0.100 [0.059; 0.141]

Pa-Z (N=15) 15 0.149 [0.101; 0.199]

Pa-Z-M (N=15) 15 0.262 [0.136; 0.392]

Rifafour (N=10) 10 0.150 [0.072; 0.230]

Note: Treatment Group: J = TMC207, J-Z = TMC207 + Pyrazinamide, J-Pa = TMC207 + PA-824,

Pa-Z = PA-824 + Pyrazinamide, Pa-Z-M = PA-824 + Pyrazinamide + Moxifloxacin, Rifafour = Ri-

fafour e-275 R©. EBA(t1 − t2): Early bactericidal activity over Day t1 to Day t2; BCI: Bayesian credi-

bility interval. n = Number of patients in each category.

73



Table B.1: Model 1 – Inferential Statistics for Regression Model Parameters

Mean

Parameter Treatment n Estimate 95% BCI

λ1j J (N=15) 15 −0.002 [-0.088; 0.084]

J-Z (N=15) 15 0.066 [-0.047; 0.172]

J-Pa (N=15) 15 0.105 [0.018; 0.187]

Pa-Z (N=15) 15 0.179 [0.079; 0.278]

Pa-Z-M (N=15) 15 0.316 [0.159; 0.470]

Rifafour (N=10) 10 0.155 [0.019; 0.299]

β2j J (N=15) 15 0.083 [0.002; 0.167]

J-Z (N=15) 15 0.051 [-0.038; 0.140]

J-Pa (N=15) 15 −0.005 [-0.080; 0.073]

Pa-Z (N=15) 15 −0.030 [-0.118; 0.059]

Pa-Z-M (N=15) 15 −0.053 [-0.223; 0.136]

Rifafour (N=10) 10 −0.004 [-0.128; 0.118]

β2fj J (N=15) 15 0.083 [-0.213; 0.384]

J-Z (N=15) 15 0.050 [-0.290; 0.387]

J-Pa (N=15) 15 −0.004 [-0.268; 0.267]

Pa-Z (N=15) 15 −0.030 [-0.345; 0.285]

Pa-Z-M (N=15) 15 −0.054 [-0.651; 0.563]

Rifafour (N=10) 10 −0.003 [-0.381; 0.388]

Note: Treatment Group: J = TMC207, J-Z = TMC207 + Pyrazinamide, J-Pa = TMC207 + PA-824,

Pa-Z = PA-824 + Pyrazinamide, Pa-Z-M = PA-824 + Pyrazinamide + Moxifloxacin, Rifafour = Ri-

fafour e-275 R©. EBA(t1 − t2): Early bactericidal activity over Day t1 to Day t2; BCI: Bayesian credi-

bility interval. n = Number of patients in each category.
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Table B.1: Model 1 – Inferential Statistics for Regression Model Parameters

Mean

Parameter Treatment n Estimate 95% BCI

λ2j J (N=15) 15 0.164 [0.064; 0.275]

J-Z (N=15) 15 0.167 [0.064; 0.271]

J-Pa (N=15) 15 0.095 [0.008; 0.184]

Pa-Z (N=15) 15 0.119 [0.014; 0.219]

Pa-Z-M (N=15) 15 0.209 [-0.051; 0.492]

Rifafour (N=10) 10 0.146 [-0.006; 0.299]

κj J (N=15) 15 7.568 [2.797; 10.810]

J-Z (N=15) 15 4.718 [2.088; 10.030]

J-Pa (N=15) 15 7.448 [2.642; 10.810]

Pa-Z (N=15) 15 7.799 [2.614; 10.880]

Pa-Z-M (N=15) 15 4.561 [2.083; 9.941]

Rifafour (N=10) 10 5.446 [2.116; 10.570]

γj J (N=15) 15 1.043 [0.147; 1.953]

J-Z (N=15) 15 1.096 [0.154; 1.958]

J-Pa (N=15) 15 1.069 [0.150; 1.955]

Pa-Z (N=15) 15 1.067 [0.149; 1.954]

Pa-Z-M (N=15) 15 1.029 [0.143; 1.950]

Rifafour (N=10) 10 1.069 [0.151; 1.955]

Note: Treatment Group: J = TMC207, J-Z = TMC207 + Pyrazinamide, J-Pa = TMC207 + PA-824,

Pa-Z = PA-824 + Pyrazinamide, Pa-Z-M = PA-824 + Pyrazinamide + Moxifloxacin, Rifafour = Ri-

fafour e-275 R©. EBA(t1 − t2): Early bactericidal activity over Day t1 to Day t2; BCI: Bayesian credi-

bility interval. n = Number of patients in each category.
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Table B.1: Model 1 – Inferential Statistics for Regression Model Parameters

Mean

Parameter Treatment n Estimate 95% BCI

vj J (N=15) 15 4.599 [2.115; 12.170]

J-Z (N=15) 15 3.607 [2.157; 6.437]

J-Pa (N=15) 15 44.480 [4.053; 96.890]

Pa-Z (N=15) 15 18.060 [3.133; 86.110]

Pa-Z-M (N=15) 15 47.630 [5.766; 97.180]

Rifafour (N=10) 10 10.210 [2.238; 61.090]

Note: Treatment Group: J = TMC207, J-Z = TMC207 + Pyrazinamide, J-Pa = TMC207 + PA-824,

Pa-Z = PA-824 + Pyrazinamide, Pa-Z-M = PA-824 + Pyrazinamide + Moxifloxacin, Rifafour = Ri-

fafour e-275 R©. EBA(t1 − t2): Early bactericidal activity over Day t1 to Day t2; BCI: Bayesian credi-

bility interval. n = Number of patients in each category.
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Figure B.1: Model 2 – Posterior Estimates and Corresponding 95% BCIs for Mean
log(CFU) Count Over Time

Figure B.2: Model 3 – Posterior Estimates and Corresponding 95% BCIs for Mean
log(CFU) Count Over Time
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Figure B.3: Model 4 – Posterior Estimates and Corresponding 95% BCIs for Mean
log(CFU) Count Over Time

Figure B.4: Model 5 – Posterior Estimates and Corresponding 95% BCIs for Mean
log(CFU) Count Over Time
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Figure B.5: Model 6 – Posterior Estimates and Corresponding 95% BCIs for Mean
log(CFU) Count Over Time

Figure B.6: Model 7 – Posterior Estimates and Corresponding 95% BCIs for Mean
log(CFU) Count Over Time
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Figure B.7: Model 8 – Posterior Estimates and Corresponding 95% BCIs for Mean
log(CFU) Count Over Time
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