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1. Introduction

The presence of lognormally distributed data is a frequent occurrence in many analysis settings.
Occupational health settings are among these. Many different methods have been presented for the
analysis of data that is lognormally distributed and one such method is the one-way random effects
model, as proposed, for example, by Krishnamoorthy and Mathew (2002). The primary parameter of
interest was the occupational exposure limit (OEL) for lognormally distributed data. The interested
reader is referred to the original articles by Krishnamoorthy and Mathew (2002) for a more complete
description of the medical applications of this method as well as the texts by Rappaport, Kromhout
and Symanski (1993), Heerderik and Hurley (1994), Lyles, Kupper and Rappaport (1997b) and
Lyles, Kupper and Rappaport (1997a).

It is not just confidence intervals that are of interest, but the need also exists to test hypothe-
ses concerning the primary parameter. To do this Krishnamoorthy and Mathew (2002) extended
their previous work in this setting and attempted to analyse the data using generalized p-values and
generalized confidence intervals. They were able to test specific hypotheses regarding the OEL.

The setting was analysed from a Bayesian perspective in Harvey and van der Merwe (2014). In
the article they presented an objective Bayesian approach for modelling the arithmetic mean of the
OEL using the one-way random effects model and compared the effect of several non-informative
priors. It was shown that the Bayesian approach has several distinct advantages over the generalized
confidence interval and p-value approach. The most evident advantage was the flexibility of the
Bayesian approach that allowed for the modelling of mean exposure for individual workers.

The previous examples and articles considered the case of balanced data, whereby there are an
equal number of observations for each observational unit, such as an individual worker, company or
even groups thereof. Unfortunately, the case of balanced data is overly simplistic. Unbalanced data
can arise due to a number of different factors. The analysis of unbalanced data will in turn require
an analysis framework that accounts specifically for this setting.

Again, this situation has been approached by some authors (e.g. Krishnamoorthy and Guo
(2005)), but the methods proposed involve generalized p-value approaches. The problem state-
ment is nevertheless the same: we would like to estimate the proportion of exposure measurements
exceeding a pre-specified limit (OEL) or perhaps the probability of an insurance claim exceeding a
pre-specified boundary. According to Krishnamoorthy and Guo (2005) the one-way random effects
model incorporates both within and between sources of variation in measurements. Since we are
dealing with data that have a lognormal distribution (i.e. the logged exposure levels are normally
distributed) we are interested in the overall mean effect and the two variance components associated
with the random effects model.

In this article we extend the work presented by Harvey and van der Merwe (2014) regarding
the one-way balanced random effects model to the unbalanced case from an objective Bayesian
perspective. In order to complete the Bayesian specification of the model prior distributions have
to be derived and this forms a large part of this article. The selection and determination of non-
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informative priors in multi-parameter settings is not an easy task and it has been observed that the
selection of a specific prior could have unexpectedly dramatic effects on the posterior distribution.
In this article, the derivation of suitable priors will be considered, where the Reference prior (Berger
and Bernanrdo (1992)) is one such option and the second is the Probability-Matching prior. A
simulation study will also be presented to show the effectiveness of the proposed prior distributions.

2. Description of the setting

The setting for this article is similar to the setting described in Harvey and van der Merwe (2014).
The point of departure, conceptually, is that the data now is unbalanced. The previous data referred to
the amount of exposure to a particular agent and for each worker there were exactly the same number
of observations. In the unbalanced case we have an unequal number of observations for each worker
(the mechanism by which this “missing”data is generated is not of interest in this article). Even
though this is a minor conceptual change all derivations of priors and posterior distributions would
necessarily change.

Therefore, in the unbalanced case we have the following diagrammatic representation of the
data:

Table 1: Representation of Shift Exposure Data.

Shift-Long Exposure Measurements
Worker 1 2 ... ni

1 x11 x12 ... x1n1

1 x21 x22 ... x2n2

... ... ... ... ...
k xk1 xk2 ... xknk

Let Xi j represent the j-th shift-long exposure measurement for the i-th worker, where j = 1, . . . ,ni

and i = 1, . . . ,k. Therefore, there are ni measurements for the i-th worker, which results in the
“unbalanced”nature of the data. The Xi j are lognormally distributed and therefore Yi j = ln(Xi j) are
normally distributed. The situation can be represented by the following one-way random effects
model:

Yi j = µ + τi + ei j, i = 1, . . . ,k; j = 1, . . . ,ni.

where µ is the general mean, τi ∼ N
(
0,σ2

τ

)
and ei j ∼ N

(
0,σ2

e
)
. All the random variables are

independent of each other and here τi represents the random effect due to the i-th worker.

Given the lognormal distribution of the Xi j

µxi = E (Xi j|τi) = E (exp [Yi j] |τi) = exp
(

µ + τi +
σ2

e /2

)
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and µxi is the mean exposure for the i-th worker. Let θ denote the probability that µxi exceeds the

OEL. Thus, θ = P(µxi > OEL) = P(ln(µxi)> ln(OEL)) = 1−Φ

(
ln(OEL)−µ−σ2

e /2
στ

)
where Φ (.)

denotes the c.d.f. of the standard normal distribution. The kind of hypotheses that are going to be
considered here are:

H0 : θ ≥ A vs H1 : θ < A

where A is a specific quantity that is usually small, according to Krishnamoorthy and Guo (2005).

Table 2 is an example data set of simulated “styrene exposures”that will serve as a basis for
discussion in this article and will help us define and illustrate the objectives of the article (it is the
same data set as in Harvey and van der Merwe (2014), however, observations have been removed at
random, resulting in an “unbalanced”design).

Table 2: Simulated Styrene Exposures.

Shift-Long Exposures
Worker 1 2 3 4 5 6 7 8 9 10

1 95.6 64.7 50.9 87.4 82.3 149.9 33.4 77.5 70.8 60.9
2 57.4 82.3 174.2 107.8 98.5 129 121.5 95.6 92.8 133
3 84.8 214.9 79.8 169 149.9 164 84.8 84.8 114.4
4 68.7 77.5 54.1 41.3 64.7 46.5 59.1 45.2 54.1
5 114.4 101.5 49.4 101.5 90 52.5 114.4 79.8 68.7 87.4
6 87.4 242.3 145.5 133 174.2 214.9 137 129 169 179.5
7 54.1 75.2 84.8 55.7 90 70.8 60.9 101.5 64.7 95.6
8 64.7 95.6 57.4 95.6 82.3 101.5 92.8 60.9 101.5 98.5
9 137 208.5 92.8 159.2 92.8 82.3 90
10 125.2 87.4 121.5 90 154.5 107.8 117.9 179.5 129 129
11 42.5 73 50.9 59.1 49.4 66.7
12 57.4 68.7 59.1 64.7 55.7 92.8 42.5
13 101.5 149.9 111.1 77.5 111.1 84.8 64.7 62.8
14 68.7 101.5 111.1 179.5 82.3 174.2 174.2 87.4 145.5 114.4
15 121.5 77.5 145.5 174.2 77.5 92.8 159.2 129 104.6 77.5

Table 2 represents the Xi j data points, from which the Yi j = ln(Xi j) can easily be obtained.

From these data we have the following definitions and associated results (these results will be
used in all subsequent applications and examples):

k = 15

ν1 =
k
∑

i=1
(ni−1) ; ν2 = k−1

Ȳi• =
1
ni

Yi• =
1
ni

ni
∑
j=1

Yi j = [4.3 4.7 4.8 4.0 4.4 5.0 4.3 4.4 4.8 4.9 4.0 4.1 4.5 4.8 4.7]
′

ni = [10 10 9 9 10 10 10 10 7 10 10 6 7 8 10 10]
′
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Ȳ•• = 1
k

k
∑

i=1
Ȳi• = 4.508 = µ̂

SSe = ν1m1 =
k
∑

i=1

ni
∑
j=1

(Yi j− Ȳi•)
2
= 10.492 =′′ within workers sum o f squares′′

SSτ = ν2m2 =
k
∑

i=1
ni(Ȳi•− Ȳ••)

2
= 11.885 =′′ between workers sum o f squares′′

3. Bayesian methodology

The basis for analyzing any situation from a Bayesian perspective is the following relationship, a
well-known result of Bayes’theorem: Posterior ∝ Likelihood ×Prior. The likelihood function (in
matrix form) is given by:

L
(
µ,τττ,σ2

e ,σ
2
τ |Y
)
=
(
2πσ

2
e
)− 1

2 ñ
exp
{
− 1

2σ2
e
(Y− µ1−Zτττ)′ (Y− µ1−Zτττ)

}
×

(
2πσ

2
τ

)− 1
2 k

exp
{
− 1

2σ2
τ

τττ
′
τττ

}
(1)

where

ñ =
k
∑

i=1
ni, τττ ′ =

[
τ1 τ2 . . . τk

]
, µ1 = [µ µ · · · µ]

′

Z′ñ ×k =


11 12 · · · 1n1

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

0 0 · · · 0
11 12 · · · 1n2
...

...
. . .

...
0 0 · · · 0

· · · 0 0 · · ·
· · · 0 0 · · ·
. . .

...
...

. . .
· · · 11 12 · · ·

0
0
...

1nk


and

Y =
[
y11 y12 · · · y1n1 · · · yk1 yk2 · · · yknk

]′
Now, we already know, from the specification of the random effects model, that τi ∼ N

(
0,σ2

τ

)
with i = 1, 2, . . . , k. Since this is the case we would therefore like to define prior distributions for
µ , σ2

e and σ2
τ . For the sake of convenience (since the posterior can then be expressed in hierarchical

form) though we will define the quantity

r̃ = σ2
τ

σ2
e

and then define prior distributions for µ , σ2
e and r̃ instead. In order to derive prior distributions for
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this though we first need to derive the integrated likelihood function, L
(
µ,σ2

e ,σ
2
τ |Y
)
. Theorems (1)

to (6) below all refer to the following model:

Y = µ1+Zτττ + e

where e ∼ N
(
0,σ2

e Iñ
)

and τττ ∼ N
(
0,σ2

τ Ik
)
.

All proofs of Theorems (1) to (7) can be found in Harvey (2012).

Theorem 1 The integrated likelihood function, L
(
µ,σ2

e ,σ
2
τ |Y
)

is given by the following:

L
(
µ,σ2

e ,σ
2
τ |Y
)

∝
(
σ

2
e
)− 1

2 (ñ−k) k

∏
i=1

(
1

niσ2
τ + σ2

e

) 1
2

exp

{
−1

2

[
ν1m1

σ2
e

+
k

∑
i=1

ni(ȳi•− µ)2

niσ2
τ + σ2

e

]}
(2)

Now, if r̃ = σ2
τ

σ2
e

then it follows that

L
(
µ,σ2

e , r̃|Y
)

∝
(
σ

2
e
)− 1

2 ñ k

∏
i=1

(
1

nir̃+ 1

) 1
2

exp

{
− 1

2σ2
e

[
ν1m1 +

k

∑
i=1

ni(ȳi•− µ)2

nir̃+ 1

]}
(3)

Given this result we can prove the following theorems:

Theorem 2 ȳi•|µ,σ2
e ,σ

2
τ ∼ N

(
µ ,

niσ
2
τ + σ2

e
ni

)
Theorem 3 The Fisher Information Matrix for the parameters

(
µ, r̃,σ2

e
)

is given by

F
(
µ, r̃,σ2

e
)
=


1

σ2
e

k
∑

i=1

ni
1+r̃ni

0 0

0 1
2

k
∑

i=1

n2
i

(1+r̃ni)
2

1
2σ2

e

k
∑

i=1

ni
1+r̃ni

0 1
2σ2

e

k
∑

i=1

ni
1+r̃ni

ñ
2

(
1

σ2
e

)2


In this article, two non-informative priors are compared, namely the Probability-matching and

Reference priors. These priors often lead to procedures with good frequentist properties while re-
taining the Bayesian flavor. The fact that the resulting posterior intervals of level 1−α are also
good frequentist intervals at the same level is a very desirable situation. An in depth discussion of
the nature and merits of the Reference and Probability-matching priors lies outside the scope of this
article, but the interested reader should consult Berger and Bernanrdo (1992) as well as Datta and
Ghosh (1995).

We derive the necessary prior distributions in the following theorems:

Theorem 4 The Probability-Matching Prior for the parameters
(
µ, r̃,σ2

e
)

is given by

P
(
µ, r̃,σ2

e
)

∝
1

σ2
e

 k

∑
i=1

n2
i

(1+ r̃ni)
2 −

1
n

(
k

∑
i=1

ni

1+ r̃ni

)2


1
2

(4)
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Theorem 5 The Reference Prior for the parameter groupings
(
µ, r̃,σ2

e
)
,
(
r̃, µ,σ2

e
)

and
(
r̃,σ2

e , µ
)

is given by

PR1

(
µ, r̃,σ2

e
)

∝
1

σ2
e

 k

∑
i=1

n2
i

(1+ r̃ni)
2 −

1
ñ

(
k

∑
i=1

ni

1+ r̃ni

)2


1
2

(5)

This is coincidentally the same as the Probability-Matching Prior and therefore the Probability-
Matching Prior is also the Reference Prior.

Theorem 6 The Reference Prior for the parameter groupings
(
µ,σ2

e , r̃
)
,
(
σ2

e ,µ, r̃
)

and
(
σ2

e , r̃,µ
)

is
given by

PR2

(
µ, σ

2
e , r̃

)
∝

1
σ2

e

{
k

∑
i=1

n2
i

(1+ r̃ni)
2

} 1
2

(6)

It should be evident that if we substitute n1 = n2 = . . . = nk = n and ñ = kn in equations (5)
and (6), i.e. assume we have the balanced case and if we transform r̃ back to σ2

τ , then equations (5)
and (6) become the Jeffreys Independence priors as used in Harvey and van der Merwe (2014).

3.1. Joint posterior distribution for µ , σ2
e and r̃

We are now able to examine the distribution of the posterior distribution of µ ,σ2
e and r̃. This is

based on the previous derivations and theorems that have been stated. From the formulation of the
Bayesian model we know the following:

p
(
µ, σ2

e , r̃| Y
)

∝ L
(
µ, σ2

e , r̃ | Y
)

p
(
µ, σ2

e , r̃
)

where

L
(
µ,σ2

e , r̃|Y
)

∝
(
σ2

e
)− 1

2 ñ k
∏
i=1

(
1

ni r̃+ 1

) 1
2

exp
{
− 1

2σ2
e

[
ν1m1 +

k
∑

i=1

ni(ȳi•− µ)2

ni r̃+ 1

]}

If we use the Probability-Matching prior as defined by equation (4), which is the same as the Ref-
erence prior for the first ordering of parameters as described in equation (5), then the joint posterior
distribution is given by:

PR1

(
µ, r̃,σ2

e |Y
)

∝

(
1

σ2
e

) 1
2 (ñ+2) k

∏
i=1

(
1

nir̃+ 1

) 1
2
× exp

{
− 1

2σ2
e

[
ν1m1 +

k

∑
i=1

ni(ȳi•− µ)2

nir̃+ 1

]}

×

 k

∑
i=1

n2
i

(1+ r̃ni)
2 −

1
n

(
k

∑
i=1

ni

1+ r̃ni

)2


1
2

(7)
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where

ν1m1 = SSE =
k
∑

i=1

ni
∑
j=1

(yi j− ȳi•)
2

From equation (7) it follows that the joint posterior can be expressed hierarchically as

PR1

(
µ, r̃,σ2

e |Y
)
= p

(
µ|Y, r̃,σ2

e
)
× p

(
σ2

e |r̃, Y
)
× p(r̃| Y)

where

µ|Y, r̃,σ2
e ∼ N

µ̂ , σ
2
e

(
k

∑
i=1

ni

1+ r̃ni

)−1
 . (8)

and

µ̂ =
∑

k
i=1 ȳi•

ni
1+r̃ni

∑
k
i=1

ni
1+r̃ni

In addition,

PR1

(
σ

2
e |r̃, Y

)
= K1

(
1

σ2
e

) 1
2 (ñ+1)

exp

{
− 1

2σ2
e

[
ν1m1 +

k

∑
i=1

ni(ȳi•− µ̂)2

nir̃+ 1

]}
(9)

which is an inverse Gamma distribution. Furthermore, we know that

K1 =

{
1
2

[
ν1m1 +

k
∑

i=1

ni(ȳi•− µ̂)2

ni r̃+ 1

]} 1
2 (ñ−1)

and

PR1 (r̃|Y) ∝

k

∏
i=1

(
1

nir̃+1

) 1
2
×

(
k

∑
i=1

ni

1+ r̃ni

)− 1
2

×

 k

∑
i=1

n2
i

(1+ r̃ni)
2 −

1
n

(
k

∑
i=1

ni

1+ r̃ni

)2


1
2

×

[
ν1m1 +

k

∑
i=1

ni(ȳi− µ̂)2

nir̃+1

]− 1
2 (n−1)

(10)

If we use the alternate ordering for parameters as described in equation (6) we find that the joint
posterior distribution has the same hierarchical structure, except that
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PR2 (r̃|Y) ∝

k

∏
i=1

(
1

nir̃+1

) 1
2
×

(
k

∑
i=1

ni

1+ r̃ni

)− 1
2

×

(
k

∑
i=1

n2
i

(1+ r̃ni)
2

) 1
2

×

[
ν1m1 +

k

∑
i=1

ni(ȳi•− µ̂)2

nir̃+1

]− 1
2 (n−1)

(11)

where 0 < r̃ < ∞.

Figure 1 depicts these two posterior distributions.

Figure 1: Two Reference Priors. Reference Prior 1 = Red; Reference Prior 2 = Blue.

*For further details see Harvey (2012) and van der Merwe, Pretorius and Meyer (2006).

Theorem 7 The posterior distribution of µ + τi given σ2
e and r̃ is normal with the following mean

and variance:

E
{
(µ + τi) | Y , σ2

e , r̃
}
= r̃ ni

1+r̃ni
ȳi•+

1
1+r̃ni

µ̂

and
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Var
{
(µ + τi) | Y , σ2

e , r̃
}
= σ2

e

{
r̃+ 1

1+r̃ni

(
k
∑

i=1

ni
1+r̃ni

)−1
}

From Theorem 7 it follows that

µ + τi +
1
2 σ2

e | Y , σ2
e , r̃

is distributed normally with mean

E
{(

µ + τi +
1
2

σ
2
e

)
| Y , σ

2
e , r̃

}
=

r̃ ni

1+ r̃ni
ȳi•+

1
1+ r̃ni

µ̂ +
1
2

σ
2
e (12)

and variance

Var
{(

µ + τi +
1
2

σ
2
e

)
| Y , σ

2
e , r̃

}
= σ

2
e

r̃+
1

1+ r̃ni

(
k

∑
i=1

ni

1+ r̃ni

)−1
 (13)

Now, we are interested in the posterior distribution of

exp
(

µ + τi +
σ2

e /2

)
(14)

for i = 1, 2, . . . , k, in other words, for each worker.

Given σ2
e and r̃ we can now simulate from (14) by simulating from a Normal Distribution with

mean and variance specified by equations (12) and (13) respectively. Using these results we are
able to simulate and test hypotheses for individuals (e.g. individual workers). The results will be
presented in later sections.

3.2. Procedure for simulation study

The purpose of this article is to describe the behaviour of the various prior distributions to the setting
described earlier. Although detailed descriptions will be given in relevant sections, here we offer a
broad description of the simulation of σ2

e and r̃ values from the distributions obtained in previous
sections, including the final simulation of µ , which will ultimately enable the simulation of quantities
such those as defined by equation (14). The simulation procedure can broadly be described as
follows:

1. Simulate a value for r̃ using either equation (10) or (11), based on the choice of prior distribu-
tion. Since neither (10) nor (11) is a known distribution and cannot be solved in closed form
the use of the Rejection method as described in Rice (1995) will be used.
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2. Each value of r̃ simulated in the previous step will then be substituted into equation (9) to
simulate a value of σ2

e . In this case the distribution is of a known form, i.e. an Inverse Gamma
distribution, and therefore we can simulate σ2

e by making use of the fact that:{
1

σ2
e

[
ν1m1 +

k
∑

i=1

ni(ȳi•− µ̂)2

ni r̃+ 1

]}
∼ χ2

n−1

It follows that a simulated value of σ2
e can be obtained from the equation

1
χ2

n−1

{[
ν1m1 +

k
∑

i=1

ni(ȳi•− µ̂)2

ni r̃+ 1

]}
= σ2

e

Using the values of σ2
e and r̃ simulated in the previous steps we can simulate values of µ (if

desired) from equation (8). All the desired quantities are based on these variables in some manner.

4. An upper confidence bound and test for the overall mean ex-
posure

In Krishnamoorthy and Guo (2005) one of the primary interests is testing the hypothesis of whether
the occupational exposure in an individual (discussed previously in (12) and (13)) or group of work-
ers exceeds a pre-specified or acceptable threshold. If we consider making inferences about the total
group, we are interested in the distribution of the Overall Mean Exposure, which for this unbalanced
case can be represented as:

µx = exp
{

µ +
σ2

e

2
(r̃+ 1)

}
= eθ (15)

Now we know from equation (8) that

µ|Y, r̃,σ2
e ∼ N

(
µ̂ , σ2

e

(
k
∑

i=1

ni
1+r̃ni

)−1
)

and therefore

θ = µ + σ2
e

2 (r̃+ 1) |Y, r̃,σ2
e ∼ N (E (θ) , Var (θ))

is distributed normally with the following mean and variance:

E (θ) = E
{

µ +
σ2

e

2
(r̃+ 1) |Y, r̃,σ2

e

}
= µ̂ +

σ2
e

2
(r̃+ 1) (16)
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Var (θ) = Var
{

µ +
σ2

e

2
(r̃+ 1) |Y, r̃,σ2

e

}
= σ

2
e

(
k

∑
i=1

ni

1+ r̃ni

)−1

(17)

Thus, given r̃ and σ2
e we simulate θ from a normal distribution with mean and variance defined

by (16) and (17) and substitute this into (15). We then repeat this process l (= 10000) times.

Additionally one of the objectives of the work by Krishnamoorthy and Guo (2005) was to test
hypotheses as to whether the overall exposure exceeds a certain limit. The authors also simulate the
following statistic (and inference regarding this statistic will be made using the Bayesian methodol-
ogy developed previously):

T = µ + Z1−Aστ +
1
2 σ2

e

where A is a suitably chosen parameter between 0 and 1 and Z ∼ N (0,1) is the density function
of the standard normal distribution. Using a specific value of OEL the following hypothesis can be
tested:

H0 : µ + Z1−Aστ +
1
2 σ2

e ≥ ln(OEL)

against the alternative hypothesis

H1 : µ + Z1−Aστ +
1
2 σ2

e < ln(OEL)

For example, if our choice of A is 0.05 then essentially we are testing (one-sided) whether at least
5% of the workers have mean exposure levels in excess of the chosen OEL. In practice the OEL is
chosen to be a clinically relevant value. The specific choice of OEL is not the primary concern of
this research, but primarily a demonstration of the Bayesian methodology.

In order to replicate the methodology of Krishnamoorthy and Guo (2005) from a Bayesian per-
spective the following simulation study was undertaken for a range of both OEL and A values:

Let T = µ + σ2
e
( 1

2 + Z1−Ar̃
)

We know that T | Y, r̃,σ2
e is distributed normally with:

E
{

T | Y, r̃,σ2
e
}
∼ µ̂ + σ2

e
( 1

2 + Z1−Ar̃
)

and

Var
{

T |Y, r̃,σ2
e
}
∼ σ2

e

(
k
∑

i=1

ni
1+r̃ni

)−1

This procedure was performed for several choices of OEL (= [130; 140; 150; 160; 170; 180])
and for several choices of A (= [0.1; 0.05; 0.025; 0.001]), as was done in Harvey and van der Merwe
(2014).
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5. Results from the simulation study

Using the methodology derived previously a simulation study was conducted to simulate 10000
observations for each particular type of analysis. Using the unbalanced data provided in Table 2 we
were able to simulate observations relating to occupational exposure in the workplace. Since two
Reference priors were derived the simulations were repeated for each of these Reference priors. The
results are presented in the following sections.

5.1. Results: Individual worker means

As mentioned it was possible to simulate observations from the posterior distribution for each of the
15 workers, using both Reference priors. Selected results will be shown here for the purposes of
illustration. Simulation results for all 15 workers can be found in Harvey (2012).

From Tables 3 and 4 we can see that the results from the first and second Reference priors are
comparable, with no large differences between the various Reference priors.

The effect of “unbalancing”has largely been minimized. For example, workers 4 and 11 both
had comparable mean exposure levels (55.98 and 55.7 respectively), but were at the two extremes
(in this hypothetical data set) with regards to unbalancing (worker 4 had 10 exposure observations,
while worker 11 only had 6 observations). It is interesting to note though that in both cases the
probability of exceeding the OEL of 130 was 0.0001 (based on 10000 simulated observations). It
thus appears that the Bayesian methodology is stable with regards to unbalanced data, particularly
at a worker-specific level.

Table 3: Simulation Summary Results: Reference Prior 1.

Worker P(µexposure > 130) 90% CI 95% CI Mean Median Mode
Low High Low High

Worker 4 0.0001 50.34 72.64 47.29 76.177 61.62 61.71 63.25
Worker 11 0.0001 51.48 74.27 48.33 77.76 63.17 63.19 61.75

Table 4: Simulation Summary Results: Reference Prior 2.

Worker P(µexposure > 130) 90% CI 95% CI Mean Median Mode
Low High Low High

Worker 4 0.0002 50.05 72.90 47.35 76.42 61.59 61.61 62.75
Worker 11 0.0001 51.24 74.07 48.18 77.50 63.15 63.28 64.25



14 HARVEY & VAN DER MERWE

5.2. Results: Overall mean exposure

The next result relates to the overall mean exposure, that is the exposure of the group of 15 workers
as a whole. The results in Table 5 and Figures 2 and 3 were obtained for the two Reference prior
distributions (the relevant information for each histogram is displayed in the Table 5).

Figure 2: Overall Mean Exposure: Reference Prior 1

Table 5: Simulation Summary Results of Overall Mean Exposure

All Workers P(µexposure > 130) 90% CI 95% CI Mean Median Mode
Low High Low High

Reference Prior 1 0.0001 96.75 105.04 96.43 107.04 99.89 99.27 98.75
Reference Prior 2 0.0001 96.73 105.07 96.39 107.11 99.86 99.24 98.25

The results from Table 5 as well as Figures 2 and 3 are based on 20000 simulations. We see very
little difference between the two Reference prior distributions.

5.3. Results: Hypothesis testing

Lastly, and perhaps most importantly, Krishnamoorthy and Guo (2005) tested hypotheses regarding
the group of workers using the following measure:
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Figure 3: Overall Mean Exposure: Reference Prior 2

T = µ + Z1−Aστ +
1
2 σ2

e

where A is a suitably chosen parameter between 0 and 1 and Z denotes the standard normal
distribution. So, for example, if our choice of A is 0.05 then essentially we are testing (one-sided)
whether at least 5% of the workers have mean exposure levels in excess of the chosen OEL.

Several different values of A were chosen in addition to several different OEL limits. The results
in Figure 4 are once again produced for both Reference prior distributions.

What is interesting to note is that compared to results obtained in Harvey and van der Merwe
(2014), of which this article is merely an extension to the unbalanced case, the distributions in the
unbalanced case are more skewed, with longer tails. From Figure 4 we can see that only 0.1% or
more of workers had occupational exposure levels in excess of 5.1713 and 5.169 (99.9th percentile)
respectively for Reference priors 1 and 2, which corresponds to an OEL of roughly 164.

6. Conclusion

In this article the usefulness of the Bayesian methodology to the proposed setting of occupational
exposure data was examined, specifically for the case where there are an unequal number of obser-
vations for each worker. The one-way random effects model was adapted to account for unbalanced
data using the chosen prior distributions. One of the advantages of the Bayesian model is that it is
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Figure 4: Hypothesis Testing for Reference Priors 1 (above) 2 (below): A = 0.001

100(1−α) th percentile = 5.1713 (Prior 1)

100(1−α) th percentile = 5.1690 (Prior 2)

able to model results for individual workers and not simply for an unknown future worker. Only a
few non-informative prior distributions have been derived in this article, but they do by no means
represent an exhaustive list. The derivation and comparison of all possible prior distributions was
not an objective of this research. However, the derivation and application of other non-informative
priors could be used to refine the analysis and improve performance. Ultimately, if subjective prior
information is available this could lead to significant improvements in prediction of future exposure
for individual workers as well as for groups of workers.
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