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Abstract

By using the data and results obtained by Kang, Lee, Seong, and Hawkins
[7], a Bayesian procedure is applied to obtain control limits for the coe�cient
of variation. Reference and probability matching priors are derived for the
coe�cient of variation in the case of pooled samples. By simulating the posterior
predictive density function of a future coe�cient of variation it is shown that the
control limits are e�ectively identical to those obtained by Kang et al. [7]. This
article illustrates the �exibility and unique features of the Bayesian simulation
method for obtaining posterior distributions, predictive intervals and run lengths
in the case of the coe�cient of variation.

Keywords: coe�cient of variation, control charts, reference prior,
probability-matching prior

1. Introduction

The monitoring of variability is a vital part of modern statistical process
control (SPC). Shewart control charts are widely used SPC tools for detecting
changes in the quality of a process. In most settings where the process is under
control the process have readings that have a constant mean (µ) and constant
variance (σ2). In such settings the X̄ chart is usually used to monitor the mean,
and the R and S control charts the variance of the process.

In practice there are some situations though where the mean is not a constant
and the usual SPC control reduces to the monitoring of the variability alone.
As a further complication it sometimes happens that the variance of the process
is a function of the mean. In these situations the usual R and S charts can also
not be used.

The proposed remedy depends on the nature of the relationship between
the mean and the variance of the process. One common relationship that we
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will look at is that the mean and standard deviation of the process is directly
proportional so that the coe�cient of variation

γ =
σ

µ
(1)

is a constant. According to Kang, Lee, Seong, and Hawkins [7] this is often
the case in medical research. By using frequentist methods they developed a
Shewart control chart, equivalent to the S chart, for monitoring the coe�cient
of variation using rational groups of observations. The chart is a time-ordered
plot of the coe�cient of variation for successive samples. It contains three lines:

• A center line;

• The upper control limit (UCL);

• The lower control limit (LCL).

By using the predictive distribution, a Bayesian procedure will be developed to
obtain control limits for a future sample coe�cient of variation. These limits
will be compared to the classical limits obtained by Kang et al. [7].

Bayarri and García-Donato [2] give the following reasons for recommending
a Bayesian analysis:

• Control charts are based on future observations and Bayesian methods are
very natural for prediction.

• Uncertainty in the estimation of the unknown parameters is adequately
handled.

• Implementation with complicated models and in a sequential scenario
poses no methodological di�culty, the numerical di�culties are easily han-
dled via Monte Carlo methods;

• Objective Bayesian analysis is possible without introduction of external
information other than the model, but any kind of prior information can
be incorporated into the analysis, if desired.

2. Frequentist Methods

Assume that Xi (i = 1, 2, . . . , n) are independently, identically normally dis-
tributed with mean µ and variance σ2. X̄ = 1

n

∑n
i=1Xi is the sample mean

and S2 = 1
n−1

∑n
i=1

(
Xi − X̄

)2
is the sample variance. The sample coe�cient

of variation is de�ned as

W =
S

X̄

Kang et al. [7] suggested a control chart for the sample coe�cient of variation,
similar to that of the X̄, R and S charts. They proposed two methods in
developing these charts:
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1. The use of the non-central t distribution;

2. The use of the canonical form of the distribution of the coe�cient of
variation.

It can be noted that

T =

√
nX̄

S
=
√
nW−1

follows a non-central t distribution with (n− 1) degrees of freedom and non-

centrality parameter,
√
n
γ . The cumulative distribution function of the coe�cient

of variation can therefore be computed from the non-central t distribution.
In what follows, a more general distribution (than the canonical form of

Kang et al. [7]) will be given for W = S
X̄
. Using a Bayesian procedure this

distribution will be used for prediction purposes:

f (w|γ) =


A(w)

(n+fw2)
f+1
2

If

(
n

γ(n+fw2)0.5

)
, w ≥ 0

(−1)f−1A(w)

(n+fw2)
f+1
2

If

(
n

γ(n+fw2)0.5

)
, w < 0

(2)

where γ = σ
µ , f = n− 1,

A (w|γ) =
f

f
2
√
nwf−1

2
1
2 (f−2)Γ

(
f
2

)√
2π

exp

{
−

1
2

(
nfw2

)
γ2 (n+ fw2)

}

and

If

(
n

γ (n+ fw2)
0.5

)
=

ˆ ∞
0

qf exp

{
−1

2

[
q − n

γ (n+ fw2)
1
2

]}
dq

is the Airy function (Iglewicz [6]).

2.1. The Data

The example used by Kang et al. [7] was that of patients undergoing organ
transplantation, for which Cyclosporine is administered. For patients under-
going immunosuppressive treatment, it is vital to control the amount of drug
circulating in the body. For this reason frequent blood assays were taken to �nd
the best drug stabilizing level for each patient. The dataset consist of m = 105
patients and the number of assays obtained for each patient is n = 5. By doing
a regression test they con�rmed that there is no evidence that the coe�cient
of variation depends on the mean which means that the assumption of a con-
stant coe�cient of variation is appropriate. They used the weighted root mean

square estimator γ̂ =
√

1
m

∑m
i=1 w

2
i =

√
0.593515

105 = 0.075 to pool the samples

for estimating γ. By substituting γ̂ in equation (2) and by calculating the lower
and upper 1

740 percentage points, they obtained a LCL = 0.01218 and UCL =
0.15957. The chart was then applied to a fresh data set of 35 samples from a
di�erent laboratory.
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3. Bayesian Procedure

Since �ve observations per patient is quite small, groups of �ve patients will
be pooled together to implement the Bayesian procedure. Based on similar
means, as presented in AppendixA, the results of the �rst �ve patients will
therefore be pooled together, similar the results of the second �ve patients and
so forth. k = 21 new groups are therefore formed.

By assigning a prior distribution tot he unknown parameters the uncertainty
in the estimation of the unknown parameters can adequately be handled. The
information contained in the prior is combined with the likelihood to obtain the
posterior distribution of γ. By using the posterior distribution the predictive
distribution of a future coe�cient of variation can be obtained. The predictive
distribution on the other hand can be used to determine the distribution of the
�run length�. Determination of reasonable non-informative priors is however not
an easy task. Therefore, in the next section, reference and probability matching
priors will be derived for the coe�cient of variation in the case of pooled samples.

4. Reference and Probability-Matching Priors for the Coe�cient of

Variation in the Case of Pooled Samples

As mentioned the Bayesian paradigm emerges as attractive in many types
of statistical problems, also in the case of the coe�cient of variation.

Prior distributions are needed to complete the Bayesian speci�cation of the
model. Determination of reasonable non-informative priors in multi-parameter
problems is not easy; common non-informative priors, such as the Je�reys' prior
can have features that have an unexpectedly dramatic e�ect on the posterior.

Reference and probability-matching priors often lead to procedures with
good frequency properties while returning to the Bayesian �avour. The fact
that the resulting Bayesian posterior intervals of the level 1 − α are also good
frequentist intervals at the same level is a very desirable situation.

See also Bayarri and Berger [1] and Severine, Mukerjee, and Ghosh [13] for
a general discussion.

4.1. The Reference Prior

In this section the reference prior of Berger and Bernardo [3] will be derived
for the coe�cient of variation in the case of pooled samples. In general, the
derivation depends on the ordering of the parameters and how the parameter
vector is divided into sub-vectors. As mentioned by Pearn and Wu [12] the
reference prior maximizes the di�erence in information (entropy) about the pa-
rameter provided by the prior and posterior. In other words, the reference prior
is derived in such a way that it provides as little information possible about the
parameter of interest. The reference prior algorithm is relatively complicated
and, as mentioned, the solution depends on the ordering of the parameters and
how the parameter vector is partitioned into sub-vectors. In spite of these di�-
culties, there is growing evidence, mainly through examples that reference priors
provide �sensible� answers from a Bayesian point of view and that frequentist



4 REFERENCE AND PROBABILITY-MATCHING PRIORS 5

properties of inference from reference posteriors are asymptotically �good�. As
in the case of the Je�reys' prior, the reference prior is obtained from the Fisher
information matrix. In the case of a scalar parameter, the reference prior is the
Je�reys' prior.

Berger, Liseo, and Wolpert [4] derived the reference prior for the coe�cient
of variation in the case of a single sample. From the medical example given
in Kang et al. [7] it is clear that the standard deviation of measurements is
approximately proportional to the mean; that is, the coe�cient of variation is
constant across the range of means, which is an indication that the a reference
prior for a pooled coe�cient of variation should be derived.

Theorem 1. Let xplm̃ ∼ N
(
µm̃, σ

2
m̃

)
where p = 1, 2, ..., p̃, l = 1, 2, ..., l̃, m̃ =

1, 2, ..., k and the coe�cient of variation is γ = σ1

µ1
= σ2

µ2
= ... = σk

µk
.

The reference prior for the ordering
{
γ;
(
σ2

1 , σ
2
2 , ..., σ

2
k

)}
is given by

pR
(
γ, σ2

1 , σ
2
2 , ..., σ

2
k

)
∝ 1

|γ|
√
γ2 + 1

2

k∏
m̃=1

σ−2
m̃

Proof. The proof is given in AppendixB.

Note: The ordering
{
γ;
(
σ2

1 , σ
2
2 , . . . , σ

2
k

)}
means that the coe�cient of vari-

ation is the most important parameter while the k variance components are of
equal importance, but not as important as γ. Also, if k = 1, equation (B.1)
simpli�es to the reference prior obtained by Berger et al. [4].

4.2. Probability-Matching Priors

The reference prior algorithm is but one way to obtain a useful non-informative
prior. Another type of non-informative prior is the probability-matching prior.
This prior has good frequentist properties. Two reasons for using probability-
matching priors are that they provide a method for constructing accurate fre-
quentist intervals, and that they could be potentially useful for comparative
purposes in a Bayesian analysis.

There are two methods for generating probability-matching priors due to
Tibshirani [14] and Datta and Ghosh [5].

Tibshirani [14] generated probability-matching priors by transforming the
model parameters so that the parameter of interest is orthogonal to the other
parameters. The prior distribution is then taken to be proportional to the
square root of the upper left element of the information matrix in the new
parametrization.

Datta and Ghosh [5] provided a di�erent solution to the problem of �nding
probability-matching priors. They derived the di�erential equation that a prior
must satisfy if the posterior probability of a one-sided credibility interval for a
parametric function and its frequentist probability agree up to O

(
n−1

)
where

n is the sample size.
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According to Datta and Ghosh [5] p (θ) is a probability-matching prior for

θ =
[
γ, σ2

1 , σ
2
2 , . . . , σ

2
k

]′
the vector of unknown parameters, if the following dif-

ferential equation is satis�ed:

k+1∑
α=1

∂

∂θα
{Υα (θ) p (θ)} = 0

where

Υ (θ) =
F−1 (θ)∇t (θ)√
∇′t (θ)F−1 (θ)∇t (θ)

=
[

Υ1 (θ) Υ2 (θ) · · · Υk+1 (θ)
]′

and

∇t (θ) =
[

∂
∂θ1

t (θ) ∂
∂θ2

t (θ) · · · ∂
∂θk+1

t (θ)
]′
.

t (θ) is a function of θ and F−1 (θ) is the inverse of the Fisher information
matrix.

Theorem 2. The probability-matching prior for the coe�cient of variation γ
and the variance components is given by

pM
(
γ, σ2

1 , σ
2
2 , . . . , σ

2
k

)
∝ 1

|γ| (1 + 2γ2)
1
2

k∏
m̃=1

σ−2
m̃ =

1

|γ|
√
γ2 + 1

2

k∏
m̃

σ−2
m̃

Proof. The proof is provided in AppendixC.

From Theorems 1 and 2 it is clear that the reference and probability-matching
priors are equal.

4.3. The Joint Posterior Distribution

By combining the prior with the likelihood the joint posterior distribution
of γ, σ2

1 , σ
2
2 , . . . , σ

2
k can be obtained.

p
(
γ, σ2

1 , σ
2
2 , . . . , σ

2
k|data

)
∝

k∏
m̃=1

(
σ2
m̃

)−n∗
2 exp

{
− 1

2σ2
m̃

[
n∗
(
x̄m̃ −

σm̃
γ

)2

+ vm̃s
2
m̃

]}
1

|γ| (1 + 2γ2)
1
2

k∏
m̃=1

σ−2
m̃

(3)
The conditional posterior distributions are given by

p
(
γ|σ2

1 , σ
2
2 , . . . , σ

2
k, data

)
∝ 1

|γ| (1 + 2γ2)
1
2

exp

{
−

k∑
m̃=1

1

2σ2
m̃

[
n∗
(
x̄m̃ −

σm̃
γ

)2
]}

(4)
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p
(
σ2

1 , σ
2
2 , . . . , σ

2
k|γ, data

)
∝

k∏
m̃=1

(
σ2
m̃

)− 1
2 (n∗+2)

exp

{
− 1

2σ2
m̃

[
n∗
(
x̄m̃ −

σm̃
γ

)2

+ vm̃s
2
m̃

]}
(5)

For the medical example, p̃ = 5, l̃ = 5, n∗ = p̃l̃ = 25 and k = 21. As
mentioned the reason for the pooling is that �ve observations per patient is
quite small.

By using the conditional posterior distributions (equations [4] and [5]) and
Gibbs sampling the unconditional posterior distribution of the coe�cient of
variation, p (γ|data) can be obtained as illustrated in Figure 1.

Figure 1: Histogram of the Posterior-Distribution of γ = σ
µ

mean (γ) = 0.0751, median (γ) = 0.0750, mode (γ) = 0.0748,
var (γ) = 5.951e−6

95% equal-tail interval = (0.0705; 0.0800), length 0.00942
95% HDP interval =(0.07048; 0.07989), length 0.00941

From a frequentist point of view Kang et al. [7] mentioned that the best
way to pool the sample coe�cients of variation is to calculate the weighted root

mean square γ̂ =
√

1
mt

∑
i w

2
i =

√
1

105 (0.593515) = 0.075.

It is interesting to note that the weighted root mean square value is equal
to the mean (median) of the posterior distribution of γ.

By substituting each of the simulated γ values of the posterior distribu-
tion into the conditional predictive density f (w|γ) and using the Rao-Blackwell
procedure the unconditional posterior predictive density f (w|data) of a future
sample coe�cient of variation can be obtained. This is illustrated in Figure 2
for n = 5.
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Figure 2: Predictive Density f (w|data) for n = 5

mean (w) = 0.0705, median (w) = 0.0686, mode (w) = 0.0647,
var (w) = 6.6743e−6

95% equal-tail interval = (0.0259; 0.1260), length = 0.1001
95% HDP interval = (0.0220; 0.1207), length = 0.0987

99.73% equal-tail interval = (0.0121; 0.1602), length = 0.1481
99.73% HDP interval = (0.0086; 0.1546), length = 0.1460

Kang et al. [7] calculated lower (LCL=0.01218) and upper (UCL=0.15957)
control limits which are for all practical purposes the same as the 99.73% equal-
tail prediction interval.

Kang et al. [7] then applied their control chart to a new dataset of 35 patients
from a di�erent laboratory. Eight of the patients' coe�cient of variation (based
on �ve observations) lie outside the control limits. Since the 99.73% equal-tail
prediction interval is e�ectively identical to the control limits of Kang et al. [7]
our conclusions are the same.

As mentioned the rejection region of size α (α = 0.0027) for the predictive
distribution is

α =

ˆ
R(α)

p (w|data) dw.

In the case of the equal-tail interval, R (α) represents those values of w that
are smaller than 0.0121 or larger than 0.1602.

Assuming that the process remains stable, the predictive distribution can be
used to derive the distribution of the �run length� or �average run length�. The
�run length� is de�ned as the number of future coe�cients of variation, r until
the control chart signals for the �rst time. (Note that r does not include the
coe�cient of variation when the control chart signals.) Given γ and a stable
Phase I process, the distribution of the run length r is geometric with parameter

Ψ (γ) =

ˆ
R(α)

f (w|γ) dw

where f (w|γ) is the distribution of the sample coe�cient of variation given γ
as de�ned in equation (2).
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The value of γ is of course unknown and the uncertainty is described by the
posterior distribution.

The predictive distribution of the �run length� or the �average run length�
can therefore be easily simulated. The mean and second moment about zero of
r given γ are given by

E (r|γ) =
1

Ψ (γ)

and

E
(
r2|γ

)
=

2−Ψ (γ)

Ψ (γ)

The unconditional moments E (r|data), E
(
r2|data

)
and V ar (r|data) can

therefore easily obtained by simulation or numerical integration. For further
details see Menzefricke [8, 9, 10, 11].

In Figure 3 the predictive distribution of the �run length� is displayed and
in Figure 4, the distribution of the �average run length� is given.

Figure 3: Predictive Distribution of the Run Length p (r|data) for n = 5

E (r|data) = 392.7419, Median (r|data) = 265, V ar (r|data) = 1.6379e5

95% Equal-tail Interval = (8; 1487), Length = 1479
95% HDP Interval = (0; 1196), Length = 1196

As mentioned for given γ, the run length r is geometric with parameter
Ψ (γ). The unconditional run length displayed in Figure 3 is therefore obtained
using the Rao-Blackwell method, i.e., it is the average of the conditional run
lengths.
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Figure 4: Distribution of thee Expected Run Length

Mean = 392.7488, Median = 402.4477, Variance = 4.9863e3

95% Equal-tail Interval = (237.42; 495.26), Length = 257.85
95% HDP Interval = (262.95; 497.74), Length = 234.79

From Figure 3 it can be seen that the expected run length, E (r|data) =
392.74, is somewhat larger than the ARL of 370 given by Kang et al. [7]. The
median run length Median (r|data) = 265 is smaller than he mean run length.
This is clear from the skewness of the distribution.

In the case of the HDP limits, R̃ (α) represents those values of w that are
smaller than 0.0086 and larger than 0.1546. The predictive distribution of the
run length is illustrated in Figure 5 while the distribution of the average run
length is given in Figure 6.

Figure 5: Predictive Distribution of the Run Length in the Case of HDP Limits

E (r|data) = 425.8417, Median(r|data) = 267.7, V ar (r|data) = 2.3200e5

95% Equal-tail Interval = (8.35; 1750.20), Length = 1741.85
95% HDP Interval = (0; 1363.08), Length = 1363.08
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Figure 6: Distribution of the Expected Run Length for HDP Limits

Mean = 426.2723, Median = 400.5495, Variance = 2.7102e4

95% Equal-tail Interval = (180.74; 820.17), Length = 639.43
95% HDP Interval = (169.39; 789.76), Length = 620.37

A comparison of Figure (3) and Figure (5) show that the median run length
for equal tail and HDP limits are more or less the same.

5. Conclusion

This paper develops a Bayesian control chart for monitoring the coe�cient
of variation in the case of pooled samples. In the Bayesian approach prior
knowledge about the unknown parameters is formally incorporated into the
process of inference by assigning a prior distribution to the parameters. The
information contained in the prior is combined with the likelihood function
to obtain the posterior distribution. By using the posterior distribution the
predictive distribution of a future coe�cient of variation can be obtained.

Determination of reasonable non-informative priors in multi-parameter prob-
lems is not an easy task. The Je�reys' prior for example can have a bad e�ect
on the posterior distribution. Reference and probability matching priors are
therefore derived for the coe�cient of variation int he case of pooled samples.
The theory and results are applied to a real problem of patients undergoing
organ transplantation for which Cyclosporine is administered. This problem is
discussed in detail by Kang et al. [7]. The 99.73% equal tail prediction interval
of a future coe�cient of variation is e�ectively identical to the lower and upper
control chart limits calculated by Kang et al. [7].

The example illustrates the �exibility and unique features of the Bayesian
simulation method for obtaining posterior distributions, prediction intervals and
run lengths.
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AppendixA. Data for Medical Example

m X W m X W m X W

1 31.7 12.4 36 120.3 5.8 71 361.4 8.3
2 37.7 15.3 37 143.7 5.6 72 361.5 13.4
3 40.6 9.1 38 148.6 5.5 73 361.8 6.1
4 50.5 4.6 39 149.1 3.1 74 374.6 5.8
5 52 10.5 40 149.9 2 75 376.3 2.8

6 57.6 6.2 41 151 4.4 76 382.3 5.8
7 58.3 6.6 42 153.6 6.6 77 401.7 7.3
8 58.9 8.4 43 172.2 7.2 78 415.2 15.1
9 61.2 8.1 44 179.8 7.9 79 428.8 4.5
10 64.3 7 45 185.3 7.6 80 442.1 9.9

11 64.5 8.8 46 192.1 5.3 81 450.1 7.4
12 65.6 4.1 47 193.8 5.9 82 496.5 4.8
13 68 3.7 48 195.1 11 83 499.7 10
14 71.8 6.2 49 195.2 5.1 84 504.6 8.4
15 72.1 8.4 50 195.4 9.4 85 523.1 5

16 78.4 6.8 51 196.4 5.6 86 531.7 8.5
17 78.4 4.6 52 199.6 6.8 87 556.4 11.8
18 79.5 5.7 53 204.4 3.7 88 571.4 5.9
19 83.2 10.5 54 207.8 12.4 89 584.1 8.3
20 85.1 4.8 55 219 7.6 90 597.6 4.2

21 85.6 5.4 56 222.9 4.8 91 606.2 8.2
22 86 10.1 57 225.1 5.7 92 609 9.7
23 87.3 7.9 58 227.6 6.5 93 635.4 5.6
24 89.1 10.3 59 240.5 3.8 94 672.2 7.2
25 95.4 6.2 60 241.1 8.4 95 695.9 2.7

26 101.9 4.8 61 252.2 8.3 96 696.4 10.6
27 105.4 5.6 62 262.2 5.8 97 721.3 9.8
28 107.2 2.2 63 277.9 8.7 98 752 4.2
29 108.2 3.3 64 278.3 6.2 99 769.5 9.7
30 112 8.7 65 303.4 8.8 100 772.7 9.6

31 112.3 5.7 66 309.7 3.9 101 791.6 2
32 113.5 9.4 67 323.9 4.1 102 799.9 11.4
33 114.3 3.5 68 328.7 4.1 103 948.6 5.2
34 116.8 6 69 341.2 6.5 104 971.8 11.1
35 117.8 5.7 70 347.3 4.9 105 991.2 8.8

AppendixB. Proof of Theorem 1

Proof. The likelihood function is given by
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L
(
γ, σ2

1 , σ
2
2 , ..., σ

2
k|data

)
∝

k∏
m̃=1

(
σ2
m̃

)−n∗
2 exp

{
− 1

2σ2
m̃

[
n∗
(
x̄m̃ −

σm̃
γ

)2

+ vm̃s
2
m̃

]}

where

x̄m̃ =
1

n∗

l̃∑
l=1

p̃∑
p=1

xplm̃

vm̃s
2
m̃ =

l̃∑
l=1

p̃∑
p=1

x2
plm̃ − n∗x̄2

m̃

and

n∗ = p̃l̃.

By di�erentiating the log likelihood function, l∗, twice with respect to the
unknown parameters and taking expected values the Fisher information matrix
can be obtained.

l∗ = logL
(
γ, σ2

1 , σ
2
2 , ..., σ

2
k|data

)
= −n

∗

2

k∑
m̃=1

log σ2
m̃−

1

2

k∑
m̃=1

1

σ2
m̃

[
n∗
(
x̄m̃ −

σm̃
γ

)2

+ vm̃s
2
m̃

]

and

∂2l∗

(∂σ2
m̃)

2 =
n∗

2

(
1

σ2
m̃

)2

− 2n∗x̄2
m̃

2 (σ2
m̃)

3 +
3n∗x̄m
4γσ5

m̃

− vm̃s
2
m̃

(σ2
m̃)

3 .

Therefore

−E

[
∂2l∗

(∂σ2
m̃)

2

]
=
n∗

2

(
1

σ2
m̃

)2{
1 +

1

2γ2

}
where m̃ = 1, 2, ..., k.

Also

−E
[

∂2l∗

∂σ2
m̃∂σ

2
m∗

]
= 0 where m̃ = 1, 2, ..., k, m∗ = 1, 2, ..., k and m̃ 6= m∗.

Further

∂2l∗

(∂γ)
2 =

k∑
m̃=1

(
2n∗x̄m
σm̃γ3

− 3n∗

γ4

)
and
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−E

[
∂2l∗

(∂γ)
2

]
=
kn∗

γ4

If we di�erentiate l∗ with respect to σ2
m̃ and γ we get

∂2l∗

∂σ2
m̃∂γ

=
n∗x̄m̃
2γ2σ3

m̃

and

−E
[
∂2l∗

∂σ2
m̃∂γ

]
=
−n∗

2γ3σ2
m̃

.

The Fisher information matrix then follows as

F
(
γ, σ2

1 , σ
2
2 , ..., σ

2
k

)
=

[
F11 F12

F21 F22

]
where

F11 =
kn∗

γ4
, F12 = F

′

21 =
[
−n∗

2γ3σ2
1

−n∗
2γ3σ2

2
· · · −n∗

2γ3σ2
k

]
and

F22 =



n∗

2

(
1
σ2
1

)2 {
1 + 1

2γ2

}
0 · · · 0

0 n∗

2

(
1
σ2
2

)2 {
1 + 1

2γ2

}
· · · 0

...
...

. . .
...

0 0 · · · n∗

2

(
1
σ2
k

)2 {
1 + 1

2γ2

}


.

To calculate the reference prior for the ordering
{
γ;
(
σ2

1 , σ
2
2 , . . . , σ

2
k

)}
we

must �rst calculate F11·2 and then |F22|. Now

F11·2 = F11 − F12F
−1
22 F21 =

kn∗

γ4
− kn∗2

22 (γ3)
2

4γ2

n∗ (2γ2 + 1)
=

2kn∗

γ2 (2γ2 + 1)
= h1

and

p (γ) ∝ h
1
2
1 ∝

1

|γ|
√
γ2 + 1

2

.

Also

|F22| =
(
n∗

2

{
1 +

1

2γ2

})k k∏
m̃=1

(
1

σ2
m̃

)2

= h2
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which means that

p
(
σ2

1 , σ
2
2 , . . . , σ

2
k|γ
)
∝ h

1
2
2 ∝

k∏
m̃

(
1

σ2
m̃

)
.

Therefore the reference prior for the ordering
{
γ;
(
σ2

1 , σ
2
2 , . . . , σ

2
k

)}
is

pR
(
γ, σ2

1 , σ
2
2 , . . . , σ

2
k

)
= p (γ) p

(
σ2

1 , σ
2
2 , . . . , σ

2
k|γ
)
∝ 1

|γ|
√
γ2 + 1

2

k∏
m̃=1

σ−2
m̃ .

(B.1)

AppendixC. Proof of Theorem 2

Proof. Using the previously derived Fisher information matrix we can calculate

F−1 (θ) = F−1
(
γ, σ2

1 , σ
2
2 , . . . , σ

2
k

)
=


F 11 F 12 F 13 · · · F 1,k+1

F 21 F 22 F 23 · · · F 2,k+1

...
...

...
. . .

...
F k+1,1 F k+1,2 F k+1,3 · · · F k+1,k+1

 .
Let

t (θ) = t
(
γ, σ2

1 , σ
2
2 , . . . , σ

2
k

)
= γ.

Since

∇
′
(θ) =

[
∂
∂γ t (θ) ∂

∂σ2
1
t (θ) · · · ∂

∂σ2
k

t (θ)
]

=
[

1 0 · · · 0
]

we have that

∇′ (θ) =
[
F 11 F 12 · · · F 1,k+1

]
=

[
γ2(1+2γ2)

2n∗k
γσ2

1

n∗k
γσ2

2

n∗k · · · γσ2
k

n∗k

]
and

√
∇′t (θ)F−1 (θ)∇t (θ) =

{
γ2
(
1 + 2γ2

)
2n∗k

} 1
2

.

Further

Υ
′
(θ) =

∇′t (θ)F−1 (θ)√
∇′t (θ)F−1 (θ)∇t (θ)

=
[

Υ1 (θ) Υ2 (θ) · · · Υk+1 (θ)
]
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where

Υ1 (θ) =
γ
(
1 + 2γ2

) 1
2

(2n∗k)
1
2

,

Υ2 (θ) =
(2)

1
2 σ2

1

{n∗k (1 + 2γ2)}
1
2

,

Υ3 (θ) =
(2)

1
2 σ2

2

{n∗k (1 + 2γ2)}
1
2

and

Υk+1 (θ) =
(2)

1
2 σ2

k

{n∗k (1 + 2γ2)}
1
2

.

The prior

pM (θ) = pM
(
γ, σ2

1 , σ
2
2 , . . . , σ

2
k

)
∝ 1

|γ| (1 + 2γ2)
1
2

k∏
m̃=1

σ−2
m̃ (C.1)

is therefore a probability-matching prior since

∂

∂γ
{Υ1 (θ) pM (θ)}+

∂

∂σ2
1

{Υ2 (θ) pM (θ)}+ · · ·+ ∂

∂σ2
k

{Υk+1 (θ) pM (θ)} = 0.
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