
 

 1 

 

Statistical Classification of Languages: Generalising Ward’s Method for Use with 

Manhattan Distances 

T Strauss, MJ von Maltitz 

Department of Mathematical Statistics and Actuarial Science, Faculty of Natural and 

Agricultural Sciences, University of the Free State, Bloemfontein, South Africa 

 

Corresponding author: MJ von Maltitz 

 



 

 2 

Abstract 

The question arises whether it is possible to autonomously classify languages without any 

prior linguistic knowledge or assumptions.  We perform statistical analyses on languages 

using methods normally applied to biology and genetics classification.  We are concerned 

with the differences in character traits between languages and use a Statistical Language 

Signature based on relative di-gram frequencies to calculate a distance matrix between 32 

Indo-European languages. We then use hierarchical clustering methods to classify the 

languages.  We expand on existing theory by evaluating clustering methods and seek the 

most suitable method for classifying the languages.  We identify the Manhattan distance as 

the most appropriate distance measure and Ward’s linkage method as the most suitable 

linkage method.  However, application of Ward’s linkage method is limited to the Euclidean 

distance measure.  We extend Ward’s method to Manhattan distances and confirm that it is 

possible to autonomously classify languages without any prior linguistic knowledge or 

assumptions. 
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1. Introduction 

The question arises whether groupings of languages, similarities between languages and 

language traits well known in the field of linguistics can be extracted or independently 

observed using unsupervised machine learning techniques; that is, whether it is possible to 

autonomously classify languages without any prior linguistic knowledge or assumptions.  In 

this paper, we discuss methods of numerical biological classification.  We assume that 

languages can be classified in a similar way to natural organisms, and we are able to classify 

languages by means of these numerical biological classification methods.  

Schleicher (1848) observed that languages change over time and follow the same trends as 

Darwin suggested for biological organisms in terms of evolution and change (Schleicher, 

1863:13).  Taub (1993:176) considers Schleicher’s “classification of languages into types” as 

one of his most important contributions to linguistics. If we assume that languages can 

indeed be classified in a similar way to natural organisms, we can classify languages by 

means of a numerical biological classification system known as numerical taxonomy.  

The concept of numerical taxonomy was introduced by Sokal and Sneath in 1963.  This 

approach classifies items, based on their properties or character traits, by using numerical 

techniques.  Numerical taxonomy uses multivariate techniques applied to classification 

problems (Sokal and Sneath, 1963:49).  Sokal and Sneath distinguish two types of 

relationship between organisms: “relationships based on similarity and those based on 

descent” (Sokal and Sneath, 1963:95).  The affinity, or overall similarity between organisms 

based on specific character traits, is referred to as a phenetic relationship (Sokal and Sneath, 

1963:4). Sokal and Sneath (1963:220) quoted Cain and Harrison (1960) and defined the 

phylogenetic relationship as “that which aims to show the course of evolution”.  Phenetic 

classification is therefore defined as “a system of classification based on the overall similarity 
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of the organisms being classified” (Sokal, 1986).  Phyletic or phylogenetic classification, on 

the other hand, takes into account the evolutionary ancestry of the organisms. In this paper 

we focus on phenetic classification, and use a method suggested by Boyce (1964) for this 

classification, namely, cluster analysis.   

Many authors have noted the connection between biological and linguistic character traits.  

Mantegna, Buldyrev, Goldberger, Havlin, Peng, Simons and Stanley (1994) identify two 

features of language that are extended to DNA sequences in biology: Zipf’s law and 

redundancy.  Zipf’s law states that “the frequency of a word decays as a (universal) power 

law of its rank” (Ferrer i Cancho and Solé, 2003:788).  Redundancy refers to the fact that a 

written language can still be decipherable when characters or words are omitted or misspelt.  

This feature of language was shown and quantified by Shannon (1951) in an explanation of 

the concept of entropy in languages.  “The entropy is a statistical parameter which 

measures, in a certain sense, how much information is produced on the average for each 

letter of a text” (Shannon, 1951:50). Supported by the work of Shannon (1951), authors like 

Turchi and Cristianini (2006) and Benedetto, Caglioti, and Loreto (2002) determined the 

distance between languages based on the relative frequency of di-grams, i.e. sequences of 

two letters, and the relative entropy between texts. 

In Turchi and Cristianini (2006) we find an example of phylogenetic classification of 

languages. These authors propose a statistical signature based on the frequency of observing 

di-grams (pairs of letters) as explained by Shannon (1951) and a signature similar to the 

genetic signature in biology.  They use this Statistical Language Signature (SLS) as a 

quantitative measure to analyse written text, and that the SLS remains more or less constant 

within languages, but differentiates between languages.   
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An issue of concern identified by Turchi and Cristianini (2006) is that written texts are 

simplified into using only the 26 letters of the Latin alphabet.  They mapped every special 

letter to its closest counterpart in the Latin alphabet without considering the linguistic 

implications.  The authors assumed that they could ignore this effect, because the approach 

is statistical in nature rather than linguistic, and this was the case for most of the languages.  

However, this simplification can cause deceptive results – as was seen with their 

misclassification of Breton (Turchi and Cristianini, 2006).  The authors mentioned a possible 

solution for the problem of special characters – they suggested that languages be described 

not by texts written using the Latin alphabet, but rather using the International Phonetic 

Alphabet (IPA).  It is, however, easier to obtain several translations in the Latin alphabet.  We 

therefore continue using Latin alphabet translations, but incorporate special and 

accentuated characters in the Latin alphabet.  

Using distance matrices, Turchi and Cristianini (2006) construct phylogenetic trees of 34 

languages.  The trees include 33 Indo-European languages and Basque, defined as a language 

isolate (Warnow, 1997) and clearly shown to be so in the way the classification trees are 

formed.  

A similar language tree is constructed by Benedetto et al. (2002), where the relative entropy 

between pairs of texts constitutes the elements of the distance matrix.  Benedetto et al. 

(2002) then apply the Fitch-Margoliash method that applies a weighted least squares 

method for clustering, to the distance matrix to obtain the language tree (Fitch and 

Margoliash, 1967).  Benedetto et al. (2002) describe the tree they constructed as ‘unrooted’, 

i.e. not making any assumptions about evolutionary ancestry of the languages.  This analysis 

relates to the phenetic analysis, where classification is done based on the similarities and 

differences between items and not on the presence or absence of a common ancestor. 
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In this paper we consider the use of cluster analysis for phenetic classification of languages.  

We expand on the approach of Turchi and Cristianini (2006), by using an extended version of 

the Latin alphabet and aim to find the most appropriate distance measure and linkage 

method for the classification of languages.   

Section 2 presents an overview of the methods we use as well as a discussion on the 

relevance and suitability of each of these methods. In Section 3 we discuss the applications 

and results of the methods discussed in Section 2. Section 4 of this paper consists of our 

findings and a discussion of the suitability of the methods we used. 

2. Methodology 

Thirty-two Indo-European languages are analysed in this research, with the aim of identifying 

phenetic relationships between these languages.  The texts used are translations of the 

Universal Declaration of Human Rights (United Nations General Assembly, 1948), as 

suggested by Turchi and Cristianini (2006) and Benedetto et al. (2002).  Using the Universal 

Declaration of Human Rights provides the advantage that the different texts are more or less 

the same in length.  The problem, however, is that borrowed words and words that have 

exactly the same translation in related languages could bias results in terms of assessing the 

proximity between languages (Turchi and Cristianini, 2006).  

While all the selected languages use the Latin alphabet, there are different characters or 

special letters in each language representing different sounds and accents.  Whereas Turchi 

and Cristianini (2006) mapped each of the accented characters to its closest equivalent in the 

Latin alphabet, ignoring the linguistic implications, we introduce an alphabet consisting of 60 

characters: the 26 letters of the Latin alphabet, blank spaces between characters and 33 

special characters found in the languages we analyse. Our extended alphabet is defined in 

Table 1. 
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Table 1. Table of characters used for analysis 

a b c d e f g h i j 

k l m n o p q r s t 

u v w x y z ä à á â 

å ã æ ç ê ë è é ì í 

î ñ ö ø ó ò õ ô š ś 

ß ü ù ú û ý ž ź ð _ 

 

2.1 Statistical Language Signature (SLS) 

The probability of observing a certain character in a linguistic sequence is highly dependent 

on the previous characters in the sequence as well as the language under consideration 

(Shannon, 1951). Based on this, Turchi and Cristianini (2006) suggest that for any given 

language, a SLS can be obtained by using di-grams (pairs of letters). We are interested in the 

number of times any given di-gram is observed in a text. We know that the di-gram ‘th’ will 

be observed often in the English language, while a di-gram such as ‘en’ will be more common 

in Afrikaans or German. The SLS for each language is based on the number of occurrences of 

each di-gram in that specific language. The SLS that we calculate is the relative frequency of 

the di-gram in each language. This is one of the methods suggested by Turchi and Cristianini 

(2006).  

We let     denote the number of times the di-gram ’  ’ is observed in the document. The 

table consisting of the relative di-gram frequencies is defined as matrix    with cells: 
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   (   )  
   

(   )
  where   is the document length. (1.1) 

Matrix    is size      . In order to avoid complications when performing cluster analysis, 

we henceforth describe our data as a set of 32 observations, where each observation is the 

SLS in vector form. Each observation is a vector of                elements.  

Turchi and Cristianini (2006) investigate the use of the relative di-gram frequency table as a 

SLS. They propose that the SLS of a text depends on the language in which it is written and 

not on its semantic content. Another observation made by Turchi and Cristianini (2006:349) 

is that the SLS is unique to a language. If we assume this is true, we can continue using this 

quantitative measure in our analyses of languages. We can then quantify the proximity 

between languages by introducing a concept of distance, appropriate in      . 

After each language is assigned an SLS, we consider different methods to determine the 

statistical distance between two languages. We then construct a distance or dissimilarity 

matrix. This matrix is squared with zeros along the diagonal and the number of rows and 

columns correspond to the number of languages under consideration. 

2.2 Notation 

To avoid confusion, we now specify the notation used in the rest of the paper: 

 Uppercase letters such as  ,  ,  , or   ,   ,     etc. will be used to denote clusters of 

languages. 

 The number of elements in clusters  ,  ,   will be denoted by   ,   ,   , 

respectively. Similarly, the number of elements in clusters   ,   ,    will be denoted 

by   ,   ,   , respectively 
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 Lowercase bold letters e.g.     and    denote the SLS vectors of languages   and   in 

cluster  . Similarly the SLS vectors of language   in cluster   will be denoted by   . 

The vectors    and    have        elements. 

 Distance functions will be denoted by  (   ) where   represents a general distance, 

 (   ) where   represents the distance function defined by Székely and Rizzo (2005), 

or   (   ) where    denotes the distance function we define in the expansion of 

the approach followed by Székely and Rizzo (2005). 

 Distance between clusters   and   is denoted as  (   ) and distance between 

clusters    and    is denoted as  (     ) and simplified to    . 

2.3 Distance Matrix 

Let    and    be defined as above: the SLS vectors for languages   and  .  

We consider the Minkowski distance suggested by Rencher (2002:453) defined in vector 

space   .  

          (     )  [∑|        |
 

 

   

]

 
 ⁄

 (1.2) 

where     represents the     element of the SLS vector    for language   in cluster  . 

The Minkowski distance is a generalisation of the Euclidean distance (when the norm    ) 

and the Manhattan or City-block distance (when    ). We discuss these two methods of 

calculating the distance between a pair of languages. We then comment on the suitability of 

the distance measures. 
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2.4 The Euclidean Distance 

The Euclidean distance between two languages   and   is calculated by obtaining the square 

root of the sum of the squared difference between each pair of elements when considering 

the signatures of the two languages: 

Euclidean (2-Norm) distance: 

 

  (     )  √∑|        |
 

 

   

 (1.3) 

where     represents the     element of the SLS vector    for language   in cluster  . 

2.5 The Manhattan Distance 

The Manhattan distance between two languages   and   is calculated by the sum of the 

absolute difference between each pair of elements of the SLS vectors of the two languages.  

Manhattan (1-Norm) Distance: 

 
  (     )  ∑|        |

 

   

 (1.4) 

where     represents the     element of the SLS vector    for language   in cluster  . 

2.6 Suitability of Distance Measures 

Since we are working with categorical data and are not considering actual distances between 

points, we propose using the Manhattan distance to determine the dissimilarity between 

languages. Farris (1972) stated that the Manhattan metric is preferred to the Euclidean 

distance metric in numeric cladistic studies. Burgman and Sokal (1989) investigated factors 

that influence stability in phenetic classification and concluded that “Manhattan distances 

consistently produce relatively more stable classifications than do other coefficients 
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evaluated here” (Burgman and Sokal, 1989:67). We therefore suggest using the Manhattan 

distance to calculate the dissimilarity matrix between the SLS vectors of two languages. 

The constructed distance matrix measures the quantitative difference between languages 

and has the structure    rows     columns with zeroes along the diagonal. We perform 

cluster analysis using the distance matrix to construct tree diagrams or dendrograms.  

2.7 Cluster Analysis (Hierarchical Clustering) 

In cluster analysis we group observations into clusters. We find the optimal grouping where 

homogenous observations are grouped together as clusters, but the different clusters are 

separate from one another. We use an agglomerative hierarchical clustering approach as 

reviewed by Rencher (2002:455). We start with   clusters, where each observation is its own 

cluster. We then measure the similarity or distance between the observations by making use 

of the distance matrix. At each step of the agglomerative hierarchical clustering process the 

two clusters with the smallest distance between them are merged together into a new 

cluster. The distance between the new cluster and the rest of the cluster is determined by 

the linkage method. 

2.8 Linkage Methods 

Rencher (2002:456-471) summarises the following six linkage methods: single linkage, 

complete linkage, average linkage, centroid method linkage, median method linkage and 

Ward’s linkage. The following properties are taken into consideration when considering the 

suitability of a specific clustering algorithm suggested by Rencher (2002:471-475): 

 Lance-Williams form 

 Monotonicity  

 Space-distortion 
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2.8.1 Lance-Williams Algorithm 

Lance and Williams (1966) suggested an algorithm for updating distances between clusters 

when new clusters have been formed. The two elements    and    in a dissimilarity matrix, 

with the smallest measure of dissimilarity between them, will be clustered together. To find 

the distance between cluster     and the rest of the elements, Lance and Williams (1966) 

suggest the following formula where    ,     and     are the pairwise distances between 

clusters   ,   and   . If    and    were to form a new cluster    , the distance between 

cluster    and the new cluster     is denoted as   (  ). A clustering algorithm belongs to the 

Lance-Williams family if   (  ) can be computed recursively by the following formula: 

  (  )                       |        | (1.5) 

Where   ,   ,   and   are the parameters that together with the distance function    , 

determine the clustering algorithm (Székely and Rizzo, 2005). 

2.8.2 Monotonicity 

Theodoridis and Koutroumbas (2003:461) explain that when the monotonicity property of a 

clustering method holds, each cluster is formed at a “higher dissimilarity level than any one 

of its components.” Thus, the monotonicity property implies that a cluster cannot join 

another cluster at a distance that is less than the distance between previously joined clusters 

before merging. If a clustering method is not monotonic, it is possible that reversals can be 

encountered in the dendrograms; i.e. the resulting graphical interpretations of the clustering 

could contain crossovers. Monotonic clustering methods are also referred to as “ultrametric” 

(Rencher 2002:471). 

Milligan (1979) provides conditions for the Lance-Williams parameters, which indicate 

whether the monotonicity property holds for a certain clustering algorithm: 
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   (     )    

     (1.6) 

 

Milligan (1979:344) also shows which clustering methods are ultrametric and finds that the 

centroid and median method linkage violate the monotonicity property under certain 

conditions. 

2.8.3 Space Distortion 

When new clusters are formed, the qualities of the distances between the original points 

before clustering do not always stay intact. Clustering algorithms that preserve the 

characteristics of the distances between the original points are referred to as space-

conserving.  

It is possible that the spatial relationships of these original distances may change (Lance and 

Williams, 1966). If a clustering algorithm brings about a change in the properties of this 

space, the clustering algorithm is space-distorting. A space-distorting clustering algorithm 

can either be space-contracting or space-dilating.  

If the spatial relationship of the distance between original points becomes smaller, i.e. 

observations join existing clusters rather than form new clusters by joining with individual 

observations, then the system is said to ‘chain’ (Lance and Williams, 1966). In this case, 

clusters tend to move closer to each other and the clustering algorithm is space-contracting.  

A space-dilating clustering algorithm is the opposite; an observation joins another individual 

observation rather than join an already-existing cluster. This means that the spatial 

relationship becomes larger as clusters form and clusters move further away from each 

other. 
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Székely and Rizzo (2005) mention that space-conserving or space-dilating methods are 

desirable in most applications. This is true in our cluster analysis of languages as we prefer 

separate clusters, and not ‘chained’ results. 

Chen and Van Ness (1996) explain that the Lance Williams parameters of a clustering 

algorithm can be used to determine whether an algorithm is space-conserving, space-

dilating, or space-contracting. For an algorithm to be space-conserving, the following 

conditions regarding the Lance-Williams parameters should hold (Chen and Van Ness, 1996):  

         

    

| |     (1.7) 

 

A space-dilating clustering algorithm satisfies the following conditions, in terms of the Lance-

Williams parameters (Chen and Van Ness, 1996): 

         

             

        (1.8) 

 

2.8.4 Choice of Linkage Method 

The first five linkage methods suggested by Rencher (2002:456-471) in Section 2.8 only 

consider the distances between clusters, and do not take into consideration the distances 

between elements within clusters. These methods simply recalculate the distances between 

clusters based on different criteria.  These methods will not be discussed in this paper, 
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however, an overview of the results yielded by using each of these methods is given in 

Section 3.3.  

Ward’s method, also referred to as the incremental sum of squares method (Rencher, 

2002:466) or Ward’s minimum variance method (Székely and Rizzo, 2005) takes into 

consideration, not only between-cluster distances when forming clusters, but also within-

cluster distances. Ward’s method states that, not only should the between-cluster distances 

be maximised, but the within-cluster distances should also be minimised. This method 

combines these two properties into one criterion (Ward, 1963). Milligan (1979:344) shows 

that Ward’s method fits the Lance-Williams algorithm, gives appropriate parameters, and 

asserts that the monotonicity property does hold for this method. Vogt and Nagel (1992) 

claim that Ward’s clustering algorithm is space-conserving. We therefore propose the use of 

Ward’s method as clustering algorithm for our analysis, since, while adhering to the three 

desirable properties mentioned above, the method also accounts for both inter- and intra-

cluster distances.  

The use of Ward’s Linkage, however, is limited to use with the squared Euclidean distance 

metric as the measure of original distances between observations. This is because the 

objective function is often chosen as the minimum variance, or minimum squared error. The 

Euclidean distance is related to the measurement of the sum of squared errors; hence the 

use of this metric when using Ward’s linkage method. 

We use the Manhattan distance as measure between observations. We therefore attempt to 

define Ward’s method for use with other distance metrics, in particular the Manhattan 

distance metric. 
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2.9 A Variation on Ward’s Minimum Variance Method 

Many authors refer to Ward’s linkage method as the minimum variance method: Rencher 

(2002:466), Cormack (1971) and Milligan (1979) to name but a few. Ward (1963) suggested 

that the decision on which a pair of clusters is to be joined should be based on the optimal 

value of an objective function. Ward (1963) then used the example of least squared error, or 

minimum variance, as an objective function. It is this example that has become famous as 

Ward’s method or Ward’s method of minimum variance. However, Ward did explain that the 

objective function “reflects the criterion chosen by the investigator” (Ward, 1963:236).  

“Ward (1963) suggested a general hierarchical clustering procedure where the criterion for 

selecting the optimal pair of clusters to merge at each step is based on the optimal value of 

an objective function. The objective function could be any function that reflects the 

investigator’s purpose” (Székely and Rizzo, 2005:160). 

Ward’s method is most commonly used with the objective function of minimum variance. If 

we, however, decide to use the Manhattan distance we propose using an objective function 

of minimum absolute deviation.  

We discuss the objective function for Ward’s minimum variance method, as well as the 

objective function used by Székely and Rizzo (2005). We then propose our own objective 

function. After we have identified an objective function, it is important to know how the 

distance measure will be updated after each step of clustering. For updating the distance 

matrix, we also discuss the Lance-Williams algorithm for each of the three objective 

functions. 
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2.9.1 Ward’s Minimum Variance Method 

Ward’s minimum variance method joins the two clusters   and   that minimise the increase 

in the sum of squared errors (SSE): 

           (          ) 

We define the SSE within and between clusters as follows: 

 

      ∑( 
 
   ̅) 
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   ̅) 

      ∑( 
 
   ̅) 

  

   

( 
 
   ̅) 

       ∑( 
 
   ̅  ) 

   

   

( 
 
   ̅  ) 

(1.9) 

Where: 

    represents the SLS vector for language   in cluster  , and  ̅ the centroid of cluster    

    represents the SLS vector for language   in cluster  , and  ̅ the centroid of cluster    

    represents the combined observation vector for language   in cluster   , and  ̅   

the centroid of cluster     

In other words, Ward’s minimum variance method calculates the distance between cluster 

members and the centroid. The centroid of a cluster is defined as the point at which the sum 

of squared Euclidean distances between the point itself and each other point in the cluster is 

minimised. Rencher (2002:463) also refers to the centroids of the clusters as their mean 

vectors. The centroid of cluster   is defined as the sum of all points in   divided by the 

number of points in  , or mathematically:  ̅   ∑      
  
   . Rencher (2002) states that the 
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objective function to minimise when using Ward’s minimum variance method can also be 

written as, 

     
    
      

( ̅     ̅)
 
( ̅     ̅)  (1.10) 

where  ̅ and  ̅ represent the centroids of clusters A and B, respectively. 

Because this objective function is based on the distances between the centroids of the 

clusters (Rencher, 2005:466-468; Lance and Williams, 1966) it is necessary to use the 

squared Euclidean distance as the metric to calculate distances between objects. Ward’s 

minimum variance linkage method can therefore only be applied to distance matrices using 

the squared Euclidean distance metric. 

Ward’s minimum variance method satisfies the recurrence relation as proposed by Lance 

and Williams (1966). Cormack (1971), Milligan (1979) and Rencher (2002:470) provide the 

values for   ,   ,   and   when using Ward’s method of minimum variance: 

 

   
      

          
 

   
      

          
 

  
(   )

          
 

    (1.11) 

 

2.9.2 Székely and Rizzo 

Székely and Rizzo (2005) extend the use of Ward’s method by showing that the same Lance-

Williams parameters are applicable, even if the objective function is not minimum variance 

(i.e. when the distance metric is not squared Euclidean). They still use the Euclidean metric, 

but show that these parameters are also applicable to any power   of Euclidean distance 
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where      , by generalising the objective function. Thus, Székely and Rizzo (2005) 

propose an objective function using the Euclidean distances between all the observations 

within a cluster and all the observations between clusters. They define a distance, the e-

distance,  (   )  between clusters    {        } and   {        } with each vector 

in A or B consisting of   different values: 

 

 (   )  
    
      

(
 

    
∑∑ (     )

  

   

  

   

  
 

  
 ∑∑ (     )

  

   

  

   

  
 

  
 ∑∑ (     )

  

   

  

   

)  

(1.12) 

 

If the objective function is minimum variance, then  (     ) denotes the squared Euclidean 

distance: 

 (     )  (√∑ (        )
  

   
)

 

 

and 
 

  
 ∑ ∑  (     )

  
   

  
    represents the mean squared error within cluster  .  

If the objective function is not minimum variance, but rather the function defined in Székely 

and Rizzo (2005), then  (     ) denotes the Euclidean distance to the power   where 

      : 

 (     )  (√∑ (        )
  

   
)

 

 

and 
 

  
 ∑ ∑  (     )

  
   

  
    now represents the mean error to the power   within cluster  . 
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Székely and Rizzo (2005) show that the Lance-Williams parameters for their objective 

function (Equation 1.12) are the same as the parameters for the minimum variance method. 

2.9.3 Least Absolute Deviation 

Székely and Rizzo (2005) defined their objective function using the distance between all 

elements in a cluster and were no longer restricted to the use of the sum of squared errors 

as objective function. They can, therefore, generalise Ward’s method for the use of any 

power of Euclidean distance. Since Székely and Rizzo (2005) show that using the distance 

between every single observation is also acceptable in Ward’s clustering algorithm, we 

generalise the method of Székely and Rizzo (2005) even further. We now use a 1-norm 

distance, for instance the Manhattan metric, to calculate the distances between 

observations. Our objection function will be least absolute error. With this objective 

function, Ward’s method should join the two clusters   and   that minimise the increase in 

absolute deviation or absolute error (AE): 

                    

We define the within cluster and between cluster absolute error as follows: 

 

     ∑|        |

 

   

 

     ∑|        |

 

   

 

      ∑|        |

 

   

 
(1.13) 

 

where: 
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     represents the     element of the SLS vector    for language   in cluster  , 

     represents the     element of the SLS vector    for language   in cluster  .  

We use the e-distance,  (   )  that Székely and Rizzo (2005) defined between clusters 

   {        } and   {        } in Equation 1.13. However, we now have a different 

objective function and therefore the measure  (     ) is no longer Euclidean, but describes 

a Manhattan distance: 

  (     )  ∑ |        |
 

   
  

If we can prove that the distance  (   ) in Equation 1.13 suggested by Székely and Rizzo 

(2005) can be used with our measure of   (     ), we generalise Ward’s method even 

further and show that it can be used with non–Euclidean distances as well. If we are able to 

prove this, it follows that the same Lance-Williams parameters are applicable to our 

objective function. Thus, the proof given by Székely and Rizzo (2005) should also hold when 

we use an objective function based on an L1 Distance like the Manhattan distance.  

2.10 Generalising Ward’s Method: Least Absolute Error Method 

Suppose   {        },   {        }, and   {        } are distinct clusters with 

all the vectors   ,    and    consisting of   elements: 

Székely and Rizzo (2005) defined the constants    ,     and    :  
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(1.14) 
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∑∑ (     )

  

   

  

   

 

 

If we can justify that these constants can be defined similarly with our distance measure, we 

can continue the proof in the same way as Székely and Rizzo (2005). 

The constants, defined by Székely and Rizzo (2005), represent the mean squared error within 

and between clusters for the minimum variance method, and the mean error to the power   

within and between clusters for the Extended Method that Székely and Rizzo (2005) defined. 

It is clear that when we use the Manhattan distance we have, 

 
 (     )     (     )  ∑ |        |

 

   
 (1.15) 

 

By replacing the distance  (     ) with   (     ) as the distance, we just define the mean 

absolute error within and between clusters. This is exactly what we want to achieve, as our 

objective function is minimum absolute error. We are therefore able to use our distance 

measure   (     ) in the constants defined by Székely and Rizzo (2005) in a way that makes 

sense, and we continue to show that the rest of the proof now also holds for our distance 

metric. 

We first define the constants in terms of    our distance measure: 
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(1.16) 
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∑∑  (     )

  

   

  

   

 

where: 

     represents the mean absolute deviation within cluster A: distance between all 

the vectors    and   , 

     represents the mean absolute deviation within cluster B: distance between all 

the vectors    and   , 

     represents the mean absolute deviation between clusters A and B: distance 

between all the vectors    and   . 

We note that Székely and Rizzo (2005) used the constant 
    

      
  as also used by Rencher 

(2002:468). Then, similar to the  (   ) definition from Székely and Rizzo (2005) in Equation 

1.13, we define  (   ) : 
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Similar to    ,     and    , we define the constants    ,     and    : 
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where: 

     represents the mean absolute deviation within cluster C: distance between all the 

vectors    and   , 

     represents the mean absolute deviation between clusters A and C: distance 

between all the vectors    and   , 

     represents the mean absolute deviation between clusters B and C: distance 

between all the vectors    and   . 

Now we have, similar to   (   ) in Equation 1.18: 

  (   )   
    
      

(              ) 

  (   )   
    
      

(              ) 

Consider cluster     formed by merging clusters   and  . We denote     by  , and 

define the following constants     and     : 

    
 

    
∑∑  (     )

  

   

  

    

 

    is the mean absolute deviation between clusters   and     (the distance between all 

vectors    in   and all vectors    and    in    ). 

Therefore     should represent the mean absolute deviation between:  

1. all vectors    in     and    in   (equivalent to all vectors    in   and    in  ), and 

2. all vectors    in     and    in   (equivalent to all vectors    in   and    in  ). 
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Similar to Equations 1.17 and 1.19, constant     is defined as:  
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where,     is the mean absolute deviation within cluster     (the distance between all 

vectors in (   )  (   and   ) and all vectors in (   ) , i.e.    and   ). 

Therefore,     should represent the mean absolute deviation between:  

1. all vectors    in (   ) and    in (   ) , 

2. all vectors    in (   ) and    in (   ) , 

3. all vectors    in (   ) and    in (   ) , and 

2. all vectors    in (   ) and    in (   ) . 
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In terms of the original constants, we now have: 
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We define  (     ) similar to the way we defined   (   ) in Equation 1.18: 
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 (1.22) 

Székely and Rizzo (2005) then simplify the second term, by using Equation 1.18: 
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This is substituted into   (     ) in Equation 1.23: 
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(1.23) 

We have now shown that the proof used by Székely and Rizzo (2005) also holds when 

using   (     ), a non-Euclidean distance. The same Lance-Williams parameters as used in 

Ward’s minimum variance method therefore also apply to this least absolute error version of 

Ward’s method. We can therefore continue using Ward’s method while we are using the 

Manhattan metric. We are now able to construct dendrograms to graphically show the 

clustering. 

2.11 Dendrograms 

A dendrogram graphically represents the results obtained from performing cluster analysis 

and is similar to the phylogenetic tree constructed by Turchi and Cristianini (2006). A 

dendrogram “shows all the steps in the hierarchical procedure, including the distances at 

which clusters are merged” (Rencher, 2002:456). Our trees will be unrooted. This means that 

we make no assumptions on the evolutionary ancestry of the languages. We let the data 

speak for itself; we are purely interested in the relative proximity between pairs of 

languages.  

We perform a cluster analysis, using Ward’s least absolute error method as clustering 

algorithm. This is done in MATLAB (MATLAB, 2010) by using the “linkage” function and 

specifying the option “ward”. The linkage function using Ward’s method applies the Lance-

Williams updating function. Since we have shown that the Lance-Williams parameters are 
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the same for the least absolute error method, the use of this function in MATLAB is justified. 

We then construct a dendrogram by using the “dendrogram” function in MATLAB. 

3. Results/Application 

3.1 Statistical Language Signature (SLS) 

We obtained a frequency table for all di-grams in the file ‘English.txt’. Table 2 provides an 

excerpt of this table. 

Table 2. Frequency table of di-grams for English 

 ‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘g’ ‘h’ ‘i’   ‘s’ ‘t’ ‘u’   ‘y’ ‘z’   ‘_’ 

‘a’ 
0 8 30 9 0 1 16 0 13 

  
68 92 2 

  
7 0 

  
20 

‘b’ 
5 0 0 0 52 0 0 0 7 

  
3 0 2 

  
13 0 

  
0 

‘c’ 
19 0 5 0 43 0 0 32 30 

  
0 38 10 

  
1 0 

  
12 

‘d 
12 0 0 0 45 0 2 1 34 

  
3 0 15 

  
1 0 

  
181 

‘e’ 
32 1 51 84 38 12 3 0 13 

  
66 21 0 

  
3 0 

  
363 

‘f’ 
11 0 0 0 16 9 1 0 4 

  
0 0 16 

  
0 0 

  
97 

‘g’ 
12 0 0 0 22 0 0 61 8 

  
3 1 4 

  
0 0 

  
33 

‘h’ 
75 0 0 0 174 0 0 0 60 

  
0 56 14 

  
1 0 

  
36 

‘i’ 
22 6 66 6 25 8 71 1 0 

  
69 92 0 

  
0 4 

  
0 

                                      

‘s’ 
11 0 9 2 47 0 0 33 15 

  
24 46 16 

  
1 0 

  
214 

‘t 
35 0 0 0 75 0 0 199 161 

  
33 5 10 

  
37 0 

  
121 



 

 30 

‘u’ 
17 9 14 6 3 1 4 0 6 

  
11 16 0 

  
0 0 

  
0 

                   

‘y’ 
0 0 0 0 0 0 0 0 1 

  
1 0 0 

  
0 0 

  
127 

‘z’ 
3 0 0 0 1 0 0 0 0 

  
0 0 0 

  
0 0 

  
0 

                                      

‘_’ 
270 68 57 43 93 89 16 92 100 

  
95 256 20 

  
0 0 

  
0 

 

As expected, the frequency of the di-gram “th” in the English text document is relatively 

large. Words ending on “e” occur 363 times, which makes this di-gram “e_” the most 

common occurrence in the English text document. Words starting with “a” or “t” are also 

relatively common with 270 and 256 occurrences, respectively. A portion of the SLS Matrix 

RF, with cells defined by Equation 1.1, is shown in Table 3. 

Table 3. Statistical Language Signature matrix table of relative frequencies of di-grams for 

English1 

 ‘a’ ‘b’ ‘c’ ‘d’ ‘e’ ‘f’ ‘g’ ‘h’ ‘i’   ‘s’ ‘t’ ‘u’   ‘y’ ‘z’   ‘_’ 

‘a’ 
0 0.08 0.29 0.09 0 0.01 0.15 0 0.13 

  
0.65 0.89 0.02 

  
0 0.07 

  
0.19 

‘b’ 
0.05 0 0 0 0.5 0 0 0 0.07 

  
0.03 0 0.02 

  
0 0.13 

  
0 

‘c’ 
0.18 0 0.05 0 0.41 0 0 0.31 0.29 

  
0 0.37 0.1 

  
0 0.01 

  
0.12 

‘d 
0.12 0 0 0 0.43 0 0.02 0.01 0.33 

  
0.03 0 0.14 

  
0 0.01 

  
1.74 

‘e’ 
0.31 0.01 0.49 0.81 0.37 0.12 0.03 0 0.13 

  
0.64 0.2 0 

  
0 0.03 

  
3.5 

                                                      
1
It is worth noting that the entries of both the SLS matrix and the SLS vector have been multiplied by 100, and 

rounded to 2 decimals for presentation purposes. 
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‘f’ 
0.11 0 0 0 0.15 0.09 0.01 0 0.04 

  
0 0 0.15 

  
0 0 

  
0.93 

‘g’ 
0.12 0 0 0 0.21 0 0 0.59 0.08 

  
0.03 0.01 0.04 

  
0 0 

  
0.32 

‘h’ 
0.72 0 0 0 1.68 0 0 0 0.58 

  
0 0.54 0.13 

  
0 0.01 

  
0.35 

‘i’ 
0.21 0.06 0.64 0.06 0.24 0.08 0.68 0.01 0 

  
0.66 0.89 0 

  
0 0 

  
0 

                                      

‘s’ 
0.11 0 0.09 0.02 0.45 0 0 0.32 0.14 

  
0.23 0.44 0.15 

  
0 0.01 

  
2.06 

‘t 
0.34 0 0 0 0.72 0 0 1.92 1.55 

  
0.32 0.05 0.1 

  
0 0.36 

  
1.17 

‘u’ 
0.16 0.09 0.13 0.06 0.03 0.01 0.04 0 0.06 

  
0.11 0.15 0 

  
0 0 

  
0 

                                      

‘y’ 
0 0 0 0 0 0 0 0 0.01 

  
0.01 0 0 

  
0 0 

  
1.22 

‘z’ 
0.03 0 0 0 0.01 0 0 0 0 

  
0 0 0 

  
0 0 

  
0 

                                      

‘_’ 
2.6 0.65 0.55 0.41 0.9 0.86 0.15 0.89 0.96 

  
0.91 2.46 0.19 

  
0 0 

  
0 

 

Since we describe our data as a vector in        dimensions, we show a part of our SLS 

Vector for English as follows in Table 4. 

Table 4. Statistical Language Signature vector for English 

           

aa ab ac ad   be bf bg   tg th ti   _a _b _c _d ... _ _ 

0 0.08 0.29 0.09   0.5 0 0   0 1.92 1.55   2.6 0.65 0.55 0.41 ... 0 
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3.2 Distance Matrix 

The distance between a pair of languages is obtained by calculating the Manhattan distance 

between the SLS vectors of those languages. The Manhattan distance matrix calculated for 

some of the languages analysed is shown in Table 5. 

Table 5. Manhattan distance matrix for 9 Indo-European languages 

 Afrikaans Asturian Bosnian Breton Catalan Corsican Czech Danish … Serbian … 

Afrikaans 
0.0000 0.2879 0.3571 0.2664 0.2757 0.3576 0.3683 0.1940  0.3564 

 

Asturian 
0.2879 0.0000 0.3048 0.2878 0.1297 0.2556 0.3230 0.2920  0.3067 

 

Bosnian 
0.3571 0.3048 0.0000 0.3449 0.3132 0.3017 0.2366 0.3592  0.0362 

 

Breton 
0.2664 0.2878 0.3449 0.0000 0.2816 0.3418 0.3462 0.2698  0.3420 

 

Catalan 
0.2757 0.1297 0.3132 0.2816 0.0000 0.2547 0.3410 0.2633  0.3126 

 

Corsican 
0.3576 0.2556 0.3017 0.3418 0.2547 0.0000 0.3606 0.3468  0.3052 

 

Czech 
0.3683 0.3230 0.2366 0.3462 0.3410 0.3606 0.0000 0.3715  0.2332 

 

Danish 
0.1940 0.2920 0.3592 0.2698 0.2633 0.3468 0.3715 0.0000  0.3543 

 

… 
          

 

Serbian 
0.3564 0.3067 0.0362 0.3420 0.3126 0.3052 0.2332 0.3543  0.0000 

 

… 
          

 

 

In order to discuss the difference in results when using the Euclidean distance rather than 

the Manhattan distance, we also provide the Euclidean distance matrix for the same 

9 languages in Table 6. 

Table 6. Euclidean distance matrix for 9 Indo-European languages 

 Afrikaans Asturian Bosnian Breton Catalan Corsican Czech Danish … Serbian … 

Afrikaans 
0.0000 0.0941 0.1170 0.0873 0.0948 0.1316 0.1073 0.0690  0.1163 

 

Asturian 
0.0941 0.0000 0.0937 0.0881 0.0484 0.1010 0.0880 0.0907  0.0928 

 

Bosnian 
0.1170 0.0937 0.0000 0.1082 0.0943 0.0942 0.0727 0.1131  0.0141 

 

Breton 
0.0873 0.0881 0.1082 0.0000 0.0843 0.1174 0.0965 0.0828  0.1072 

 

Catalan 
0.0948 0.0484 0.0943 0.0843 0.0000 0.0991 0.0922 0.0842  0.0934 

 

Corsican 
0.1316 0.1010 0.0942 0.1174 0.0991 0.0000 0.1046 0.1244  0.0931 
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Czech 
0.1073 0.0880 0.0727 0.0965 0.0922 0.1046 0.0000 0.1013  0.0706 

 

Danish 
0.0690 0.0907 0.1131 0.0828 0.0842 0.1244 0.1013 0.0000  0.1119 

 

… 
          

 

Serbian 
0.1163 0.0928 0.0141 0.1072 0.0934 0.0931 0.0706 0.1119  0.0000 

 

…  
         

 

 

In both of the complete distance matrices, the minimum distance was between Bosnian and 

Serbian:  

  (                 )          

  (                 )          

This is where the first cluster will form, in both cases, regardless of the linkage method used. 

The new distance between the cluster     (Consisting of Bosnian and Serbian) and any other 

point   will be updated by using the Lance-Williams updating algorithm, as defined in 

Equation 1.5: 

  (  )                       |        | 

We use Ward’s linkage method and the values of the Lance-Williams parameters are as 

follows:  

   
      

          
 

   
      

          
 

  
(   )
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We construct dendrograms for both objective functions: minimum variance and least 

absolute error (i.e. using the Euclidean and the Manhattan distance, respectively. 

3.3 Dendrogram 

Our dendrogram shows the different sub-groups of the Indo-European language family and 

use languages from the following subdivisions: Baltic, Slavic (Balto-Slavic), Celtic, Germanic 

and Romance. The phylogenetic classification of the languages we analyse is as follows: 

 Slavic: Bosnian, Serbian, Slovenian, Slovak, Czech, Polish 

 Baltic: Lithuanian, Latvian 

 Celtic: Breton, Welsh, Scottish, Irish 

 Germanic: English, Icelandic, Swedish, Danish, Norwegian, Luxembourgish, Frisian, 

Dutch, Afrikaans, German 

 Romance: French, Italian, Spanish, Asturian, Catalan, Friulian, Galician, Portuguese, 

Corsican, Romanian 

An overview of the dendrogram results yielded by other linkage methods suggested by 

Rencher (2002:456-471) follows. The centroid and median methods produce dendrograms 

containing reversals. This is not appropriate for our analysis; we are interested only in 

monotonic linkage algorithms. With its propensity to ‘chain’ the single linkage method 

produces large, elongated clusters with languages such as Corsican and Afrikaans on 

opposite sides of the same cluster.  

The complete linkage method produces results that were more acceptable. The only 

concerns were the misclassification of Breton and English, and that the Balto-Slavic cluster is 

never formed. The average linkage provides an improvement on the complete linkage 
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method in such a way that the Balto-Slavic cluster is formed in this case. Nevertheless, the 

problem regarding the misclassification of English and Breton is still present.  

Ward’s method is considered the most appropriate for our analysis. Although both the 

average linkage function and Ward’s method are known to be monotonic and space-

conserving, the average linkage function only considers distances between clusters and 

disregards the importance of intra-cluster similarity. We provide the dendrogram resulting 

from clustering with Ward’s linkage using Euclidean distances in Figure 1. In Figure 2 we 

provide a dendrogram resulting from clustering with Ward’s linkage using Manhattan 

distances. 

Figure 1. Clustering with Ward’s Linkage using Euclidean distance 

 

We note that using the Euclidean distance matrix with Ward’s method has a few drawbacks: 

 Although the Baltic and Slavic languages are clustered together to obtain the Balto-

Slavic language cluster, we observe Corsican, a Romance language (Paul, 2009) 

clustered with them. 
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 Breton and Welsh, two Celtic languages (Paul, 2009) are clustered with the Germanic 

languages. They only join with Scottish and Irish after these two have been clustered 

with the Romance languages. 

 English is clustered with the Romance languages, an error which we have 

encountered with the average linkage method. 

Figure 2. Clustering with Ward’s Linkage using Manhattan distance 

 

Ward’s method of linkage with the Manhattan distance yields similar results to the average 

linkage method with Manhattan distances. There is one important difference in the results 

of these two methods. English and Breton, misclassified by the average linkage method, are 

now correctly clustered with the Germanic and Celtic language groups, respectively. 

The clustering can also be considered as more or less intuitive from a linguistic and 

sometimes even geographical point of view. An example of this is that the Noridic Languages 

or Scandinavian Germanic Languages (Danish, Norwegian and Swedish) are clustered 

together, before they are joined with the West Germanic (e.g. Afrikaans, Dutch and 

German). Using Ward’s method of linkage provides us with 5 distinct logical clusters, that 
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also make sense phylogenetically: Baltic Languages, Slavic Languages, Romance Languages, 

Germanic Languages and Celtic Languages. 

When using Ward’s method with the Manhattan distance, there seems to be a 

misclassification of English and Icelandic. English is joined with the Nordic Languages before 

Icelandic is, where Icelandic is also regarded as Scandinavian Germanic. English belongs with 

the West Germanic languages as it forms part of the Anglo-Frisian language family. 

Comparing this minor drawback of this method to the disadvantages of the other clustering 

methods, however, we see that this method produces the best results. Furthermore, if we 

are interested only in the four subdivisions of the Indo-European language family, using this 

method of clustering is sufficient. 

The Manhattan distance yielded the best results when used in conjuction with Ward’s 

method. Ward’s method using the Manhattan distance produced the most accurate results. 

With this clustering algorithm, four distinct clusters were found. These clusters also have 

significant linguistic meaning. The results from this method were intuitive and logical.  

4. Conclusion 

This paper investigated the use of phenetic methods in language classification and classified 

languages solely based on content similarity Phenetic classification in the form of 

hierarchical cluster analysis clustered similar languages together, without assuming similar 

roots.  We used phenetic classification methods and showed that the phylogenetic 

properties inherent to the languages were clearly reflected in our results. 

The Manhattan distance method yielded the most accurate results when using this type of 

distance measurement. Ward’s method was the best linkage method, because both inter- 

and intra-cluster distances were incorporated. 
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An important component of this research was the extension of Ward’s method for use with a 

1-norm distance such as the Manhattan distance.  The use of Ward’s method can be 

expanded to include Manhattan distances.  Use of another objective function (in this case 

least absolute error) with Ward’s function produces more accurate results than using Ward’s 

method with the Euclidean distance metric in our situation. 

This research could be extended beyond Indo-European languages and applied to other 

language families.  Another possibility for further research is the use of tri-gram frequencies 

to form the SLS.  This would mean having a three-dimensional SLS.  The Manhattan metric 

could still be used in this case, as well as Ward’s method of linkage within the hierarchical 

clustering process, making this adaptation a natural extension of this research.  

Ultimately, we established that grouping of languages, similarities between languages and 

language traits well known in the field of linguistics can be extracted or independently 

observed using unsupervised machine learning techniques.  It is indeed possible to 

autonomously classify languages without any prior linguistic knowledge or assumptions. 
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