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Abstract: The binomial distribution is often used in quality control. The usual operation of the p - chart will

be extended by introducing a Bayesian approach. We will consider a beta prior, six different ones. Control chart

limits, average run lengths and false alarm rates will be determined by using a Bayesian method. These results will

be compared to the results obtained when using the classical method. A predictive density based on a Bayesian

approach will be used to derive the rejection region. The proposed method gives wider control limits than those

obtained from the classical method. The Bayesian method gives larger values for the average run length and smaller

values for the false alarm rate. A smaller value for the false alarm rate is desired.

Key words: Average run length, Bayesian analysis, Beta-binomial distribution, False alarm rates, p - chart,

Predictive density

1 Introduction

Quality control is a process which is used to maintain the standards of products produced or services

delivered. The binomial distribution is often used in quality control. The proportion, p, denotes the

proportion of defective items in the population. In this paper the focus will be on the control chart for the

proportion of nonconforming or defective products produced by a process, i.e. the p - chart.

Control chart limits, average run lengths and false alarm rates will be determined by using a Bayesian

method. These results will be compared to the results obtained when using the classical (frequentist)

method. Calabrese (1995) states that attributes control techniques, such as p - charts, plot statistics related

to defective items and call for corrective action if the number of defectives becomes too large. The goal
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is to decide on the basis of the sample data whether the production process has shifted from an in-control

state to an out-of-control state. If the production process shifted to an out-of-control state, the process

should be inspected and repaired. Chakraborti & Human (2006) examined the effects of parameter

estimation for the p - chart. Calabrese (1995) considered a Bayesian process control procedure with

fixed samples sizes and sampling intervals where the proportion of defectives is the quality variable of

interest. Hamada (2002) considered Bayesian tolerance interval control limits for attributes. Menzefricke

(2002) proposed a Bayesian approach to obtain control charts when there is parameter uncertainty,

using a predictive distribution to derive the rejection region. Menzefricke (2002) assumed that the prior

information on p, the proportion of defective items in the population, is a beta distribution which means

that the posterior distribution of p will also be a beta distribution.

Let X i follow a binomial distribution with parameters n and p. If the value for p is unknown, p should

be estimated from the observed sample data. The proportion of nonconforming items from sample i is

defined as

p̂i =
Xi

n
i = 1,2, . . . ,m

and then p is calculated, where p is the average of the sample proportions and is defined as

p =

m
∑

i=1
p̂i

m
,

where n is the size of each sample, and m is the number of samples. From Montgomery (1996) the

frequentist control chart is defined as:

UCL = p+3

√
p(1− p)

n

Centre line = p

LCL = p−3

√
p(1− p)

n
.

Chakraborti & Human (2006) state that if p is unknown, the common practice is to estimate the proportion

in phase I of the study when the process is thought to be in-control. The size of each sample, n, is assumed
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to be equal, which is not always the case in practice. We will introduce a Bayesian approach for the p -

chart. For the Bayesian method, the predictive density will be used to determine the control chart. From

a Bayesian point, we have to decide on a prior for this unknown value of p. Jensen et al. (2006) states the

following: Updating control chart limits would fit naturally in a Bayesian control chart scheme (Hamada

(2002)) where prior estimates are updated resulting in posterior estimates that can continue to be updated

over the life of the monitoring scheme. The Bayesian method will be discussed in Section 2, a simulation

study will be given in Section 3 and an example will be considered in Section 4. Concluding remarks

will be discussed in Section 5.

2 Bayesian Method

Menzefricke (2002) proposed a Bayesian approach to obtain control charts when there is parameter

uncertainty, using a predictive distribution to derive the rejection region. Menzefricke (2002) assumed

that the prior information on p, the proportion of defective items in the population, is a beta distribution

which means that the posterior distribution of p will also be a beta distribution. The beta prior is a

conjugate prior to the binomial distribution. Consider a beta prior, i.e. p∼ Beta(a,b) for the unknown p

π (p) =
Γ(a+b)

Γ(a)Γ(b)
pa−1 (1− p)b−1 . (1)

Figure 1 shows different plots of the beta prior for a number of values for a and b. We considered six

different priors, for illustration purposes.

For the p - chart the likelihood follows as

L(p |data) ∝ p

m
∑

i=1
xi
(1− p)

mn−
m
∑

i=1
xi
. (2)
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Figure 1: The beta prior for different values of a and b.

Combining Equations 1 and 2 it follows that the posterior distribution of p is a

Beta
(

m
∑

i=1
xi +a,mn−

m
∑

i=1
xi +b

)
distribution, i.e.

π (p |data) =
1

B
(

m
∑

i=1
xi +a,mn−

m
∑

i=1
xi +b

) p

m
∑

i=1
xi+a−1

(1− p)
mn−

m
∑

i=1
xi+b−1

. (3)

If the process remains stable, the control chart limits for a future sample of n Bernoulli trials which

results in T successes can be derived. Given n and p, the distribution of T is binomial, and the unconditional

prediction distribution of T is

f (T |data) =

ˆ 1

0
f (T |p)π (p |data)d p

=
Γ(n+1)

Γ(T +1)Γ(n−T +1)

B
(

m
∑

i=1
xi +a+T,mn−

m
∑

i=1
xi +b+n−T

)
B
(

m
∑

i=1
xi +a,mn−

m
∑

i=1
xi +b

) 0≤ T ≤ n (4)
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which is a beta-binomial distribution. It is assumed that the sample size is the same for the posterior

distribution and the future sample. The predictive distribution in Equation 4 can be used to obtain the

control chart limits, where the rejection region is defined as α = ∑R?(α) f (T |data) . An exact acceptance

region of size 1−α can be found based on the beta-binomial distribution, (Menzefricke (2002)).

Our prior is just adding a−1 successes and b−1 failures to the data set. If we have no strong prior

beliefs, we can choose a prior that gives equal weight to all possibles values of the unknown parameter.

This is also known as a flat or noninformative prior. If we let a = 1 and b = 1, we will get such a prior,

which is just the uniform distribution over the [0,1] interval. If we let a = 1/2 and b = 1/2 we will get the

well-known Jeffreys prior, from Jeffreys (1939).

3 Simulation Study

In this simulation study the average run lengths and false alarm rates will be compared using the classical

(frequentist) method and the proposed Bayesian method. The predictive density given in Equation 4 will

be used to obtain the control chart limits when the Bayesian approach is used. The run length of a control

procedure is the number of samples required before an out-of-control signal is given. A good control

procedure has a suitably large average run length when the process is in-control and a small average run

length otherwise, from Woodall (1985).

The average run length (ARL) is calculated as:

ARL =
1

P(sample point plots out of control)
.

If the process is in-control, the probability that a point plots out-of-control is also known as the false

alarm rate (FAR). Montgomery (1996) defines the average run length as the average number of points

that must be plotted before a point indicates an out-of-control condition. If the process is in-control,

the expected nominal value for the false alarm rate is 0.0027 and the expected nominal value for the

average run length is (0.0027)−1 = 370.3704. That means even if the process remains in control, an

out-of-control signal will be generated every 370 samples, on average.

We will consider a number of different samples sizes, n, and number of samples, m. Chakraborti &
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Human (2006) considered most of the combinations used in this simulation study, and they determined

the average run lengths and false alarm rates using the classical (frequentist) method. The number of

simulations is equal to 100 000. The simulations were run in MATLABr. The results for the given m

and n values, using the classical and Bayesian methods, are given in Table 1. For the frequentist method

it is assumed that p = 0.5 when determining the average run length and the false alarm rate, Chakraborti

& Human (2006) also used this value. When using the Bayesian method, the value of p is of course

unknown and the prior distribution given in Equation 1 is used. As mentioned, six different priors were

considered.

For the simulation procedure, we randomly generated m binomial random variables. The 3-sigma

control chart limits were calculated for the classical method. Followed by calculating the false alarm

rate and the run length, using the binomial distribution. For the Bayesian method, the control chart limits

were calculated using the predictive density given in Equation 4, with rejection region of size α = 0.0027.

Followed by calculating the the false alarm rate and the run length, using the beta-binomial distribution.

This was repeated 100 000 times, and then the average of the false alarm rates was calculated, and also

the average of the run lengths.

From Table 1 we can see that in every single case, the unconditional false alarm rate is lower for

one of the Bayesian methods. For five of the nineteen cases that we considered, the average run length

is bigger for the classical method than for any of the Bayesian methods. Typically, one wants a smaller

false alarm rate and a larger average run length. For the Bayesian method, the false alarm rate is generally

closer to the nominal level of 0.0027. For example, when m = 2 and n = 250, the false alarm rate is equal

to 0.00274 when a Beta(10,3) prior is used. Where the other priors yield a false alarm rate very close to

0.0027, for this case the classical (frequentist) method yields a false alarm rate of 0.01424.
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Table 1: (a) Average run lengths and (b) average false alarm rates for different values of m and n, where p = 0.5 is
used for the Frequentist method.

Freq Bayes Bayes Bayes Bayes Bayes Bayes
B(0.01,0.01) B(0.5,0.5) B(1,1) B(3,3) B(10,3) B(3,10)

m = 1 & (a) 140.0652 349.3294 359.1191 375.5631 341.1348 356.0179 341.9281
n = 50 (b) 0.03689 0.00298 0.00290 0.00277 0.00303 0.00287 0.00300
m = 2 & (a) 188.8749 336.4882 338.0909 289.3581 309.4339 327.6048 310.7671
n = 25 (b) 0.01832 0.00324 0.00326 0.00364 0.00339 0.00335 0.00357
m = 5 & (a) 462.7528 278.1979 279.8538 281.5882 293.9073 272.4799 205.0873
n = 10 (b) 0.00630 0.00590 0.00582 0.00574 0.00538 0.00529 0.00776
m = 2 & (a) 237.7438 316.3985 323.6099 334.5398 323.8041 337.9737 311.0233
n = 30 (b) 0.01566 0.00340 0.00332 0.00322 0.00329 0.00320 0.00352
m = 5 & (a) 437.2479 255.2552 256.8947 258.6095 299.9057 284.3192 270.0392
n = 12 (b) 0.00642 0.00546 0.00541 0.00535 0.0048 0.00469 0.00530
m = 4 & (a) 259.1217 325.1103 327.80139 317.3218 288.4798 323.5345 306.4846
n = 25 (b) 0.00778 0.00331 0.00328 0.00349 0.00377 0.00331 0.00353
m = 5 & (a) 349.0077 278.5296 280.1726 281.8248 285.8987 305.9498 292.8715
n = 20 (b) 0.00576 0.00402 0.00399 0.00397 0.00392 0.00365 0.00387
m = 6 & (a) 392.2616 289.5493 290.7965 292.6434 297.5224 312.6546 305.1708
n = 20 (b) 0.00514 0.00395 0.00394 0.00391 0.00385 0.00364 0.00378
m = 4 & (a) 252.5432 323.83550 316.6086 318.8539 326.0209 316.1081 310.0659
n = 30 (b) 0.00763 0.00337 0.00346 0.00343 0.00335 0.00347 0.00354
m = 4 & (a) 259.3864 339.6836 341.1857 352.6781 339.7289 347.0327 345.0694
n = 50 (b) 0.00708 0.00304 0.00303 0.00295 0.00303 0.00295 0.00297
m = 10 & (a) 408.9574 302.9630 303.4763 303.9957 305.9098 321.7337 313.7103
n = 20 (b) 0.00374 0.00389 0.00388 0.00388 0.00385 0.00365 0.00378
m = 2 & (a) 187.8679 353.0119 350.8284 356.2148 363.9197 355.2329 354.4174
n = 125 (b) 0.01435 0.00287 0.00289 0.00285 0.00279 0.00284 0.00285
m = 5 & (a) 285.1554 339.3359 340.3523 341.3812 340.7811 339.8927 334.7293
n = 50 (b) 0.00614 0.00307 0.00306 0.00305 0.00306 0.00309 0.00314
m = 3 & (a) 201.6699 356.8151 358.2277 359.4852 359.2769 348.7078 346.7044
n = 100 (b) 0.01003 0.00285 0.00283 0.00282 0.00282 0.00288 0.00290
m = 6 & (a) 276.9894 346.9128 344.0441 344.0641 347.0209 343.9648 340.6412
n = 50 (b) 0.00533 0.00304 0.00306 0.00306 0.00307 0.00306 0.00309
m = 2 & (a) 187.3209 354.8408 358.9326 359.4457 363.4456 367.0650 367.0676
n = 250 (b) 0.01424 0.00284 0.00281 0.00280 0.00277 0.00274 0.00274
m = 10 & (a) 328.6722 333.2081 333.4760 331.1047 332.1746 339.1109 337.6287
n = 50 (b) 0.00399 0.00310 0.00309 0.00313 0.00312 0.00304 0.00306
m = 5 & (a) 239.1253 356.4929 356.8573 357.2285 356.7893 357.5209 356.9173
n = 150 (b) 0.00630 0.00282 0.00281 0.00281 0.00282 0.00281 0.00282
m = 10 & (a) 291.1962 342.0943 342.2831 342.4749 342.4087 344.8229 344.4709
n = 75 (b) 0.00417 0.00297 0.00296 0.00296 0.00296 0.00294 0.00295
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4 Illustrative Example

Consider the following example from Montgomery (1996), Example 6-1 on page 255. Chakraborti &

Human (2006) also considered this example. Frozen orange juice concentrate is packed in 6-oz cardboard

cans. These cans are formed on a machine by spinning them from cardboard stock and attaching a metal

bottom panel. By inspection of a can, we may determine whether, when filled, it could possibly leak

either on the side seam or around the bottom joint. Such a nonconforming can has an improper seal on

either the side seam or the bottom panel. We wish to set up a control chart to improve the proportion of

nonconforming cans produced by this machine. To establish the control chart, 30 samples of n = 50 cans

each were selected at half-hour intervals over a three-shift period in which the machine was in continuous

operation. Once the control chart was established, samples 15 and 23 were found to be out-of-control,

and eliminated after further investigation. Revised limits were calculated using the remaining samples,

with m = 28 and n = 50. Based on the revised control limits, sample 21 was found to be out-of-control.

Since further investigations regarding sample 21 did not produce any reasonable or logical assignable

cause, it was not discarded.

For this given data set ∑
28
i=1 xi = 301, the total number of nonconforming cans after discarding samples

15 and 23, is observed. Considering this example, we have, n = 50, m = 28 and ∑
m
i=1 xi = 301. If we use

a beta prior, p∼ Beta(a,b), the posterior distribution for this example will be a Beta(301+a,1099+b).

Chakraborti & Human (2006) determined the frequentist control limits assuming p= 0.2, when determining

the average run length and the false alarm rate. From the data given in this example, p = 0.215. We also

calculated the frequentist control limits assuming different values for p, close to p. For the frequentist

method we considered the cases where it is assumed that p = 0.18, 0.2, 0.22 and 0.24, when determining

the average run length and the false alarm rate. For the Bayesian method we considered the six different

priors, and used the predictive density from Equation 4 to obtain the control chart limits, false alarm rate

and average run length. Figure 2 shows different plots of the posterior distribution for the six different

priors considered. Figure 3 shows bar graphs of the predictive density function, f (T |data) , where T is

the number of nonconformities in a future sample. The results are given in Table 2.
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Figure 2: Posterior distribution of p, when n = 50, m = 28 and ∑
m
i=1 xi = 301 for different values of a and b.

Table 2: Lower control limits, upper control limits, average run lengths and false alarm rates given n = 50, m = 28
and ∑

m
i=1 xi = 301.

〈nLCL〉 〈nUCL〉 ARL FAR
Freq - p = 0.18 2 19 269.7451 0.0037
Freq - p = 0.2 2 19 450.8868 0.0022
Freq - p = 0.22 2 19 278.8566 0.0036
Freq - p = 0.24 2 19 111.6601 0.0090
Bayes - B(0.01,0.01) 3 20 233.7005 0.0043
Bayes - B(0.5,0.5) 3 20 234.5995 0.0043
Bayes - B(1,1) 3 20 235.5000 0.0042
Bayes - B(3,3) 3 20 238.9261 0.0042
Bayes - B(10,3) 3 21 326.4087 0.0031
Bayes - B(3,10) 2 20 234.6244 0.0043
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Figure 3: Bar graph of the predictive density of f (T |data) for different values of a and b.

In Table 2, 〈nLCL〉 denotes the largest integer not exceeding nLCL and 〈nUCL〉 denotes the largest

integer not exceeding nUCL. The results are given in Table 2. When we consider the classical method

assuming p = 0.2, the average run length is the largest and the false alarm rate the smallest. Notice

how drastically these values change when we assume a different value for p. Using the Bayesian method

with a Beta(10,3) prior we obtain an average run length equal to 326.4087, which is the closest to the

expected nominal value of 370. Using this prior we obtain a false alarm rate equal to 0.0031, which is

the closest to the expected nominal value of 0.0027. When this prior is used, the Bayesian method gives

wider control limits than those obtained from the classical method.
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5 Conclusion

The usual operation of the p - chart was extended by introducing a Bayesian approach for the p - chart. A

conjugate prior, the beta distribution, was used. Where we considered six different priors. We conclude

that the proposed Bayesian method gives wider control limits than those obtained from the classical

method. The Bayesian method generally gives larger values for the average run length and smaller values

for the false alarm rate. A smaller value for the false alarm rate is desired. As stated in Woodward &

Naylor (1993), the use of Bayesian methods has the advantage that the knowledge of the process gained

from experience can be incorporated into the methodology through the prior distributions for the process

settings and adjustments.
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