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Abstract

By extending the results of Human, Chakraborti, and Smit (2010), Phase I
control charts are derived for the generalized variance when the mean vector
and covariance matrix of multivariate normally distributed data are unknown
and estimated from m independent samples, each of size n.

In Phase II predictive distributions based on a Bayesian approach are used to
construct Shewart-type control limits for the variance and generalized variance.

The posterior distribution is obtained by combining the likelihood (the observed
data in Phase I) and the uncertainty of the unknown parameters via the prior
distribution. By using the posterior distribution the unconditional predictive
density functions are derived.

Keywords: Shewart-type Control Charts, Variance, Generalized Variance,
Phase I, Phase II, Predictive Density

1 Introduction

Quality control is a process which is used to maintain the standards of products
produced or services delivered. It is nowadays commonly accepted by most
statisticians that statistical processes should be implemented in two phases:

1. Phase I where the primary interest is to assess process stability; and

2. Phase II where online monitoring of the process is done.

Bayarri and Garcia-Donato (2005) gave the following reasons for recommending
Bayesian analysis for the determining of control chart limits:

• Control charts are based on future observations and Bayesian methods are
very natural for prediction.

• Uncertainty in the estimation of the unknown parameters are adequately
handled.

• Implementation with complicated models and in a sequential scenario
poses no methodological di�culty, the numerical di�culties are easy han-
dled via Monte Carlo methods.
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• Objective Bayesian analysis is possible without introduction of external
information other than the model, but any kind of prior information can
be incorporated into the analysis if desired.

In this article, control chart limits will be determined for the sample variance,
S2, and the generalized variance |S|. Average run-lengths and false alarm rates
will also be calculated in the Phase II setting, using a Bayesian predictive dis-
tribution.

2 An Example

The data presented in Table 1 represents measurements of inside diameters and
represent the number of 0.0001 inches above 0.7500 inches as given in Duncan
(1965). The measurements are taken in samples of j = 1, 2, . . . , n each (n = 5)
over time. Also shown in Table 1 are the sample variances, S2

i for i = 1, 2, . . .m
samples (m = 10). These data will be used to construct a Shewart type Phase
I upper control chart for the variance, and also to calculate the run-length for
future samples of size n = 5 taken repeatedly for the process.

From the data in Table 1 the sample variances are calculated by

S2
i =

1

n− 1

m∑
j=1

(yij − ȳi)2
.

The pooled sample variance is then determined as

S2
p =

1

m

m∑
i=1

S2
i = 10.72.

3 Statistical Calculation of the Upper Control

Limit in Phase I

The upper control limit, using the data by Duncan (1965) will be obtained as
described by Human, Chakraborti, and Smit (2010).

It is well known that
(n− 1)S2

i

σ2
∼ χ2

n−1
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Also, if the underlying distribution is Normal,

m (n− 1)S2
p

σ2
∼ χ2

m(n−1) =

m∑
i=1

χ2
n−1.

∴ Yi =
(n− 1)S2

i /σ
2

m (n− 1)S2
p/σ

2
=

Xi∑m
i=1Xi

where Xi ∼ χ2
n−1 (i = 1, 2, . . . ,m).

The distribution of Ymax = max (Y1,Y2, . . . , Ym) obtained from 100000 simula-
tions is illustrated in Figure 1. The value b is then calculated such that the
False Alarm Probability (FAP) is at a level of 0.05 (also shown in the �gure).

The upper control limit is then determined as:

UCL = mbS2
p = 10 (0.3314) (10.72) = 35.526.

The data from Duncan (1965) are presented visually in Figure 2. The �gure
includes the upper control limit as determined above.

4 Upper Control Limit for the Variance in Phase

II

In this section, the upper control limit in a Phase II setting will be derived using
the Bayesian derived predictive distribution.

Theorem 1. Assume Yij ∼iid N
(
µi, σ

2
)
where Yij denotes the j

th observation

from the ith sample where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The mean µi and
variance σ2 are unknown.

Using the Je�rey's prior p
(
µ1,µ2, . . . , µm, σ

2
)
∝ σ−2, σ2 > 0,−∞ < µi <

∞, i = 1, 2, . . . ,m it can be proven that the posterior distribution is given by

p
(
σ2|data

)
=

(
S̃

2

) 1
2k

1

Γ
(
k
2

) ( 1

σ2

) 1
2 (k+2)

exp

(
− S̃

2σ2

)
, σ2 > 0 (1)

an Inverse Gamma distribution with k = m (n− 1) and S̃ = m (n− 1)S2
p .
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Proof. The proof is provided as part of the appendices.

The posterior distribution given in Equation 1 is presented in Figure 3.

A predictive distribution derived using a Bayesian approach will be used to
obtain the control limits in a Phase II setting. Let S2

f be the sample variance
of a future sample of n observations from the Normal distribution. Then for a
given σ2 it follows that

(n− 1)S2
f

σ2
=
vS2

f

σ2
∼ χ2

v

which means that

f
(
S2
f |σ2

)
=
( v

2σ2

) 1
2 v 1

Γ
(
v
2

) (S2
f

) 1
2 v−1

exp

(
−
vS2

f

2σ2

)
(2)

Theorem 2. If S2
f is the sample variance of a future sample of n observations

from the Normal distribution then the unconditional predictive density of S2
f is

given by

f
(
S2
f |data

)
= S2

pFn−1,m(n−1) (3)

where S2
p is the pooled sample variance and Fn−1,m(n−1) the F-distribution with

degrees of freedom n− 1 and m (n− 1).

Proof. The proof is given as part of the appendices.

The upper control limit in the Phase II setting is then derived as

S2
pFn−1,m(n−1) (α) .

At α = 0.0027 we therefore obtain the upper control limit as

S2
pFn−1,m(n−1) (0.0027) = 10.72× 4.8707 = 52.214.

The distribution of the predictive density of S2
f including the derived upper

control limit is presented in Figure 4.
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Using the predictive distribution for S2
f in Equation 3 the control chart limits

are therefore determined as (52.214,∞).

Assuming that the process remains stable, the predictive distribution for S2
f can

also be used to derive the distribution of the run-length, that is the number of
samples until the control chart signals for the �rst time.

The resulting rejection region of size α using the predictive distribution for the
determination of the run-length is de�ned as

α =

ˆ
R(α)

f
(
S2
f |data

)
dS2

f

where

R (α) = (52.214,∞).

Given σ2 and a stable process, the distribution of the run-length r is Geometric
with parameter

ψ
(
σ2
)

=

ˆ
R(α)

f
(
S2
f |σ2

)
dS2

f (4)

where f
(
S2
f |σ2

)
is given in Equation 2.

For a given, unknown σ2and a stable process, the uncertainty is described by
the posterior distribution de�ned in Equation 1, denoted by p

(
σ2|data

)
.

Theorem 3. For a given σ2 the Geometric parameter

ψ
(
σ2
)

= ψ
(
χ2
m(n−1)

)
for given χ2

m(n−1)

which means that it is only dependent on χ2
m(n−1) and not on σ2.

Proof. The proof is provided as part of the appendices.

In Figure 5 the distributions of f
(
S2
f |data

)
and f

(
S2
f |σ2

)
for σ2 = 9 and σ2 =

20 are presented to show the di�erent shapes of the applicable distributions.
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In Table 2 results for the run-length at α = 0.0027 for n = 5 and di�erent
values for m are presented. The table present the mean, median, 95% equal tail
interval and calculated α value to obtain a run-length of 370 (the expected run
length at α = 0.0027 is 1

0.0027 ≈ 370 if σ2 is known).

In the case of the diameter example the mean run-length is 29754 and the
median run-length 1354. The reason for these large values is the small sample
size and number of samples (n = 5 and m = 10). To get a mean run-length 370
α must be 0.0173 instead of 0.027.

From Table 2 it can be noted that as the number of samples increase (larger m)
the mean and median run-lengths converges to the expected run-length of 370.

5 Phase I Control Charts for the Generalized

Variance

Assume Yij ∼idd N (µi,Σ) where Yij (p× 1) denotes the jth observation vector
from the ith sample, i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The mean vector
µi (p× 1) and covariance matrix, Σ (p× p) are unknown.

De�ne Ȳ i = 1
n

∑n
j=1 Yij andAi =

∑n
j=1

(
Yij − Ȳi

) (
Yij − Ȳ i

)′
(i = 1, 2, . . . ,m).

From this it follows that

Ȳ i ∼ N
(
µi,

1

n
Σ

)
, (i = 1, 2, . . . ,m) ,

Ai = (n− 1)Si ∼Wp (n− 1,Σ) ,

A =

m∑
i=1

Ai ∼Wp (m (n− 1) ,Σ)

and

Sp =
1

m (n− 1)
A.
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The generalized variance of the ith sample is de�ned as the determinant of the
sample covariance matrix, i.e., |Si|.

De�ne

Ti =
|Ai|

|
∑m
i=1Ai|

=
|A∗i |

|
∑m
i=1A

∗
i |

where A∗i ∼Wp (n− 1, Ip).

Also

T = max (T1, T2, . . . , Tm) = max (Ti) , i = 1, 2, . . . ,m

Now

Ti =
|Ai|

|
∑m
i=1Ai|

=
|Si|

mp |Sp|

Therefore a (1− α) 100% upper control limit for |Si| (i = 1, 2, . . . ,m) ismp |Sp|T1−α

Figure 6 presents a histogram of 100,000 simulated values ofmax (Ti) for the two
dimensional case (p=2,m=10 and n=6). The upper control limit as presented
in Table 3 is presented on the �gure. Table 3 also presents the upper control
limit for the one dimensional (p=1) and the three dimensional (p=3) situations.

By using a Bayesian procedure a predictive distribution will be derived to obtain
control chart limits in Phase II.

Using the Je�rey's prior

p (µ,Σ) ∝ |Σ|−
1
2 (p+1) −∞ < µ <∞,Σ > 0

the posterior distribution of Σ is derived as

|Σ| |data ∼ |A|
p∏
i=1

(
1

χ2
m(n−1)+1−i

)
(5)

and the predictive distribution of a future sample generalized variance |Sf | given
Σ as
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|Sf | |Σ ∼
∣∣∣∣ 1

n− 1
Σ

∣∣∣∣ p∏
i=1

χ2
n−i (6)

By combining Equation 5 and Equation 6 the unconditional predictive distri-
bution is given by

∣∣S2
f

∣∣ |data ∼ ( 1

n− 1

)p
|A|

(
p∏
i=1

n− i
m (n+ 1) + 1− i

)
F ∗ (7)

where

F ∗ =

p∏
i=1

Fn−i,m(n−1)+i−i.

Equation 7 can be used to obtain the control chart limits.

Similarly for the variance, the rejection region of size α is de�ned as

α =

ˆ
R(α)

f (|Sf | |data) d |Sf | .

Given Σ and a stable process, the distribution of the run-length r is Geometric
with parameter

ψ (|Σ|) =

ˆ
R(α)

f (|Sf | |Σ)

where f
(∣∣S

f

∣∣ |Σ) is given in Equation 6.

Theorem 4. For an unknown value of |Σ| and uncertainty described by Equa-

tion 5 the Geometric parameter can be shown to be

ψ (|Σ|) = P

{
p∏
i=1

χ2
n−i ≥

(
p∏
i=1

χ2
m(n−1)+1−i

)(
p∏
i=1

n− i
m (n− 1) + 1− i

)
F ∗α

}

for a given
∏p
i=1 χ

2
m(n−1)+1−i.

Proof. The proof is provided as part of the appendices.

For further details see Menzefricke (2002, 2007, 2010a,b).

Mean and median run-length results at α = 0.0027 for n = 50, m = 50 and 100
for the one, two and three dimensional cases are presented in Table 4.
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6 Conclusion

Phase I and Phase II control chart limits have been constructed using Bayesian
methodology. In this article we have seen that due to Monte Carlo simulation the
construction of control chart limits using the Bayesian paradigm are handled
with ease. Bayesian methods allow the use of any prior to construct control
limits without any di�culty. It has been shown that the uncertainty in unknown
parameters are handled with ease in using the predictive distribution in the
determination of control chart limits. It has also been shown that an increase
in number of samples m and the sample size n leads to a convergence in the
run-length towards the expected value of 370 at α = 0.0027.
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Appendices

A Proofs

A.1 Proof of Theorem 1

The likelihood function, i.e., the distribution of the data is

L
(
µ1, µ2, . . . , µm, σ

2|data
)

=

(
1

2πσ2

) 1
2mn m∏

i=1

n∏
j=1

exp

{
−1

2
(yij − µi)2

/σ2

}
.

Deriving the posterior distribution as Poster ∝Likelihood ×Prior, and using the
Je�rey's prior it follows that

µi|σ2, data ∼ N
(
ȳi,

σ2

n

)
, i = 1, 2, . . . ,m

and

p
(
σ2|data

)
=

(
S̃

2

) 1
2k

1

Γ
(
k
2

) ( 1

σ2

) 1
2 (k+2)

exp

(
− S̃

2σ2

)
, σ2 > 0

an Inverse Gamma distribution with k = m (n− 1) and S̃ = m (n− 1)S2
p .

A.2 Proof of Theorem 2

For a given σ2 it follows that

(n− 1)S2
f

σ2
=
vS2

f

σ2
∼ χ2

v,

which means that
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f
(
S2
f |σ2

)
=
( v

2σ2

) 1
2 v 1

Γ
(
v
2

) (S2
f

) 1
2 v−1

exp

(
−
vS2

f

2σ2

)

where v = n− 1 and S2
f > 0.

The unconditional predictive density of S2
f is given by

f
(
S2
f |data

)
=
´∞

0
f
(
S2
f |σ2

)
p
(
σ2|data

)
dσ2

=
(v)

1
2
v(S̃)

1
2
k
(S2

f)
1
2
v−1

Γ( v+k
2 )

Γ( k
2 )Γ( v

2 )(S̃+vS2
f)

1
2
(v+k)

S2
f > 0

where v = n− 1, k = m (n− 1) and S̃ = kS2
p = m (n− 1)S2

p .

∴ f
(
S2
f |data

)
= S2

pFn−1,m(n−1)

A.3 Proof of Theorem 3

For a given σ2

ψ
(
σ2
)

= P
(
S2
f > S2

pFn−1,m(n−1) (α)
)

= P
(
σ2χ2

n−1

n−1 > S2
pFn−1,m(n−1) (α)

)
for given σ2

= P

(
m(n−1)S2

p

χ2
m(n−1)

χ2
n−1

n−1 > S2
pFn−1,m(n−1) (α)

)
for given χ2

m(n−1)

= P
(
χ2
n−1 >

1
mχ

2
m(n−1)Fn−1,m(n−1) (α)

)
for given χ2

m(n−1)

= ψ
(
χ2
m(n−1)

)
for given χ2

m(n−1)
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A.4 Proof of Theorem 4

For a given |Σ|

ψ (|Σ|) = P
{
|Sf | >

(
1

n−1

)p
|A|
(∏p

i=1
n−i

m(n−1)+1−iF
∗
α

)}
= P

{∣∣∣ 1
n−1

Σ
∣∣∣∏p

i=1 χ
2
n−i ≥

(
n
n−1

)p
|A|
(∏p

i=1
n−i

m(n−1)+1−i

)
F ∗
α

}
= P

{
|A|
∏p
i=1

(
1

χ2
m(n−1)+1−i

)∏p
i=1 χ

2
n−i ≥ |A|

(∏p
i=1

n−i
m(n−1)+1−i

)
F ∗
α

}

= P
{∏p

i=1 χ
2
n−i ≥

(∏p
i=1 χ

2
m(n−1)+1−i

) (∏p
i=1

n−i
m(n−1)+1−i

)
F ∗
α

}

for a given
∏p
i=1 χ

2
m(n−1)+1−i.
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Table 1: Data for Constructing a Shewart-Type Phase I Upper Control Chart
for the Variance

Sample Number/
yi1 yi2 yi3 yi4 yi5 s2

iTime (i)
1 15 11 8 15 6 16.5
2 14 16 11 14 7 12.3
3 13 6 9 5 10 10.3
4 15 15 9 15 7 15.2
5 11 14 11 12 5 11.3
6 13 12 9 6 10 7.5
7 10 15 12 4 6 19.8
8 9 12 9 8 8 2.7
9 8 12 14 9 10 5.8
10 10 10 9 14 14 5.8

Table 2: Mean and Median Run-length at α = 0.0027 for n = 5 and Di�erent
Values of m

m n Mean Median
95% Equal Tail Calculated α for Mean

Interval Run Length of 370

10 5 29 754 1 354 (54;117 180) 0.0173
50 5 654 470 (121;2 314) 0.0044
100 5 482 411 (156;1 204) 0.0035
200 5 422 391 (197;829) 0.0031
500 5 389 379 (244;596) 0.0028
1 000 5 379 374 (274;517) 0.0028
5 000 5 371 370 (322;428) 0.0027
10 000 5 370 370 (335;410) 0.0027

Table 3: Upper 95% Control Limit, T0.95 for T = max (Ti) for the Generalized
Variance in Phase I for m = 10, n = 6 and p = 1, 2 and 3

p m n T0.95

1 10 6 0.3035
2 10 6 0.04429
3 10 6 0.00445
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Figure 1: Distribution of Ymax = max (Y1, Y2, . . . , Ym) (100,000 simulations)
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Figure 2: Shewart-type Phase I Upper Control Chart for the Variance - FAP0 =
0.05
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Figure 3: Distribution of p
(
σ2|data

)
-Simulated Values
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Figure 4: Distribution of f
(
S2
f |data

)
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Figure 5: Distributions of f
(
S2
f |σ2

)
and f

(
S2
f |data

)
showing ψ

(
σ2

1

)
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Figure 6: Histogram of max (Ti)-100,000 Simulations
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Table 4: Mean and Median Run-length at α = 0.0027 for n = 50, m = 50 and
100 and p = 1, 2 and 3

p m n Mean Median
95% Equal
Tail Interval

1 50 50 482 414 (185;1 198)
1 100 50 431 402 (197;841)
2 50 50 466 404 (162;1 128)
2 100 50 423 396 (205;819)
3 50 50 461 407 (165;1 063)
3 100 50 424 399 (209;786)
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