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Abstract 

The occurrence of non-response in survey data is a prevalent problem, often leading to 
invalid inferences and inefficient estimates. The application of a regularised iterative multiple 
correspondence analysis (RIMCA) algorithm in single imputation (SI) has been suggested 
for the handling of missing categorical data in survey analysis (Josse, Chavent, Liquet & 
Husson 2012). An adapted version of this algorithm is applied as a multiple imputation (MI) 
technique in this paper and compared to the published results. A comparison is drawn 
between the performance of SI and MI making use of RIMCA for both simulated and survey 
data. It was found that the MI procedure allowed for better estimates and wider confidence 
intervals (as expected from a valid imputation procedure).  

Key terms: incomplete ordinal categorical data, multiple imputation, multiple 
correspondence analysis, principal component analysis, regularised iterative multiple 
correspondence analysis. 

1 Introduction 

Missing values are commonly encountered in survey data. Missing data entries may result in 
biased inference when the mechanism that causes data to become missing acts as a 
second round of sampling resulting in a final sample that is not representative of the 
population in question. 

Missing data occurs for various reasons, ranging from the capturing of data to the handling 
of data. Researchers believe that data entries become missing because of a random 
process, referred to as the distribution of missingness (Kenward & Carpenter 2007:200; Little 
& Rubin 2002:11). Three missingness mechanisms can occur: missing at random (MAR), 
missing completely at random (MCAR) and missing not at random (MNAR). The MAR 
mechanism classifies missing values that are dependent on the observed values in the data 
set and independent of the other missing values that occur. MCAR is an extension of the 
MAR mechanism, since in this case the missing values are independent of all variables in 
the data set, observed and missing. Values that are missing because of the MNAR 
mechanism will at least be dependent on missing data. Both the MAR and MCAR 
mechanisms are classified as ignorable non-responses (Buhi, Goodson & Neilands 2008:84; 
Schafer & Graham 2002:151; Ali & Siddiqui 2000:167) whereas MNAR is referred to as non-
ignorable (Buhi et al. 2008:85; Song & Shepperd 2007:54; Schafer & Graham 2002:151). 
Ignorable non-responses enable the researcher to ignore the cause of missingness and 
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therefore simplify the procedures for the analysis of missing data (Garcίa-Laencina, 
Figueiras-Vidal & Sancho-Gómez 2010:266–267; Buhi et al. 2008:84). 

The method chosen to handle the missing values in a data set will determine the validity of 
results and analysis; therefore, it is important to that the sample data reflect the population 
from which the sample is drawn in order to obtain accurate inferences. Generally three 
method classes can be defined for the handling of missing values: deletion, reweighting and 
imputation, the latter being preferred for several reasons (see Buhi et al. 2008:85; Song & 
Shepperd 2007:52; Schafer & Graham 2002:155–161). Imputation techniques consist of 
single imputation (SI) and multiple imputation (MI). SI replaces each missing value with one 
plausible value in order to fill the data set to its original size, whereas MI replaces multiple 
plausible values for each missing data entry resulting in several complete data sets to 
analyse. The success of MI lies in the incorporation of the uncertainty that arises from 
imputing missing values into the overall inferences, therefore achieving realistic variances 
whilst maintaining relationships that may occur between variables. This paper attempts to 
develop another branch of MI, investigating the applicability of a regularised iterative multiple 
correspondence analysis (RIMCA) algorithm to multiply impute missing values in categorical 
data sets. 

The SI RIMCA procedure developed by Josse et al. (2012) experiences two problems, 
namely the uncertainty of the choice of retained dimensions in the dimension-reduction 
algorithm, and the problem that the imputed values have inherent uncertainties which are not 
modelled in the SI method. Both of these problems are solved in the adaptation of RIMCA in 
SI to MI.  

Three measures of uncertainty should be incorporated for a valid MI procedure (Rubin 
2003:620; Zhang 2003:581). These are, firstly, uncertainty arises in choosing the distribution 
of the missingness mechanism, secondly, uncertainty in the imputation model and the 
parameter values used to create the imputations, and thirdly, residual uncertainty occurs 
when drawing imputed values. The incorporation of the uncertainty measures in the RIMCA 
algorithm will be discussed in section 2.4. 

2 Methodology 

2.1 MCA as weighted PCA of a triplet 

The RIMCA algorithm is based on multiple correspondence analysis (MCA). However, it is 
necessary to perform MCA as a weighted principal component analysis (PCA), a continuous 
multivariate data technique, since, during the algorithm, non-categorical data will be created 
where there was missing data originally. 

In order to illustrate MCA as a weighted PCA, a data set with 𝐼 individuals and 𝐽 categorical 
variables 𝑣𝑗 , 𝑗 = 1, … , 𝐽 with 𝑘𝑗 categories, is considered. 

MCA is presented as the PCA of a triplet, (𝐙, 𝐌, 𝐃), as follows (Josse et al. 2012:93): 

(𝐼𝐗𝐃Σ
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The first term of the triplet, 𝐙, represents the data, the second term, 𝐌, represents the metric 

and the third term, 𝐃, represents the row masses (Josse, Chavent, Liquet & Husson 
2011:4/17). 

The diagonal matrix of the column margins of the indicator matrix, 𝐗, is given by 𝐃Σ =

𝑑𝑖𝑎𝑔((𝐼𝑘)𝑘=1,…,𝐾). The matrix 𝐌 =
1

𝐼𝐽
𝐃Σ is used to compute the distances between the rows. 

The diagonal matrix 𝐃 =
1

𝐼
𝕀𝐼 corresponds to the row masses, where 𝕀𝑑 is the identity matrix 

of size 𝑑. For information regarding the expansion of the data matrix, 𝐙, and performing PCA 
on a triplet, see Josse et al. (2012:94). Generalised singular value decomposition (GSVD) is 



used in order to obtain specific estimates from the data matrix. For information on this 
procedure, see Abdi (2007:6). 

2.2 RIMCA 

The RIMCA algorithm consists of three steps: initialisation, reconstruction and iteration. 
These steps are given in Josse et al. (2012), but are reiterated here for clarification. 
Consider a data set with 𝐼 individuals, 𝐽 categorical variables, each variable 𝑗 = 1, … , 𝐽 with 𝑘𝑗 

categories, 𝐾 = ∑ 𝑘𝑗
𝐽
𝑗=1 . 

i) Initialisation (𝓵 = 𝟎) 

The data matrix is transformed to an indicator matrix, 𝐗0, of dummy variables consisting of 

zeros and ones. The missing values are substituted by proportioned initial values, 
𝐼𝑘

𝐼
, which 

is a mean imputation for continuous variables (referred to as the missing fuzzy average 
method) in which missing values are substituted by the proportion observed in each category 
(Van der Heijden & Escofier 2003:162). A constraint is imposed over the row margins per 
variable to add up to one, in order to satisfy the barycentric relations required for 
correspondence analysis, consequently multiple correspondence analysis. The column 
margins of the now completed indicator matrix is obtained and is expressed as the diagonal 

matrix entries of 𝐃Σ
0 = 𝑑𝑖𝑎𝑔((𝐼𝑘

0)
𝑘=1,…,𝐾

), where 𝐼𝑘
0 is the column margin of column 𝑘. 

ii) Reconstruction 

The second step reconstructs the data and imputes plausible values to the missing values. 
These plausible values are decimal values between zero and one, adding up to one for a 
single variable. These imputed decimal values will henceforth be known as the imputed 
fuzzy values, since they do not indicate the imputed category, but rather the degree of 
membership of the observation to each possible category. The imputed fuzzy values are 
based on the MCA axes and components, providing plausible values with respect to the 
observed data. 

First, MCA is performed on the now completed indicator matrix, 𝐗ℓ−1, which is the weighted 

PCA on the triplet:  (𝐼𝐗𝓵−𝟏(𝐃Σ
ℓ−1)
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The estimates 𝐅̂ℓ and 𝐔̂𝓵, which are the matrices of eigenvectors used for the decomposition 

of the data matrix 𝐙ℓ, are obtained from the GSVD of the following: 
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Secondly, 𝐙ℓ is reconstructed using a pre-determined number of dimensions, 𝑆, are retained 
in the following reconstruction: 
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where ∥ 𝐟𝑠
ℓ ∥ is calculated according to the Hilbert-Schmidt norm and 𝜆𝑠 represents the 

eigenvalue of rank 𝑠, which is also the variance of each component 𝐟𝑠.The variance is 
estimated by the mean of the last eigenvalues: 

𝜎̂2 =
1

𝐾 − 𝐽 − 𝑆
∑ 𝜆𝑠

𝐾−𝐽
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Now the indicator matrix is updated by allocating the associated values and then replacing 
the fuzzy initial values with imputed values obtained from the reconstruction. The associated 
values are obtained by using the margins of step ℓ − 1 in the following way: 
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The indicator matrix is then updated using: 𝐗ℓ = 𝐖 ∗ 𝐗 + (1 − 𝐖) ∗ 𝐗̂ℓ, where 𝐖 is a weight 
matrix indicating missing values with a zero and observed values with a one. According to 
Josse et al. (2012:96–97) the weight matrix enables the minimisation of the reconstruction 
error over all non-missing values in a data set, while ignoring the missing values. 

Thirdly, the column margins, 𝐼𝑘
ℓ, of the imputed indicator matrix, 𝐗ℓ, are calculated. This 

results in the updated diagonal matrix of column margins, 𝐃Σ
ℓ . 

iii) Iteration 

The iteration step is concerned with the repetition of the reconstruction step until the 
difference between the imputed indicator matrix from one repetition to the next falls below a 

pre-determined threshold, ℇ, fixed at 10−6. The change is measured by ∑ (𝑥𝑖𝑘
ℓ−1 − 𝑥𝑖𝑘

ℓ )
2

≤ ε𝑖𝑘  

(Josse et al. 2012:98). 

In SI, the final categorical dataset is obtained by replacing the fuzzy imputed values with 
category values (‘0’s or ‘1’s). This is done per variable for each observation; the category 
with the largest fuzzy value will be allocated a ‘1’ in the indicator matrix, thereby allocating 
the most plausible category values with respect to a degree of membership (Josse et al. 
2012:99). 

2.3 From SI to MI 

The methodology followed by Josse et al. (2012) is adopted and altered with respect to the 
three uncertainty measures required by MI. 

The RIMCA algorithm is proposed for MAR and MCAR values, therefore the missing values 
are considered as ignorable. Thus the ignorable non-responses allow the researcher to 
ignore the distribution of missingness (Garcίa-Laencina et al. 2010:266–267; Buhi et al. 
2008:84), covering the first uncertainty required by MI. 

The second required uncertainty, uncertainty in the model, is initially incorporatedby allowing 
for random starting points. Randomly generated Uniform(0,1) initial values are allocated for 
the category value of a particular variable, still placing a constraint over the category values 
per variable to add up to one, in order to satisfy the barycentric relations required for MCA. 

The number of dimensions to retain in the reconstruction algorithm will not be fixed a priori, 
in contrast to the procedure by Josse et al. (2012:100). This represents additional model 
uncertainty. All possible reconstruction dimension limit choices can be used in order to 
generate imputed data sets. Thus a range of final data sets are obtained with varying 
degrees of under- and overfitting. This solves the first problem of RIMCA in SI, namely 
dimension choice. The number of multiple data sets to use in MI (and thus the number of 
reconstruction dimension limit choices) is recommended to be a modest number between 
two and ten (Rubin 1987:2, 15). In this paper ten multiple data sets are randomly chosen 

from the possible 𝑆 dimension choices that are available.1  

A final adaptation incorporating both model uncertainty and uncertainty when drawing 
imputed values, the third required uncertainty, is then applied. Five final data sets will be 
drawn for each of the fuzzy indicator matrices built from each of the ten converged 
reconstructions. The category randomly assigned for a missing datum is drawn with 
probability equal to the degree of membership of that observation to each category in the 
missing datum. Thus each original incomplete data set will result in 50 imputed data sets 
capturing both model and imputed value uncertainty. Drawing multiply from the final fuzzy 

                                                           
1
 Sensitivity analyses were performed in order to confirm whether the results obtained from RIMCA were 

sensitive towards a random selection of dimensions. The analyses confirmed that the results remained relatively 
stable over the various selections. 



values solves the second problem of the SI procedure mentioned in Section 1, namely that 
the imputed values have inherent uncertainties that were not accounted for in SI. 

One drawback of the category assignment should be noted. Since the final fuzzy values are 
fixed after the algorithm converges, the parameters of the imputation model are also fixed. 
This means that imputations are drawn conditionally on estimates of the parameters, so the 
MI variance might be underestimated. 

Overall, however, all three uncertainties required for valid MI are accounted for in this 
paper’s adapted RIMCA algorithm. 

2.4 Analysing the data 

In order to establish which imputation procedure produces the best results, the RIMCA 
algorithm is applied as both a SI and MI technique to the same simulated and real data sets. 
Means and confidence intervals obtained from both RIMCA procedures are compared with 
those from the incomplete data (and the original data in the simulation study). Rubin’s rules 
(Rubin 1987:75-77) will be used for the calculation of the descriptive statistics obtained by 
MI, while the confidence intervals for the means of the singly imputed data sets will be 
constructed using Student’s 𝑡-distribution. 

3 Simulation study 

3.1 Data 

The simulation protocol followed by Josse et al. (2012:107) is replicated in this paper. 
Complete data sets are generated from a multivariate Normal distribution consisting of 100 
observations in ten variables with different correlation structures. The complete data sets are 
made incomplete by inserting different percentages of missing values with random and non-
random patterns using both MCAR and MAR mechanisms. Overall, 16 different data 
scenarios are simulated. The Table 3.1 provides a summary of the simulation protocol. 

Table 3.1 Summary of simulation protocol 

 MCAR MAR 

Correlation Level Low structure: 0.4 
High structure: 0.8 

Low structure: 0.4 
High structure: 0.8 

Percentage of missing 
values 

10% and 30% 8% and 16% 

Random pattern Random Random 

Non-random pattern Variables 1-3 for 
individuals 1 to 40 
 

Variables 1-3, 9 and 10 for 
individuals 41 to 100 

Variables 2-6 when variable 1 
allocated the first category 
 

Variables 8-10 when variable 7 
allocated the third category 

3.2 Results 

The bias and mean square error (MSE) of the variable means are obtained from the 
complete-case analysis (CC), SI and MI procedures over 1000 simulations for each of the 16 
different data scenarios. Each variable’s bias and MSE in each scenario are ranked, and the 
summary of all the method rankings obtained by each variable in each scenario are provided 
in Table 3.2. Rank 1 indicates the smallest bias and MSE among the three procedures, 
consequently rank 3 indicates the largest bias and MSE. 

Table 3.2 Summary of 1000 simulations 

BIAS MSE 

RANK SI CC MI RANK SI CC MI 

1 0 43 80 1 0 28 95 

2 0 80 43 2 0 95 28 

3 123 0 0 3 123 0 0 



3.3 Discussion 

RIMCA in MI resulted in smaller bias and MSE than RIMCA in SI over 1000 simulations and 
16 data scenarios (Table 3.2). This confirms the superiority of the MI procedure over the SI 
procedure. Since some of the missingness mechanisms are MCAR, we expect to see that 
CC rankings are in some cases better than SI and MI.  

Looking at the detailed analysis results on a single simulation under each scenario (not 
tabulated in this paper) there are several notable features. The confidence intervals obtained 
from MI are wider than the SI confidence intervals in almost all cases, with the exception of 
two cases in which a slightly wider confidence interval was obtained from the SI procedure. 
The wider confidence intervals provided by MI confirm the successful incorporation of 
additional uncertainty. It is found that MI performs slightly better in MAR incomplete data with 
a low correlation structure, contrary to literature stating that RIMCA in SI is expected to 
perform better in data with a high correlation structure (Josse et al. 2012:114). In select 
cases it was found that the SI confidence intervals did not contain the true mean, resulting in 
inaccurate estimation. 

For all simulated data sets it is found that the CC estimates and MI estimates are extremely 
close to each other. The MI confidence intervals are narrower than the confidence intervals 
provided by CC analysis. The narrow confidence intervals can be partially explained by 
perhaps the small amount of between-variance that was evident, as well as the increased 
sample size. In any case, a slightly underestimated variance is expected, because of the 
fixed parameter values in the final step of the RIMCA MI procedure. 

The main advantage of the MI procedure remains that, in combining the multiple data sets, 
valid inferences are attained incorporating additional variance caused by the missing values. 

 

4 Application 

4.1 Data 

We now consider the user satisfaction survey of craft operators on the Canal des Deux 
Mers, in the South of France, undertaken by Voes Navigables de France, the same data set 
analysed by Josse et al. (2012:111). The questionnaire consists of the responses of 1232 
individuals to 14 questions with two or three possible categories, with a total of 35 
categories. In this data set 9.07% of the data is missing, and non-response occurs in 42.5% 
of the respondents. 

 

4.2 Results 

The comparison between the results obtained from RIMCA in MI and SI is given by means of 
Table 4.1 and Figure 4.1. The confidence intervals, estimated means and standard errors of 
the incomplete real data are given as the complete-case (CC) analysis. 

 

Table 4.1 Confidence interval widths, means and standard errors obtained from complete-case 
analysis, RIMCA in SI and RIMCA in MI 
Real data Confidence Interval Width Mean Standard Error 

Variable CC SI MI CC SI MI CC SI MI 

1* 0.0738 0.0714 0.0734 1.4303 1.4131 1.4301 0.0188 0.0182 0.0187 

2* 0.0988 0.0961 0.0980 1.9852 1.9156 1.9839 0.0252 0.0245 0.0250 

3* 0.0641 0.0623 0.0637 1.2928 1.2833 1.2926 0.0163 0.0159 0.0163 

4* 0.0500 0.0492 0.0502 1.2676 1.2622 1.2675 0.0127 0.0125 0.0128 

5* 0.0495 0.0485 0.0494 1.2575 1.2516 1.2577 0.0126 0.0124 0.0126 

6* 0.0416 0.0407 0.0414 1.1610 1.1575 1.1611 0.0106 0.0104 0.0106 

7* 0.0567 0.0557 0.0565 1.4741 1.4602 1.4746 0.0144 0.0142 0.0144 



8* 0.0567 0.0544 0.0562 1.4095 1.3856 1.4082 0.0144 0.0139 0.0143 

9* 0.0764 0.0674 0.0754 1.9383 1.9456 1.9390 0.0195 0.0172 0.0192 

10* 0.0626 0.0517 0.0606 1.4017 1.3084 1.4033 0.0159 0.0132 0.0154 

11* 

* 

0.0640 0.0530 0.0622 1.4491 1.3401 1.4506 0.0163 0.0135 0.0158 

12* 0.0785 0.0534 0.0731 2.0155 2.0106 2.0157 0.0200 0.0136 0.0186 

13* 0.0827 0.0808 0.0827 2.1938 2.1891 2.1937 0.0211 0.0206 0.0211 

14 0.0635 0.0714 0.0632 1.7150 1.4131 1.7153 0.0162 0.0156 0.0161 

CC – complete-case analysis, SI – single imputation, MI – multiple imputation, * – indicates the variables with a 
wider confidence interval with regard to MI (only considering SI and MI), wider confidence interval given in bold 
 

 
Figure 4.1 Means and Confidence intervals for RIMCA in MI and SI 

 

4.3 Discussion 

The estimated means for the SI and MI procedures are similar with a few slight deviations. 
The confidence intervals for MI are slightly wider for all of the variables, with the exception of 
variable 14, where the SI confidence interval is wider. 

RIMCA in MI adds uncertainty to the imputation procedure, resulting in wider confidence 
intervals for the mean in this application. The performance of SI and MI is very similar in the 
case of this specific data set. The similarity of the two procedures (SI and MI) might be due 
to the small number of missing values in the data (9%) and also because of a high 
correlation between the variables (meaning that even less information is missing). 

The post-MI means are closer to the CC means than the SI means are, but the importance 
of this result is debatable. The MI procedure is better replicating the relationships present in 
the incomplete data, but we cannot tell whether these relationships are true for the 
population. 

 

5 Conclusion 

The RIMCA algorithm was performed, in both SI and MI methods on the same data sets, 
simulated and real. The simulation study consisted of 16 different data sets, varying with 
regard to correlation structure, missingness mechanisms and percentage of missing values 
in the data.  

From the simulation and real data application, it was found that in almost all of the cases the 
confidence intervals provided by MI were wider than those from SI, which confirms the 
added uncertainty when multiple data sets are imputed. Within the simulation study, the 
mean estimates obtained from MI were also closer to the true mean values than the 
estimates provided by SI were. 

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

M
e

an
 

Variables 

RIMCA in MI vs. SI: Real data 
95% CI RIMCA (MI)

MI Mean (RIMCA)

95% CI RIMCA(MI)

95% CI RIMCA (SI)

SI Mean (RIMCA)

95% CI RIMCA (SI)

95% CI Incomplete

CC Mean

95% CI Incomplete



In summary, this paper shows that in the case of incomplete ordinal data, the RIMCA MI 
algorithm should be chosen over the RIMCA SI algorithm and CC analysis in order to obtain 
completed data sets for further analysis. 
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