
A Robust Model for Use in Sequential Regression

Multiple Imputation

M. J. von Maltitz, A. J. van der Merwe

February 9, 2015

Multiple imputation (MI) is considered the best solution to the missing data problem

when it is necessary to separate the imputation task from the analysis task. One

flexible form of MI is sequential regression multiple imputation (SRMI), a method in

which individual variables can be modelled according to specific generalised univariate

regression models. While there has been substantial research into SRMI, there remains

a need for a regression model in SRMI that can handle heavy-tailed and skew regression

errors. This paper introduces such a model, based on the skew Student’s t-distribution,

and shows that this model is robust in the presence of non-Normal errors, meaning that

it can be used as the default model within SRMI for continuous data.

Keywords: Multiple imputation, sequential regression multiple imputation, robust

imputation, Bayesian estimation, skew t-distribution.

1. Introduction

Large survey data sets often suffer from nonresponse, mis-measured, or lost data. Moreover, most

data analysis procedures are not designed to handle these missing data, leading to invalid and inef-

ficient inference about a population (Schafer & Graham 2002). Many analyses use either complete-

case analysis or a simple method of imputing missing data, such as single imputations. Even if single

imputations are accurate, however, they do not capture the uncertainty inherent in the imputation.

This is one of the reasons for the development of multiple imputation. The science of multiple im-

putation has evolved so as to remove the onus of imputing from the analyst (Meng 1994), so that

public-use datasets can be prepared by imputation experts and offered to experts in the analysis
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arena without substantial loss in estimation validity and/or efficiency, provided the guidelines for

the use of multiply imputed data are followed.

We assume that a random process, known as the missing data mechanism (MDM), causes data

to become missing. In brief, there are three mechanisms by which data is said to be missing —

‘missing at random’ (MAR), ‘missing completely at random’ (MCAR), or ‘missing not at random’

(MNAR). In the MAR MDM, the distribution of positions of the missing data entries is assumed

to be independent of the missing data in the analysis, or Pr (R|Ycom, θ) = Pr (R|Yobs, θ), where R is

the missing data mechanism, Ycom is the theoretical complete data set, θ is the unknown parameter

of the data, and Yobs is the observed part of the data. In the case of MCAR, a special case of the

MAR mechanism, the positions of the missing data entries are assumed to be independent of all

of the variables in the analysis, i.e. Pr (R|Ycom, θ) = Pr (R|θ), using the same notation as before.

In MNAR MDM, the positions of the missing data entries are assumed to be at least dependent

on data that is missing from the dataset, or, more basically, the distribution of missingness is not

MAR. Once again using the same notation, for MNAR we have Pr (R|Ycom, θ) 6= Pr (R|Yobs, θ).

Missing data problems generally require a solution that has the following capabilities (Rubin 1987,

p. 11). Firstly, it should be possible to use standard complete-data analysis methods on the data

sets that have been filled in. Secondly, the imputation technique and adjustments to the subse-

quent analysis should yield valid inferences that produce both estimates that adjust for observed

differences between respondents and non-respondents and standard errors of these estimates that

reflect the reduced sample size and an adjustment for observed differences between respondents and

non-respondents. Finally, the imputation technique should display the sensitivity of inferences to

various plausible models for nonresponse. Non-imputation methods such as available-case analysis

and re-weighting procedures, as well as single imputation methods where a single value is imputed

for every missing datum, do not adhere fully to these three conditions. The uncertainty inherent

in imputation is not included in the overarching analysis, so inferences are often biased, inefficient,

or invalid (see for example Brand 1998, Schafer & Graham 2002, Ardington, Lam, Leibbrandt &

Welch 2006, Saunders, Morrow-Howell, Spitznagel, Doré, Proctor & Pescarino 2006).

Multiple imputation (MI) was first proposed by Donald Rubin in the 1970’s (Rubin 1978) as one

solution to survey nonresponse problems. Multiple imputation covers a broad range of methods of

imputation that impute several plausible values for each missing value in a data set. Rubin wished

to create theoretically appropriate, yet practical methods that would split the analysis task from

the imputation task. Expert imputers could then publish complete data that could be used in a

statistically appropriate manner for any future analysis of that data set.

Within MI, imputed values reflect the variation within an imputation model as well as sensitivity to

different imputation models, and the analysis of the resultant multiply-imputed data can be viewed

as simulating predictive distributions of desired summary statistics under imputation models. The

entire process behind MI and analysis is then divided into three areas, namely the modelling task, or

specifying a hypothetical joint distribution, the imputation task, or deriving a predictive posterior

distribution for the incomplete variable(s), and the analysis task, or estimating parameters of

interest from the completed data. It is now widely accepted that MI is a viable and conservative

method of handling incomplete data when the imputation and analysis tasks are to be separated

(Fay 1992, Meng 1994, Nielson 2003, Schafer 2003, Rubin 2003, Zhang 2003, van Buuren 2007).

There are multiple sources of uncertainty in MI. Rubin (2003) points out that these often comple-

ment each other to make MI “self-correcting” for approximately valid statistical inference. Rubin
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(2003) lists these three forms of uncertainty:

1. There is almost always uncertainty in choosing the correct imputation model and MDM

(ignorable or non-ignorable)

2. Even with complete knowledge of the form of an imputation model governed by unknown

parameters, there is uncertainty in the parameters’ values used to create the imputations.

3. Given both the imputation model and its parameters, there is residual uncertainty to be

reflected when drawing imputed values

Multiple imputation using Bayesian statistical methods can reflect all of these uncertainties: the

first, by drawing imputations under different imputation models; the second, by randomly drawing

parameters from their posterior distributions and thereby attempting to make the MI “proper” or

“confidence proper” (see Rubin 1976, Rubin 1996); and the third, by randomly drawing imputed

values from their predictive distribution, given the fixed parameters drawn previously.

One of the main problems of MI in a Bayesian context is that a multivariate model needs to

be chosen for the observed data. In practice, however, survey data consists of many variables

distributed in many different ways, and often displays seemingly unsystematic patterns of missing

data. These properties of survey data make joint modelling approaches extremely difficult to

implement, since typical multivariate distributions aren’t flexible enough to accommodate such

varying structure.

A more recent MI approach uses sequences of appropriate univariate multiple regression models to

multiply impute missing data. Hence the name Sequential Regression Multiple Imputation (SRMI).

This approach is also known as the fully conditional specification (FCS) or approach (for reasons

that will be explained shortly), or MI through chained equations (MICE), as well as stochastic

relaxation, regression switching, variable-by-variable imputation, partially incompatible MCMC,

iterated univariate imputation, or the ordered pseudo-Gibbs sampler. This paper will refer to

all of these methods with the common acronym SRMI, since they are all essentially the same

procedure.1 In the sequential procedure, each variable can be modelled individually within the

imputation process. Imputers can have much more control over imputations from variables with

inherent restrictions, which is not easily done when variables are jointly modelled in an imputation

procedure. This method of MI was proposed by van Buuren, Boshuizen & Knook (1999), and

independently by Raghunathan, Lepkowski, van Hoewyk & Solenberger (2001), although the system

had been used even earlier by researchers such as Kennickell (1991).

2. The SRMI process

2.1. Overview

In essence, SRMI works in a two-dimensional process as follows (Raghunathan et al. 2001, He

& Raghunathan 2009). Reviewing our standard notation, let Yj (j = 1, . . . , p) denote the vari-

ables with missing values, X denote the matrix of q fully observed variables, and let Y−j =

(Y1, . . . , Yj−1, Yj+1, . . . , Yp) denote the p − 1 variables in Y excluding Yj . In SRMI, a conditional

1The reason SRMI is chosen above the more common FCS acronym, is due to the more explanatory nature of the

terms ‘sequential regression’, which adequately describe some of the steps within the procedure.
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model P (Yj |Y−j , X, θj) is specified for each Yj , with θj denoting the respective model parameters.

The first dimension of the SRMI process is a single iteration, or pass, of the process, essentially

‘filling in’ the missing data values. The second dimension of the procedure is the repetition of this

‘filling in’ process, using the previously filled-in values. Thus, in each iteration of the imputation

procedure, θj is drawn from P
(
θj |Y obs

j , Y−j , X
)

using the observed part of of the variable Yj , Y
obs
j ,

and the completed Y−j (from the previous iteration if there was one), and X, and the missing part

of the variable Yj , Y
mis
j is then imputed. The conditional model process is repeated, cycling through

all the Yj ’s. Each conditional density is modelled through the appropriate regression model, chosen

for the distribution of each variable.

Note that the first round of imputations, i.e. the first iteration, is slightly different, as mentioned

above in the text “. . . from the previous iteration if there is one”. Raghunathan et al. (2001) breaks

down the first iteration in detail. The joint conditional density of Y1, Y2, . . . , Yp given X can be

factored as

f (Y1, Y2 . . . , Yp|X, θ1, θ2 . . . , θp) =

f1 (Y1|X, θ1) f2 (Y2|X,Y1, θ2) . . . fp (Yp|X,Y1, Y2, . . . , Yp−1, θp)

where f1, . . . , fp are the conditional density functions and θj is a vector of parameters in the

respective conditional distribution. So the first iteration of the SRMI procedure conditions only on

the data that has been filled in already in that iteration.

When the missing data have a non-monotone pattern, the target distribution is the joint conditional

distribution of Ymis and θ given Yobs, P (Ymis, θ|Yobs). Simulating from this distribution can be done

using the MCMC method, as given by Zhang (2003), which proceeds as follows:

1. Replace the missing data Ymis by some assumed values.

2. Simulate θ from the resulting completed data posterior P (θ|Yobs, Ymis). Let θ(t) be the current

simulated value of θ from this complete data posterior distribution.

3. (Imputation or I-step): The next iterative sample of Ymis, namely Y
(t+1)
mis , can be drawn from

the conditional predictive distribution of Ymis given Yobs and θ(t):

Y
(t+1)
mis ∼ P

(
Ymis|Yobs, θ(t)

)
4. (Posterior or P-step): Conditioning on Y

(t+1)
mis , the next simulated value of θ can be drawn

from its completed data posterior distribution,

θ(t+1) ∼ P
(
θ|Yobs, Y

(t+1)
mis

)
.

5. Repeating steps 3 and 4 from a staring value of θ, say, θ(0), yields a Markov chain {(θ(t), Y (t)
mis) :

t = 1, 2 . . .}. The stationary distribution is the target distribution, P (Ymis, θ|Yobs).

Consequently, the marginal stationary distributions of the subsequence {θ(t) : t = 1, 2 . . .} and

{Y (t)
mis : t = 1, 2 . . .} are the observed data posterior distribution P (θ|Yobs) and the posterior pre-

dictive distribution P (Ymis|Yobs) respectively. When t is sufficiently large, θ(t) can be viewed as a

single simulation from the observed data posterior distribution P (θ|Yobs) and Y
(t)
mis can be viewed

as a single simulation from the posterior predictive distribution P (Ymis|Yobs).
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Traditionally, the regression models for the incomplete variables Yj take one of the following forms

(He & Raghunathan 2009):

1. a Normal linear OLS if Yj is continuous;

2. a logistic regression if Yj is binary;

3. a polytomous or generalised logit regression if Yj is categorical with more than two categories;

4. a Poisson loglinear model if Yj contains count data;

5. a two-stage model if Yj is semi-continuous, with a logistic regression used to model the

zero/non-zero status of Yj , and a Normal OLS regression to model the value of Yj if it is

non-zero.

Imputations can be made from these models using one of a variety of software packages (He &

Raghunathan 2009). For more information on the modelling and simulation procedures from these

standard models, see Raghunathan et al. (2001). Brand (1998) provides a non-parametric nearest

neighbour method that can be used within SRMI.

2.2. Non-Normal errors in the imputation regressions

He & Raghunathan (2009) contribute to the SRMI area by assessing several methods of Normality-

based SRMI when the underlying conditional distributions of the variables are non-Normal. He &

Raghunathan’s (2009) study is important for the present paper which is concerned with non-Normal

errors in SRMI. In a simulation study, He & Raghunathan (2009) assess the following sequential

imputation methods when these methods are applied to data that is non-Normal, with missing

values that are MCAR:

� Sequential Normal linear regressions

� Predictive mean matching (PMM)

� Local residual draw (LRD)

� Adjustment of Normal regression by sampling from observed residuals (or expanded residual

draw, ERD)

� Adjustment by fitting Tukey’s g-and-h distribution to errors

Each of these imputation methods are applied sequentially and multiply (with each dataset imputed

five times) on the following simulated data, with 20% missing values generated completely at

random: Y1 ∼ U(0, 2), Y2 = 1 + Y1 + ε2, and Y3 = 1 + Y1 + Y2 + ε3. The authors consider two

sets (one with less variation and one with more variation) of each of the following distributions for

each of ε2 and ε3: Lognormal, centred Student’s t, and Uniform. Their study’s results show that

all of the methods are reasonable for estimating means, proportions, and coverage rates (although

the sequential Normal method is the worst for the proportions). However, when estimating a

regression coefficient for a regression on the completed data, all of the methods are left wanting

when the ε’s follow the distributions with the wider variances, although the Normal distribution

often seems quite robust to the misspecification. The key conclusion from this study is that it is

extremely important for a researcher to analyse the incomplete data thoroughly before applying

an imputation method, since it is shown that simply applying a regular Normal method (even one
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adjusting from non-Normal errors) might not be adequate for a particular estimation procedure in

the presence of errors with non-Normal distributions and large variances.

3. A New Robust Sequential Regression Model

3.1. Introduction

Investigating the literature on MI and SRMI suggests that there is a need for a robust model within

SRMI that can handle heavy-tailed and possibly skew data. Such a model could be chosen as a

default within an SRMI routine instead of the Normal regression model, because this default model

would be able to handle non-Normal errors (including heavy tails and skewness).

One model which could fill the role of a robust sequential regression model is the Student’s t-

distribution. With heavier tails than the Normal distribution, and the possibility of incorporating

a skewness parameter, the t-distribution model could serve as a robust counterpart to the Normal

OLS regression model (even with the PMM, LRD and ERD adaptations included). If the errors are

indeed Normal, then this robust model will be able to reduce to the Normal case by increasing the

degrees of freedom of the t-distribution. In this paper, the t model will be built using a Bayesian

paradigm.

The objective of this paper is to show that the skew t-distribution in SRMI can reproduce the the

error distribution under a variety of Normal and non-Normal symmetric and skew specifications.

Additionally, beyond simply replicating the original distributions, we would like to show that the

imputations made from the skew t-distribution have good coverage of the original data points that

are made missing.

4. The Skew Student t-Distribution

We follow the setup presented in Fonseca, Ferreira & Migon (2008, p. 326). Consider a linear

regression model in which an observation vector y = (y1, . . . , yn)′ satisfies

y = Xβ + Zδ + ε

where β = (β0, β1, . . . , βp) are the regression coefficients, δ is a skewness parameter, Z is a diagonal

matrix with diagonal elements zi > 0, i = 1, 2, . . . , n as skewness coefficients, ε = (ε1, . . . , εn)′

is the error vector and ε1, . . . , εn are i.i.d. according to the Student-t distribution with location

zero, scale parameter σ and ν degrees of freedom. Here X = [x1, . . . , xn]′ is the n × p matrix

of explanatory variables and is taken to be full rank p. We denote the model parameters by

θ = (β, δ, σ, ν) ∈ Rp+1 × (0,∞)2. The likelihood function is given by:

L (β, σ, ν|y,X) =
Γ
(
ν+1
2

)n
νnν/2

Γ
(
ν
2

)n
πn/2σn

n∏
i=1

[
ν +

(
yi − x′iβ − δzi

σ

)2
]−(ν+1)/2

. (1)

The likelihood for the t-distribution given in Equation 1 can be restructured as follows:

L ∝
n∏
i=1

(
λiτ

2π

) 1
2

exp
[
−τ

2

(
yi − x′iβ − δzi

)2]× n∏
i=1

[
(ν/2)ν/2

Γ (ν/2)
λ
ν/2−1
i exp

(
−νλi

2

)]
(2)
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where τ = σ−2 and the λi are weights indicating the influence of each observation on ν. Integrating

out the λi in Equation 2 yields Equation 1.

4.1. Fitting the skew t-distribution

When the t-distribution is used for errors on the posterior predictive distribution, generating the

imputations is simply a matter of applying the posterior-drawn regression parameters to the co-

variates and adding an appropriate t error. The challenge is to find the degrees of freedom for

this error. This involves a Gibbs sampling process for the parameters β, τ , zi, i = 1, . . . , n, δ,

λi, i = 1, . . . , n, and ν, while ν itself is drawn via a Metropolis-Hastings algorithm in each step

of the Gibbs sampler. The Gibbs sampler requires the formulation of the conditional posterior

distributions for each of the parameters of the model.

For each observation i, i = 1, . . . , n, and covariate q, q = 0, 1 . . . , p, ỹiq = yi − β−qX−q − δzi, with

−q representing all variables in X besides variable q. In other words, for q = 0:

ỹi0 = yi − β1xi1 − β2xi2 − . . .− βpxip − δzi

For q = 1:

ỹi1 = yi − β0 − β2xi2 − β3xi3 − . . .− βpxip − δzi

For q = 2, . . . , p:

ỹiq = yi − β0 − β1xi1 − . . .− βq−1xi(q−1) − βq+1xi(q+1) − . . .− βpxip − δzi

Finally, for q = p:

ỹip = yi − β0 − β1xi1 − β2xi2 − . . .− βp−1xi(p−1) − δzi

We also define ˜̃yi = yi − βxi − δzi separate to ŷi = yi − βxi, where xi is the ith row of the data

matrix, corresponding to the covariates for observation i.

With skewness a part of the ỹiq, the same conditional distributions exist for the βq:

βq|y, β−q, τ,Λ ∼

N


(
τ

n∑
i=1

λix
2
iq +

1

σ2βq

)−1(
τ

n∑
i=1

λixiqỹiq +
µβq
σ2βq

)
,

(
τ

n∑
i=1

λix
2
iq +

1

σ2βq

)−1 ,

where xiq is element (i, q) of the data matrix X (and when q = 0, xi0 = 1 for all i), and µβq and σ2βq
are the conjugate Normal prior mean and variance for βq respectively. Note that the matrix Λ is

the diagonal matrix with diagonal elements λ1, λ2, . . . , λn. Once again, µβq = 0 and σ2βq = 10000.

For τ , we have that:

τ |y, β,Λ ∼ Γ

n2 + aτ ,

(
1

2

n∑
i=1

λi ˜̃y
2
i + 2bτ

)−1 ,

where aτ and bτ are the conjugate Gamma prior parameters for τ .
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The conditional posterior for the zi, i = 1, . . . , n is derived to be:

zi|y, β, τ, δ,Λ ∼ N
{(
τλiδ

2 + 1
)−1

τλiδŷi,
(
τλiδ

2 + 1
)−1}

I (Zi > 0) ,

where I (Zi > 0) is an indicator function to ensure that only positive zi exist (in order to make

sense of the sign of the skewness parameter δ).

The conditional posterior distribution of the skewness parameter, δ, is given can be shown to be:

δ|y, β, τ,Λ, z1, . . . , zn ∼

N


(
τ

n∑
i=1

λiz
2
i +

1

σ2δ

)−1(
τ

n∑
i=1

λiziŷi +
µδ
σ2δ

)
,

(
τ

n∑
i=1

λiz
2
i +

1

σ2δ

)−1 ,

where µδ and σ2δ are the conjugate Normal prior parameters for δ.

For the λi, it can be shown that

λi|y, β, τ, ν, δ, z1, . . . , zn ∼ Γ

{
1

2
(ν + 1) ,

[
1

2

(
τ ˜̃y2i + ν

)]−1}
,

with the skewness built into the distribution by replacing ŷi with ˜̃yi.

The posterior for ν, conditional on Λ, and its priors, are given in the following equations.

p (ν|y,Λ) ∝ ν
1
2
νn

2
1
2
νn
[
Γ
(
ν
2

)]n |Λ| 12ν−1 exp

[
−1

2
ν

n∑
i=1

λi

]
p (ν) , (3)

with the prior on ν taking one of four forms, namely the truncated exponential2, the Independence

Jeffrey’s prior, the probability matching prior or reference priors for the orders
(
ν, µ, σ2

)
,
(
ν, σ2, µ

)
,

and
(
µ, ν, σ2

)
, and the reference priors for the orders

(
µ, σ2, ν

)
,
(
σ2, µ, ν

)
, and

(
σ2, ν, µ

)
. For the

sake of brevity, and because it is not the purpose of this paper to compare performance of priors,

we will use the established truncated exponential prior:

p (ν) ∝ e−νξ, ν > 2, ξ = 0, 1. (4)

Working with the natural log posterior and log priors, which is easier, we have,

log (p (ν|y, λ)) ∝ 1

2
νn log (ν)− 1

2
νn log (2)− n log

(
Γ
(ν

2

))
−
(

1

2
ν − 1

) n∑
i=1

log (λi)−
(

1

2
ν − 1

) n∑
i=1

λi − νξ. (5)

The algorithm for the Gibbs sampler (and Metropolis sampler for ν) when we wish to incorporate

skewness into the imputation model utilises the conditional distributions listed above.

4.2. Simulating from the predictive posterior distribution

The Gibbs sampler described above allows one to draw a single set of parameters that is used to

generate a response prediction based on a new set of observed covariate values. By using the single

2This distribution is truncated so that the mean and the variance exist (Sahu, Dey & Branco 2003).
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draw of each parameter in the model for the data, and then drawing with error, one effectively

draws from the predictive posterior of the data.

This is the procedure that is followed within SRMI: the skew t-distribution regression model is

fitted to the observed data, the Gibbs sampler (eventually, after burn-in) provides a single draw of

each of the parameters from the approximate joint posterior of the parameters, and this parameter

set is used to generate a prediction (with error) for the responses that are missing (but whose

covariates are complete).

5. Simulation Methodology

The simulation study presented in this research will be an analysis of the robustness of a mis-

specified sequential imputation method based on the t-distribution (and its skew specification), as

a continuation of the work presented by He & Raghunathan (2009). The objective of this study is

to find a Normal-family imputation method is robust in the presence of non-Normal data.

The simulation study will also evaluate the situations where predictive mean matching (PMM),

local residual draw (LRD), and expanded residual draw (ERD) can reduce bias in SRMI procedures.

While these methods have already been tested for Normality-based SRMI by He & Raghunathan

(2009), it would be of interest to see if they remain useful when the symmetric t-distribution is

used in SRMI, and to see if these adaptations can compare in effectiveness to the skew specification

of the t-distribution.

5.1. Assessment Methods

The purpose of this paper is to use the robust model in SRMI to replicate the original simulated

data after it has been made incomplete. The overall analysis of multiple completed data sets is

unnecessary, so this paper will refrain from running these post-imputation analyses and computing

RBIAS and RRMSE as was done by He & Raghunathan (2009). The only results that need to be

assessed are the fit of the completed data to the original data and the fit of the imputation draws to

the values that were made missing.3 This requires the construction of two quantile-quantile (QQ)

plots, and a statistic to measure the deviance of these plots from the optimal solution. For an

imputation method to be robust, the model should replicate the original data and predict plausible

imputations.

1. Firstly, for one data scenario (with n = 200) and one MDM, a plot of the quantiles of the

completed data (for each variable with missingness) is drawn against the quantiles of the

original data (for each corresponding original complete variable). Since MI creates multiple

completed datasets and the overall analyses after MI are averaged over these multiple com-

pleted data sets to obtain a final estimate, a ‘pooling’ procedure is followed when calculating

the quantiles of the completed data — the five MI completed data sets for a particular MI

method are pooled before the quantiles are calculated.

For each variable with missingness, the mean squared error (MSE) of the deviation of the

quantiles of the completed data from the quantiles of the original data is then computed.

3For an imputation method to be robust, the model should replicate the original data and predict plausible impu-

tations.
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Additionally, the MSE of the QQ plot for the incomplete (INC) data and complete-case4 (CC)

data are also calculated for comparison. Across multiple simulations within a data scenario

and MDM, a distribution of QQ plot MSE calculations is then obtained. The average of these

MSE calculations for an imputation method are reported for each data scenario and MDM

combination.

This assessment allows one to compare post-imputation distributions with the original data

distributions, as well as with the distributions under the incomplete data and the data set

where incomplete observations are deleted.

2. Secondly, for each data scenario (with n = 200) and MDM combination, 200 multiply imputed

data sets are created under each SRMI model. For each variable with missingness, the 1%, 2%,

. . . , 99% equal-tail coverage intervals of the imputed values are calculated. The proportion

of the original data points that fall inside their 1%, 2%, . . . , 99% imputed intervals is then

determined. For an imputation method that perfectly replicates the original data, one should

find that, for one variable with missingness, p% of the original data points that were made

missing should fall within the p% imputation intervals for that data point. The MSE of the

QQ plot of these coverage intervals from the 45◦ line is reported.

This assessment allows one to make sure that the imputation model is predicting individual

data points within expected intervals.

5.2. Simulated data

Complete data is generated under four different data scenarios. The data is then made incomplete

using alternating MCAR and MAR mechanisms, and re-filled using various SRMI models, namely

the Normal and t, with their PMM, LRD and ERD adaptations for skewness, as well as the skew

t model.

5.2.1. Data Scenarios

In this study, simulated data consists of four variables, Y1, Y2, Y3, and Y4, where, Y1 = ε1, Y2 =

1 + Y1 + ε2, Y3 = 1 + Y1 + Y2 + ε3, and Y3 = 1 + Y1 + Y2 + Y3 + ε4.

The complete-data model errors take one of four sets of forms, namely, symmetric Normality,

moderate tails and with skewness, heavy tails and with skewness, mixed Tukey’s gh distributions5

and, finally, extreme deviation from Normality (with larger error variances), a scenario replicated

and expanded on from those created in He & Raghunathan (2009).

Details on the exact distributions placed on each error, ε1, . . . , ε4 are given in Appendix A.

5.2.2. Missing Data Mechanisms

In this study, two MDMs are simulated, namely one MCAR mechanism one MAR mechanism. For

the MCAR mechanism, every data point has a 20% chance of being deleted in one simulation. This

4Complete-case data or case-deleted data simply removes all incomplete observations from the data set
5For more information on the forms of the gh distribution that were chosen, see He & Raghunathan (2006).
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does not guarantee 20% missingness, but, since the MAR mechanism does not either, this point is

moot.

For the MAR MDM, a logistic regression is sequentially applied to each variable to generate a

probability for each observation in the current variable to be missing, based on the values of the

values of the previous variables. For more detail on the mechanism, see the Appendix B.

Across 100 simulations of these MDMs we have around 20% missingness for each variable individu-

ally under the MCAR MDM and around 49% under this MDM for CC, and around 17% missingness

for each variable under individually under the MAR MDM and around 43% under this MDM for

CC.6 These values are given in Table 1 in Appendix C.

To ensure the the MDMs are indeed MCAR and MAR, we examine the difference between the

mean of the original complete data and the mean of the incomplete data. The results are given in

Table 2 in Appendix C.7 In summary, the MCAR MDM is making no difference to the mean of

the data, while the MAR MDM results show that the mean of the incomplete data is higher than

that of the original complete data. This means the MAR MDM is successfully weeding out smaller

values in the data set.

6. Simulation Analysis

6.1. Distributional coverage

In Appendix C, Tables 3 to 7 give the MSE of the QQ plots comparing the quantiles of the

incomplete and completed data with the quantiles of the original data. Lower numbers are more

desirable. The best result for each variable (per data scenario and MDM) is highlighted in bold,

while methods with MSEs within 5% of the best method are italicised.

To summarise all of the tables we can perform the following rank analysis. If we rank the MSEs

for each imputation method under a particular variable, MDM, and data scenario, we are left with

30 ranks for each method under each complete data sample size. These ranks are summarised in a

boxplot, Figure 1, sorted by mean rank.

In this graphic, it is clear that the skew t model performs well under large sample sizes, and only

the Normal model with ERD seems to perform better in general. However, since this is merely a

crude summary of all the simulation scenarios, it may be necessary to look at the tables in more

detail.

It is clear from the tables that under both MCAR and MAR MDMs, complete case data have

distributions that deviate the most from the original data, although this difference is somewhat

muted under the MCAR mechanism (as expected).

Under the assumption of Normal errors in Data Scenario 1, Normal, Normal with ERD, and the

skew t imputation models perform the best under both the MCAR and MAR MDMs. In Data

Scenario 2, with moderate t errors, the Normal model with ERD performs well, but only when

n = 200. The Normal, t and skew t models perform well under both MDMs, both choices of N ,

and for all incomplete variables. Under Data Scenario 3, the Normal model and Normal model

6If n = 1000 observations are simulated, then there is no discernible difference in the missingness figures.
7If n = 1000 observations are simulated the results are very similar; no marked differences are notable.
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Figure 1: Boxplots of QQ MSE ranks across variables, MDMs and data scenarios

with ERD generally perform well when n = 200. The t and skew t imputation models consistently

perform adequately. Looking at Data Scenario 4, several imputation models perform well, including

the Normal and the Normal with ERD, the t, and the skew t. The LRD adaptations of both the

Normal and the t models are also adequate. These results all hold for both sample sizes. Data

Scenario 5 holds mixed results. Strangely, no model is able to replicate the distribution of the

original data’s Y2 better than the incomplete data. The error on this variable was Lognormal,

so further investigation into this might be warranted in future research. Amongst the imputation

models, the best performers for replicating the original distribution of Y2 are the Normal and t

models with the PMM and LRD adaptations. For Y3, the t and skew t models perform well,

together with the Normal and t models incorporating the LRD adjustment. For Y4, once more

the incomplete data seems close in distribution to the original data, while the Normal model with

ERD, the t model, and the skew t model perform best amongst the imputation models.

Across all models, one may argue that the skew t model is the most robust. This model shows

fewer weaknesses than the other models, while always remaining relatively close to the performance

of the best imputation model if it is not the best model itself. It can also be noted that when the

distributional assumptions of the errors are less pronounced, i.e. when n = 200, it is more difficult

to choose a better imputation model. However, with n = 1000, we are more able to gauge the

effectiveness of some of the imputation models, for example, the skew t model.

Before continuing with the second analysis, it is important to keep in mind that the errors across

the three variables are uncorrelated, and that a certain amount of ‘averaging’ of errors across

an observation may or may not have allowed less robust models to appear better than they are.

However, this should not concern us too much, since it is clear that even with this advantage, the

traditionally less robust models appear are still shown to be less robust than the skew t model.

6.2. Imputation coverage

Tables 8 to 12 provide the MSEs of the QQ plots that compare the coverage of the actual distribution

of the imputations over the original values of the data that was made missing. Once again, lower

12



Figure 2: Boxplots of imputation coverage MSE ranks across variables, MDMs and data scenarios

numbers are more desirable, and the best result for each variable (per data scenario and MDM) is

highlighted in bold, while methods with MSEs within 5% of the best method are italicised. Take

note that the maximum MSE for a method across the three variables is also given as a measure of

the worst error the method made within the given data scenario and sample size.

Once again, the ranks of these MSEs are summarised in a boxplot, Figure 2, sorted by the mean

of the ranks for each method.

While little information can be gained from this crude ranking analysis, one can at least note that

the symmetric and skew t models are performing far better than the Normal model in general, and

that the t model with ERD is provides terrible imputation coverage intervals.

One can look at the Tables 3-7 in Appendix C in more detail, but there still seems to be no

systematic evidence of one imputation method providing more accurate coverage of the original

data points before these were made missing.

The only result that is systematically clear in the tables is the result already seen in Figure 2; that

the t model with the ERD adjustment is inadmissable as an imputation method. The errors that

the algorithm has to ‘donate’ to the imputations are simply too wide, too often.

By examining averages across scenarios and MDMs, one will find that the Normal model with

either PMM, LRD or ERD adjustments, along with the t model with PMM or LRD adjustments,

all perform better than the unadjusted Normal, unadjusted t, and the skew t models when n = 1000.

However, when n = 200, the skew t model provides the best coverages on average, followed by the

t model. This is also the case if we average the MSEs across sample size. Certainly, the unadjusted

t and the skew t models generally perform better than the unadjusted Normal model.

According to maximums across scenarios, sample sizes, and MDMs, the Normal with PMM, LRD,

or ERD, and the t with PMM or LRD seem to provide better coverages.

The excellent performance of the models with modest adjustments for skewness, namely the PMM,

LRD, and ERD on Normal errors, may suggest that in the context of imputation, it suffices to not

be able to draw errors outside of the realm of observed errors in the data set. If, however, it is
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important to allow for errors in the imputations that are wider than the existing observed errors

(for example, if extreme proportions of the data sets are missing), then one could assume that these

adaptations to the symmetric models will not suffice.

In conclusion, the second analysis shows that the most accurate of the pure distribution-based

imputation methods is the skew t model, followed by the symmetric t model. If adaptations to

incorporate observed skewness are deemed suitable for the data set, the Normal model with any

adaptation (PMM, LRD, or ERD) will suffice, and will significantly reduce computation time.

7. Conclusion

It is clear that at the very least Normal SRMI should be used instead of incomplete data analysis or

CC data analysis. The Normal model has proved to be relatively robust to misspecification within

the SRMI approach to the extent of the data variations presented in this paper when compared

with complete case or incomplete data analysis.

However, an imputer can make a better choice of SRMI model based on the results of this paper.

Often it seems that the Normal model with a PMM, LRD or ERD adaptation on the imputed

errors will suffice in order to accommodate observed skewness. The advantage of this is the quicker

computation time, since the t and skew t models are much more complex in their implementation.

It also seems as though the t models with PMM or LRD adaptations are rather robust. The t

model with ERD is not recommended due to it’s generation of errors that lead to poor coverage

of imputations over the original data points before they were made missing. Unfortunately, the t

model with any adaptation does not share the computational simplicity of the Normal model, with

or without adaptations.

If one prefers to allow for errors in imputations that are outside of the limits of the errors that

are actually observed, a more robust adaptation-free approach should be considered. If this is the

case, the obvious choice is the skew t approach. In this paper this method has been shown to be

favourable under many of the simulation scenarios. Moreover, it would seem that the skew t model,

while not always being the best choice of imputation model, has shown no serious weaknesses in the

context of this simulation study even when compared to the adjusted Normal models. The skew t

model is, therefore, an acceptable choice of imputation model should the error distributions in the

data not be known. The disadvantage of increased computation time (compared with the Normal

model) is more than offset by the model’s flexibility.
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Appendix A Data Scenarios

1. Normality (and symmetry):

εj ∼ N (0, 1) for j = 1, 2, 3, 4.

2. Moderate tails, with skewness:

ε1 ∼ N (0, 1)

ε2 ∼ t6
ε3 = α3 − ω3 where α3 ∼ t6 and ω3 ∼ N (0, 1)

ε4 = α4 − 2ω4 where α4 ∼ t6 and ω4 ∼ N (0, 1)

3. Heavy tails, with skewness:

ε1 ∼ N (0, 1)

ε2 ∼ t3
ε3 = α3 − ω3 where α3 ∼ t3 and ω3 ∼ N (0, 1)

ε4 = α4 − 2ω4 where α4 ∼ t3 and ω4 ∼ N (0, 1)

4. Mixed gh distributions: Again ε1 ∼ N (0, 1). For the remaining error distributions ε2, ε3,

and ε4, various possibilities of Tukey’s gh distribution are chosen.

For all of the errors in data scenario 4, µ = 0 and σ = 1. However, the g and h parameters

are varied as follows:

� For ε2, g = 1 and h = −0.25. This creates a downward-sloping monotonic exponential-

type distribution.

� For ε3, g = 0.75 and h = 0.25. This generates a right-skewed distribution.

� For ε4, g = 1 and h = 0. This is the well-known Lognormal distribution.

5. Extreme deviation from Normality: In this data scenario, extreme deviation from Nor-

mality, and larger error variances are generated. Let the vector of errors for Yj , j = 1, . . . , 4

be ξj = [ε1j ε2j ε3j . . . εnj ]
′. Also, let Uj = [u1j u2j u3j . . . unj ]

′. For each observation i,

i = 1, . . . , n, the error εij for the this observation on each variable is constructed as follows:
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� ξ1 ∼ N (0, 1)

� εi2 = ui2−E(U2)
V ar(U2)

×
√

3V ar (Y1), u2 = 1 + exp (1 + Z), Z ∼ N (0, 1). So ξ2 is a vector of

centred and widely scaled Lognormal errors.

� εi3 = ui3−E(U3)
V ar(U3)

×
√

2 [V ar (Y1) + V ar (Y2)], u3 = W , W ∼ t3. So ξ3 is a vector centred

and widely scaled t3 errors.

� εi4 = ui4−E(U4)
V ar(U4)

×
√
V ar (Y1) + V ar (Y2) + +V ar (Y2), u4 = W − 2Z, W ∼ t3, Z ∼

N (0, 1). So ξ4 is a vector centred and widely scaled right-skewed t3 errors.

This arrangement of error distributions is arguably the most extremely deviated from Nor-

mality of the five data scenarios.

Appendix B MAR MDM

� Y1 is complete.

� The probability that observation i is missing in Y2 is:

pi,2 = 0.4 [1 + exp (−0.3− 0.3yi,1)]
−1

Once these probabilities are calculated, each observation with probability less that an inde-

pendent draw from a U (0, 1) distribution is made missing.

� The probability that observation i is missing in Y3 is:

pi,3 = 0.4 [1 + exp (−0.3− 0.3yi,1 − 0.3yi,2)]
−1

If yi,2 is already missing, this term is ignored, ensuring the MAR MDM does not become an

MNAR MDM. Data points are made missing in the same way as for Y2.

� Finally, the probability that observation i is missing in Y4 is:

pi,3 = 0.4 [1 + exp (−0.3− 0.3yi,1 − 0.3yi,2 − 0.3yi,3)]
−1

If yi,2 or yi,3 or both are already missing, the missing terms are ignored, ensuring once more

that the MAR MDM does not become an MNAR MDM. Data points are made missing in

the same way as for Y2 and Y3.

Appendix C Tables
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Table 1: Missingness from the MCAR and MAR MDMs

MDM Variable/CC
Data scenario

1 2 3 4 5

MCAR

Y2 20.1% 20.0% 20.4% 20.2% 19.6%

Y3 19.7% 19.4% 20.3% 20.0% 20.0%

Y4 20.1% 19.6% 20.4% 19.5% 19.7%

CC 48.7% 48.1% 49.6% 48.7% 48.5%

MAR

Y2 16.9% 17.3% 17.0% 17.3% 17.5%

Y3 16.9% 16.8% 17.0% 17.1% 17.4%

Y4 17.4% 17.3% 17.6% 16.9% 17.3%

CC 42.7% 43.1% 42.9% 42.8% 43.4%

Table 2: Difference after data is made missing

Data scenario 1 Data scenario 2

MDM Y1 Y2 Y3 Y4 MDM Y1 Y2 Y3 Y4

MCAR 0.00 0.00 0.01 MCAR -0.01 -0.01 0.01

MCAR CC 0.00 0.00 0.00 -0.01 MCAR CC -0.01 0.00 -0.01 -0.04

MAR -0.03 -0.11 -0.33 MAR -0.04 -0.15 -0.39

MAR CC -0.16 -0.20 -0.36 -0.73 MAR CC -0.16 -0.26 -0.46 -0.91

Data scenario 3 Data scenario 4

MDM Y1 Y2 Y3 Y4 MDM Y1 Y2 Y3 Y4

MCAR 0.00 -0.01 -0.02 MCAR -0.01 0.00 -0.03

MCAR CC 0.00 0.01 0.00 0.00 MCAR CC -0.02 -0.01 -0.03 -0.06

MAR -0.04 -0.14 -0.40 MAR -0.03 -0.13 -0.34

MAR CC -0.16 -0.25 -0.47 -0.91 MAR CC -0.19 -0.21 -0.40 -0.80

Data scenario 5

MDM Y1 Y2 Y3 Y4

MCAR 0.01 -0.01 0.10

MCAR CC 0.00 0.01 0.01 0.10

MAR -0.05 -0.16 -0.13

MAR CC -0.15 -0.25 -0.48 -0.49

Table 3: QQ MSE for Data Scenario 1

Var.: Y2 Y3 Y4

MDM: MCAR MAR MCAR MAR MCAR MAR

Sample: 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

INC 0.006 0.002 0.007 0.002 0.027 0.005 0.037 0.023 0.085 0.017 0.190 0.153

CC 0.022 0.006 0.061 0.057 0.079 0.018 0.203 0.206 0.259 0.064 0.771 0.746

N 0.003 0.001 0.003 0.001 0.009 0.002 0.009 0.002 0.024 0.004 0.019 0.004

NPMM 0.004 0.002 0.004 0.001 0.018 0.004 0.018 0.003 0.046 0.018 0.046 0.021

NLRD 0.003 0.001 0.003 0.001 0.010 0.002 0.010 0.002 0.025 0.005 0.022 0.004

NERD 0.003 0.001 0.003 0.001 0.009 0.002 0.008 0.002 0.024 0.004 0.019 0.004

t 0.003 0.001 0.003 0.001 0.009 0.002 0.009 0.002 0.025 0.004 0.020 0.004

tPMM 0.004 0.002 0.004 0.001 0.018 0.004 0.018 0.003 0.045 0.018 0.049 0.021

tLRD 0.004 0.001 0.003 0.001 0.010 0.002 0.009 0.002 0.026 0.005 0.022 0.004

tERD 0.006 0.003 0.005 0.002 0.010 0.003 0.010 0.003 0.024 0.005 0.020 0.004

tskew 0.003 0.001 0.003 0.001 0.009 0.002 0.009 0.002 0.024 0.004 0.021 0.004
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Table 4: QQ MSE for Data Scenario 2

Var.: Y2 Y3 Y4

MDM: MCAR MAR MCAR MAR MCAR MAR

Sample: 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

INC 0.015 0.002 0.016 0.003 0.029 0.007 0.047 0.026 0.133 0.025 0.283 0.154

CC 0.074 0.007 0.146 0.061 0.113 0.023 0.330 0.206 0.474 0.083 1.284 0.756

N 0.013 0.001 0.010 0.001 0.016 0.004 0.014 0.004 0.066 0.012 0.065 0.011

NPMM 0.013 0.002 0.013 0.002 0.022 0.005 0.017 0.005 0.097 0.022 0.105 0.019

NLRD 0.011 0.002 0.010 0.001 0.017 0.004 0.015 0.004 0.076 0.013 0.072 0.012

NERD 0.012 0.001 0.011 0.001 0.015 0.004 0.013 0.003 0.065 0.013 0.063 0.011

t 0.010 0.002 0.009 0.001 0.017 0.004 0.014 0.004 0.070 0.012 0.064 0.011

tPMM 0.013 0.002 0.012 0.002 0.021 0.005 0.016 0.005 0.096 0.021 0.104 0.019

tLRD 0.011 0.002 0.010 0.001 0.017 0.004 0.015 0.003 0.075 0.014 0.075 0.011

tERD 0.011 0.002 0.011 0.001 0.016 0.004 0.014 0.003 0.073 0.021 0.071 0.017

tskew 0.010 0.002 0.009 0.001 0.017 0.004 0.014 0.004 0.067 0.012 0.065 0.010

Table 5: QQ MSE for Data Scenario 3

Var.: Y2 Y3 Y4

MDM: MCAR MAR MCAR MAR MCAR MAR

Sample: 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

INC 0.015 0.004 0.014 0.004 0.037 0.008 0.060 0.024 0.154 0.030 0.307 0.170

CC 0.053 0.017 0.106 0.074 0.143 0.032 0.373 0.210 0.464 0.113 1.242 0.780

N 0.010 0.013 0.009 0.011 0.028 0.006 0.021 0.005 0.077 0.015 0.063 0.012

NPMM 0.013 0.005 0.012 0.004 0.036 0.009 0.029 0.009 0.116 0.037 0.110 0.044

NLRD 0.011 0.003 0.010 0.002 0.028 0.007 0.022 0.005 0.082 0.015 0.068 0.013

NERD 0.010 0.011 0.009 0.009 0.027 0.006 0.020 0.004 0.079 0.014 0.060 0.012

t 0.011 0.003 0.009 0.002 0.027 0.005 0.022 0.004 0.075 0.015 0.061 0.012

tPMM 0.013 0.005 0.011 0.003 0.037 0.009 0.030 0.009 0.118 0.037 0.110 0.043

tLRD 0.012 0.003 0.010 0.002 0.029 0.007 0.023 0.005 0.082 0.016 0.069 0.013

tERD 0.011 0.004 0.009 0.003 0.028 0.007 0.023 0.006 0.080 0.023 0.065 0.023

tskew 0.011 0.003 0.010 0.002 0.028 0.005 0.022 0.004 0.083 0.015 0.062 0.012

Table 6: QQ MSE for Data Scenario 4

Var.: Y2 Y3 Y4

MDM: MCAR MAR MCAR MAR MCAR MAR

Sample: 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

INC 0.005 0.001 0.005 0.002 0.017 0.003 0.034 0.018 0.064 0.012 0.185 0.118

CC 0.016 0.003 0.058 0.040 0.057 0.011 0.214 0.154 0.221 0.042 0.848 0.615

N 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.009 0.002

NPMM 0.003 0.001 0.002 0.001 0.008 0.003 0.006 0.002 0.030 0.011 0.025 0.009

NLRD 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.009 0.002

NERD 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.008 0.002

t 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.009 0.001

tPMM 0.002 0.001 0.002 0.001 0.008 0.003 0.006 0.002 0.030 0.011 0.024 0.009

tLRD 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.009 0.002

tERD 0.004 0.003 0.004 0.002 0.006 0.002 0.005 0.002 0.014 0.003 0.012 0.002

tskew 0.001 0.000 0.001 0.000 0.003 0.001 0.003 0.001 0.010 0.002 0.009 0.002

19



Table 7: QQ MSE for Data Scenario 5

Var.: Y2 Y3 Y4

MDM: MCAR MAR MCAR MAR MCAR MAR

Sample: 200 1000 200 1000 200 1000 200 1000 200 1000 200 1000

INC 0.028 0.010 0.020 0.009 0.080 0.016 0.114 0.029 1.476 0.423 1.232 0.632

CC 0.087 0.034 0.141 0.123 0.357 0.064 0.513 0.274 13.450 1.346 8.227 1.809

N 0.042 0.034 0.030 0.025 0.093 0.023 0.095 0.015 1.989 0.632 1.630 0.569

NPMM 0.032 0.013 0.020 0.011 0.094 0.021 0.109 0.014 2.766 0.495 1.739 0.454

NLRD 0.030 0.010 0.020 0.009 0.086 0.015 0.092 0.012 2.026 0.489 2.419 0.466

NERD 0.032 0.014 0.021 0.011 0.078 0.017 0.091 0.013 1.592 0.422 1.446 0.431

t 0.045 0.035 0.029 0.024 0.066 0.021 0.083 0.013 1.739 0.453 1.415 0.453

tPMM 0.036 0.010 0.021 0.009 0.093 0.021 0.112 0.013 3.005 0.511 1.764 0.473

tLRD 0.036 0.011 0.021 0.009 0.095 0.018 0.107 0.012 2.094 0.481 2.479 0.489

tERD 0.033 0.027 0.021 0.018 0.121 0.050 0.157 0.040 6.667 6.489 5.470 5.188

tskew 0.045 0.035 0.027 0.023 0.075 0.020 0.082 0.013 1.666 0.426 1.502 0.450

Table 8: QQ MSE for imputations under Data Scenario 1

MDM: MCAR MAR

n Variable: Y2 Y3 Y4 Y2 Y3 Y4 MAX

200

N 7.3 87.3 23.7 93.4 30.4 13.5 93.4

NPMM 67.6 43.4 37.7 19.1 21.0 112.5 112.5

NLRD 41.4 77.7 72.5 47.8 29.6 32.4 77.7

NERD 9.7 77.9 67.9 73.3 27.5 17.4 77.9

t 8.1 65.1 46.1 75.3 20.3 26.8 75.3

tPMM 66.6 13.2 48.8 44.5 29.8 157.8 157.8

tLRD 35.2 88.4 69.8 56.0 17.7 24.2 88.4

tERD 349.3 58.2 22.0 484.0 123.8 20.7 484.0

tskew 10.5 66.8 41.8 71.1 23.8 19.1 71.1

1000

N 5.4 3.4 6.1 4.7 5.9 11.8 11.8

NPMM 5.0 2.7 8.5 8.2 8.2 24.9 24.9

NLRD 5.8 4.5 7.8 2.8 12.8 15.7 15.7

NERD 4.6 3.1 6.1 2.0 5.8 19.3 19.3

t 9.3 2.8 2.1 2.6 11.0 11.5 11.5

tPMM 7.0 2.1 10.2 4.2 7.5 27.7 27.7

tLRD 5.9 6.7 5.8 1.6 13.7 12.2 13.7

tERD 295.5 95.0 4.4 262.7 59.5 39.6 295.5

tskew 4.5 2.7 2.5 3.5 8.2 13.7 13.7

Table 9: QQ MSE for imputations under Data Scenario 2

MDM: MCAR MAR

n Variable: Y2 Y3 Y4 Y2 Y3 Y4 MAX

200

N 21.2 70.5 8.6 25.8 16.6 90.1 90.1

NPMM 16.4 33.0 22.7 36.6 97.4 30.5 97.4

NLRD 12.1 51.3 11.2 35.5 50.4 85.8 85.8

NERD 10.6 52.5 8.2 39.3 36.8 116.0 116.0

t 12.0 74.4 13.1 53.2 35.1 102.7 102.7

tPMM 21.2 61.0 17.8 19.7 100.5 51.0 100.5

tLRD 14.1 93.8 5.0 48.5 33.5 77.7 93.8

tERD 56.5 19.3 515.4 32.1 100.9 164.7 515.4

tskew 9.7 75.0 8.1 46.5 29.4 116.5 116.5

1000

N 34.6 8.4 13.5 17.8 4.5 8.4 34.6

NPMM 30.7 5.5 25.8 10.7 4.6 7.1 30.7

NLRD 20.2 7.7 21.2 4.7 2.7 8.7 21.2

NERD 27.0 7.6 18.6 14.1 4.4 6.1 27.0

t 22.4 3.2 23.6 3.9 3.4 3.8 23.6

tPMM 21.2 11.6 15.8 7.3 5.8 5.4 21.2

tLRD 18.3 5.8 14.6 5.4 2.0 9.9 18.3

tERD 90.5 69.1 758.3 31.2 105.5 612.8 758.3

tskew 25.9 5.0 14.6 9.2 6.4 4.1 25.9
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Table 10: QQ MSE for imputations under Data Scenario 3

MDM: MCAR MAR

n Variable: Y2 Y3 Y4 Y2 Y3 Y4 MAX

200

N 21.7 55.3 23.1 66.7 76.7 32.8 76.7

NPMM 15.7 201.6 27.4 279.4 57.2 55.8 279.4

NLRD 29.4 183.7 83.9 79.6 35.4 20.7 183.7

NERD 23.5 86.7 51.3 67.6 67.5 14.3 86.7

t 28.0 51.4 62.4 94.8 63.4 10.9 94.8

tPMM 16.4 178.2 23.5 263.9 33.5 30.2 263.9

tLRD 29.8 234.5 67.6 154.8 22.3 20.2 234.5

tERD 43.8 392.1 583.6 53.9 44.4 558.8 583.6

tskew 23.1 69.3 63.3 62.1 92.7 17.4 92.7

1000

N 37.9 17.4 4.6 51.2 3.1 2.4 51.2

NPMM 2.1 5.0 12.1 5.1 11.2 6.9 12.1

NLRD 8.7 8.1 19.7 5.4 9.4 9.3 19.7

NERD 5.9 7.8 14.8 13.0 8.1 5.1 14.8

t 7.5 7.8 13.3 9.2 7.5 4.7 13.3

tPMM 2.7 5.4 8.5 10.4 11.3 5.2 11.3

tLRD 8.5 5.6 16.6 7.7 14.1 5.3 16.6

tERD 7.6 200.9 835.6 6.4 221.8 711.8 835.6

tskew 10.5 7.9 14.0 13.5 5.8 3.5 14.0

Table 11: QQ MSE for imputations under Data Scenario 4

MDM: MCAR MAR

n Variable: Y2 Y3 Y4 Y2 Y3 Y4 MAX

200

N 85.2 21.2 24.0 59.4 82.3 50.1 85.2

NPMM 23.3 18.5 153.2 47.2 30.5 19.6 153.2

NLRD 24.1 18.5 27.5 55.9 68.2 10.9 68.2

NERD 85.8 15.3 13.2 61.8 45.2 24.7 85.8

t 26.6 17.6 23.3 28.4 63.3 59.6 63.3

tPMM 17.7 33.3 106.0 47.1 34.5 24.5 106.0

tLRD 12.8 18.0 19.3 30.2 34.1 16.1 34.1

tERD 717.5 711.0 381.2 803.0 559.4 444.8 803.0

tskew 11.5 24.0 31.0 16.3 41.5 93.2 93.2

1000

N 10.9 25.6 65.5 53.3 11.2 92.5 92.5

NPMM 5.8 6.2 24.7 9.9 16.9 20.4 24.7

NLRD 6.3 28.7 31.5 49.7 5.7 49.7 49.7

NERD 5.5 13.9 28.1 43.6 5.9 36.3 43.6

t 14.2 21.9 57.9 52.1 4.7 74.6 74.6

tPMM 6.3 8.4 23.8 11.1 16.3 17.4 23.8

tLRD 4.9 27.6 27.7 38.3 8.0 35.3 38.3

tERD 599.4 532.5 208.1 646.4 607.8 233.6 646.4

tskew 15.8 22.8 67.6 55.7 6.8 74.1 74.1
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Table 12: QQ MSE for imputations under Data Scenario 5

MDM: MCAR MAR

n Variable: Y2 Y3 Y4 Y2 Y3 Y4 MAX

200

N 302.7 166.0 47.3 177.8 43.5 49.6 302.7

NPMM 7.8 57.1 25.3 42.6 21.6 54.7 57.1

NLRD 17.3 43.6 41.7 20.7 31.6 71.2 71.2

NERD 119.2 50.8 19.6 22.6 10.7 55.7 119.2

t 53.7 20.9 16.7 15.4 20.5 57.5 57.5

tPMM 125.2 17.8 32.2 38.0 32.0 35.8 125.2

tLRD 31.9 13.7 40.3 58.1 25.4 47.0 58.1

tERD 379.0 824.3 2721.6 367.2 1272.0 2691.9 2721.6

tskew 31.3 13.8 21.5 7.9 20.5 60.2 60.2

1000

N 103.5 189.6 2.5 271.4 191.0 2.7 271.4

NPMM 14.1 7.8 13.9 10.1 3.5 11.7 14.1

NLRD 25.4 8.4 10.0 7.4 7.5 8.3 25.4

NERD 8.5 19.5 12.8 10.5 4.9 11.6 19.5

t 24.1 16.9 12.7 12.7 1.4 9.8 24.1

tPMM 20.7 11.3 12.6 9.4 2.2 17.4 20.7

tLRD 25.4 12.5 7.1 10.5 6.4 10.1 25.4

tERD 532.4 750.4 2719.8 428.4 974.4 2506.6 2719.8

tskew 21.3 10.8 7.3 14.0 1.9 14.7 21.3
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