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This paper introduces a new robust Bayesian procedure for modelling ordinal cate-

gorical response data as a function of exogenous covariates. The modelling procedure

expands on the existing literature by assuming that the (ordinal) categorical responses

are linked to skew t-distributed latent data. The model’s prediction/classification per-

formance is compared with the existing Bayesian probit model in a simulation study

covering various forms of latent data. The srobit model is shown to be marginally better

than the probit under all data scenarios, at the expense of additional computational

complexity.
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1. Introduction

A categorical response model is a regression model in which the dependent variable can take on

one of a set of values. The probit model, one type of binary response model, assumes that there is

an underlying, latent variable (not observed), which indicates in which category each observation

belongs. This underlying variable can be a function of the observed covariates, with a Normally

distributed error. There are other models that can map (−∞,∞) data to the (0, 1) space, for

example the logit link function, and the complementary log-log. This paper builds on the Bayesian

estimation processes of probit, set out by Albert & Chib (1993), the logit, set out by Groenewald &

Mokgatlhe (2005), and the robit, set out by Liu (2005), and introduces a more robust model for the

underlying latent variable, namely a model based on a skew adaptation of Student’s t-distribution.

1



Since the model is based on a (robust) skew t-distribution, it will henceforth be referred to as the

strobit model. This study is concerned with estimation of the strobit model for both binary and

ordinal categorical responses, the latter being an extension of the former.

The Bayesian estimation procedure does not actually model a categorical response variable as a

function of the predictors. Rather, it models the latent variable as a function of the predictors.

This implies that the estimated regression parameters have no meaning, except for classification

and prediction purposes. For this study, however, this is of no concern, because the model can

be used for the prediction of a category for a new observation (or of an observation with missing

response category). Thus, the estimation method of this regression model is suitable for sequential

regression multiple imputation (SRMI)1, for example. For more details on SRMI, see Raghunathan,

Lepkowski, van Hoewyk & Solenberger (2001). The goal of the study is to determine whether or

not a more robust model for the underlying latent variable leads to better classification of new

observations (observations with missing binary or ordinal responses) when the underlying latent

variable is misspecified.

This paper first reviews estimation procedures of the Bayesian probit model for binary and ordinal

responses, as constructed by Albert & Chib (1993). We will then introduce methodology to estimate

the parameters of a skew t-distribution, and incorporate this process into the estimation of the latent

variable in the binary and ordinal response strobit models. Some practicalities will be discussed,

after which the strobit will be tested on simulated data. Conclusions will be drawn based on the

comparison between the probit and strobit models after these models are applied to categorical

data that is built on both latent Normal and non-Normal assumptions.

2. Bayesian Estimation of the Probit Model

In this section, we review probit and ordered probit estimation as laid out by Albert & Chib (1993).

It is important to understand the MCMC simulation procedure for this method, since it will be

adapted for estimation of the strobit and ordered strobit models. Additionally, the probit and

ordered probit models are compared to the strobit and ordered strobit models, respectively, in the

simulation study.

2.1. Two-category probit model

Consider a binary outcome vector Y , and covariate matrix X with rows x1, . . . , xn. Introduce n

latent variables (one for each observation), W1, . . . ,Wn, where the Wi are independent N(x′iβ, 1),

and define Yi = 2 if Wi > 0 and Yi = 1 otherwise. It can be shown that the Yi are independent

Bernoulli r.v. with pi = P (Yi = 2) = Φ (x′iβ). So the joint posterior of the unobservables is:

π (β,W |y) ∝ π (β)
n∏
i=1

(IWi>0Iyi=2 + IWi≤0Iyi=1)φ
(
Wi;x

′
iβ, 1

)
,

where the vector y represents the observed categorical data, π (β) is the prior on β, I is an indicator

function that takes the value 1 on the subscripted condition, and 0 otherwise, and φ (Wi;x
′
iβ, 1) is

the Normal density function for the variable Wi with mean x′iβ, and variance 1.

1Also known as the fully conditional specification (FCS) approach to multiple imputation, or multiple imputation

through chained equations (MICE).

2



The conditional posterior distributions (using diffuse priors) are as follows:

β|y,W ∼ N
((
X ′X

)−1 (
X ′W

)
,
(
X ′X

)−1)
(1)

Wi|y, β ∼ N
(
x′iβ, 1

)
truncated at the left by 0 if yi = 2

Wi|y, β ∼ N
(
x′iβ, 1

)
truncated at the right by 0 if yi = 1 (2)

Thus for a Gibbs sampler to simulate draws from the joint posterior is given by the following

sequential procedure:

1. Initialise β(0) using the least squares estimate (X ′X)−1 (X ′y).

2. Generate a vector W from Equation (2), given the preceding draw of β.

3. Generate a new vector β from Equation (1), given the preceding draw of W .

4. Repeat steps 2 and 3 until convergence of W and β.

2.2. Ordinal probit model

Albert and Chib (1993) also described an approach for Bayesian estimation of an ordered probit,

similar to the two-category estimation procedure. The first category split (between categories 1 and

2), γ1, is pinned down on the latent variable at 0, as before. The second split, γ2 (to differentiate

between categories 2 and 3), becomes an additional parameter to be estimated in the Gibbs sampler.

Similarly, if there are more than three categories, each additional boundary, γj , on the underlying

latent variable is another parameter to estimate within the Gibbs sampler.

In the case of the ordered probit, given that γ is a vector of the J category boundaries on the latent

variable, the joint posterior of the unobservables is (with diffuse priors):

π (β, γ,W |y) ∝
n∏
i=1


 J∑
j=1

IYi=jIγj−1<Wi<γj

φ (Wi;x
′
iβ, 1

)
The conditional distributions for the γj |W,Y are then:

U {max [max (Wi : Yi = j) , γj−1] ,min [min (Wi : Yi = j + 1) , γj+1]} (3)

In the Gibbs sampler, the γj |W,Y parameters are drawn before the Wi and the parameter estimates.

Thus, for a Gibbs sampler to simulate draws from the joint posterior proceed as follows:

1. Initialise β using the least squares estimate (X ′X)−1 (X ′y).

2. Generate category splits from Equation (3), with γ1 fixed at a latent value of 0, given the

previously generated W .

3. Generate a new vector W from Equation (2), given the preceding draw of W and the draws

of the γj .

4. Generate a new vector β from Equation (1), given the preceding draw of W .

5. Repeat steps 2–4 until convergence of W and the parameters.
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3. The Skew Student t-Distribution

We follow the setup presented in Fonseca, Ferreira & Migon (2008, p. 326). Consider a linear

regression model in which an observation vector y = (y1, . . . , yn)′ satisfies

y = Xβ + Zδ + ε

where β = (β0, β1, . . . , βp) are the regression coefficients, δ is a skewness parameter, Z is a vector

with elements zi > 0, i = 1, 2, . . . , n as skewness coefficients, ε = (ε1, . . . , εn)′ is the error vector

and ε1, . . . , εn are i.i.d. according to the Student-t distribution with location zero, scale parameter

σ and ν degrees of freedom. Here X = [x1, . . . , xn]′ is the n×p matrix of explanatory variables and

is taken to be full rank p. We denote the model parameters by θ = (β, δ, σ, ν) ∈ Rp+1 × (0,∞)2.

The likelihood function is given by:

L (β, σ, ν|y,X) =
Γ
(
ν+1
2

)n
νnν/2

Γ
(
ν
2

)n
πn/2σn

n∏
i=1

[
ν +

(
yi − x′iβ − δzi

σ

)2
]−(ν+1)/2

. (4)

The likelihood for the t-distribution given in Equation (4) can be restructured as follows:

L ∝
n∏
i=1

(
λiτ

2π

) 1
2

exp
[
−τ

2

(
yi − x′iβ − δzi

)2]× n∏
i=1

[
(ν/2)ν/2

Γ (ν/2)
λ
ν/2−1
i exp

(
−νλi

2

)]
(5)

where τ = σ−2 and the λi are weights indicating the influence of each observation on ν. Integrating

out the λi in Equation (5) yields Equation (4).

3.1. Fitting the skew t-distribution

When the t-distribution is used for errors on the posterior predictive distribution, generating the

imputations is simply a matter of applying the posterior-drawn regression parameters to the co-

variates and adding an appropriate t error. The challenge is to find the degrees of freedom for

this error. This involves a Gibbs sampling process for the parameters β, τ , zi, i = 1, . . . , n, δ,

λi, i = 1, . . . , n, and ν, while ν itself is drawn via a Metropolis-Hastings algorithm in each step

of the Gibbs sampler. The Gibbs sampler requires the formulation of the conditional posterior

distributions for each of the parameters of the model.

For each observation i, i = 1, . . . , n, and covariate q, q = 0, 1 . . . , p, ỹiq = yi − β−qX−q − δzi, with

−q representing all variables in X besides variable q. In other words, for q = 0:

ỹi0 = yi − β1xi1 − β2xi2 − . . .− βpxip − δzi

For q = 1:

ỹi1 = yi − β0 − β2xi2 − β3xi3 − . . .− βpxip − δzi

For q = 2, . . . , p:

ỹiq = yi − β0 − β1xi1 − . . .− βq−1xi(q−1) − βq+1xi(q+1) − . . .− βpxip − δzi

Finally, for q = p:

ỹip = yi − β0 − β1xi1 − β2xi2 − . . .− βp−1xi(p−1) − δzi
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We also define ˜̃yi = yi − βxi − δzi separate to ŷi = yi − βxi, where xi is the ith row of the data

matrix, corresponding to the covariates for observation i.

With skewness a part of the ỹiq, the same conditional distributions exist for the βq:

βq|y, β−q, τ,Λ ∼

N


(
τ

n∑
i=1

λix
2
iq +

1

σ2βq

)−1(
τ

n∑
i=1

λixiqỹiq +
µβq
σ2βq

)
,

(
τ

n∑
i=1

λix
2
iq +

1

σ2βq

)−1 , (6)

where xiq is element (i, q) of the data matrix X (and when q = 0, xi0 = 1 for all i), and µβq and

σ2βq are the conjugate Normal prior mean and variance for βq respectively. Once again, µβq = 0

and σ2βq = 10000.

For τ , we have that:

τ |y, β,Λ ∼ Γ

n2 + aτ ,

(
1

2

n∑
i=1

λi ˜̃y
2
i + 2bτ

)−1 , (7)

where aτ and bτ are the conjugate Gamma prior parameters for τ , and Λ is the diagonal matrix

with diagonal elements λ1, λ2, . . . , λn.. However, for the case of the strobit and ordered strobit

models, without loss of generality, τ is fixed at 1, just as σ is fixed at 1 in the formulation of the

probit estimation of Albert & Chib (1993).

The conditional posterior for the zi, i = 1, . . . , n is derived to be:

zi|y, β, τ, δ,Λ ∼ N
{(
τλiδ

2 + 1
)−1

τλiδŷi,
(
τλiδ

2 + 1
)−1}

IZi>0, (8)

where IZi>0 is an indicator function to ensure that only positive zi exist (in order to make sense of

the sign of the skewness parameter δ).

The conditional posterior distribution of the skewness parameter, δ, is given can be shown to be:

δ|y, β, τ,Λ, z1, . . . , zn ∼

N


(
τ

n∑
i=1

λiz
2
i +

1

σ2δ

)−1(
τ

n∑
i=1

λiziŷi +
µδ
σ2δ

)
,

(
τ

n∑
i=1

λiz
2
i +

1

σ2δ

)−1 , (9)

where µδ and σ2δ are the conjugate Normal prior parameters for δ.

For the λi, it can be shown that

λi|y, β, τ, ν, δ, z1, . . . , zn ∼ Γ

{
1

2
(ν + 1) ,

[
1

2

(
τ ˜̃y2i + ν

)]−1}
, (10)

with the skewness built into the distribution by replacing ŷi with ˜̃yi.

The posterior for ν, conditional on Λ, and its priors, are given in the following equations.

p (ν|y,Λ) ∝ ν
1
2
νn

2
1
2
νn
[
Γ
(
ν
2

)]n |Λ| 12ν−1 exp

[
−1

2
ν

n∑
i=1

λi

]
p (ν) , (11)

with the prior on ν taking one of four forms, namely the truncated exponential, the Independence

Jeffrey’s prior, the probability matching prior or reference priors for the orders
(
ν, µ, σ2

)
,
(
ν, σ2, µ

)
,
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and
(
µ, ν, σ2

)
, and the reference priors for the orders

(
µ, σ2, ν

)
,
(
σ2, µ, ν

)
, and

(
σ2, ν, µ

)
. In this

paper the Independence Jeffrey’s prior is used. We find that this prior is less restrictive on the

degrees on freedom than the well-established exponential prior, within the context of the strobit

estimation. It is shown by Fonseca et al. (2008) that the independence Jeffreys prior is

pIJEFF (ν, β, σ) ∝ σ−1
(

ν

ν + 3

) 1
2
[
ψ′
(ν

2

)
− ψ′

(
ν + 1

2

)
− 2 (ν + 3)

ν (ν + 1)2

] 1
2

assuming that the marginal priors for β and (σ, ν) are independent a priori, and ψ′ (·) is the

trigamma function.

Working with the natural log posterior and log priors is easier:

log (p (ν|y, λ)) ∝ 1

2
νn log (ν)− 1

2
νn log (2)− n log

(
Γ
(ν

2

))
−
(

1

2
ν − 1

) n∑
i=1

log (λi)−
(

1

2
ν − 1

) n∑
i=1

λi − log [pIJEFF (ν, β, σ)] . (12)

The algorithm for the Gibbs sampler (and Metropolis sampler for ν) when we wish to incorporate

skewness into the imputation model utilises the conditional distributions listed above.

3.2. Strobit and ordered strobit model estimation

Now that we have the conditional distributions of the parameters of the skew t-distribution, we can

use these draws in the place of the draws of probit parameters, namely the β.

Once more, after initialising the parameters, if the strobit is estimating a two-category response

variable, the category split on the latent variable is set at 0. Otherwise, similarly to the ordered

probit estimation, the first category split, γ1, is set at 0, while the remaining category splits, the

γj , become parameters to be estimated in the same way as for the ordered probit, namely their

conditional distribution follows Equation (3).

Given all the other unknowns, we can draw bounded latent variables as follows:

Wi|y, β, τ = 1, δ, Z, ν ∼ tν +Xβ + Zδ

truncated at the left by 0 if yi = 2

Wi|y, β, τ = 1, δ, Z, ν ∼ tν +Xβ + Zδ

truncated at the right by 0 if yi = 1 (13)

Thus, for a Gibbs sampler to simulate draws from the joint posterior we us the following algorithm:

1. Initialise β using the Gibbs sampler with y as the dependent variable, follow up with initial-

isation of all the other parameters.

2. Set the category split at a latent value of 0 in the case of 2-category response variable, or, in

the case of the ordered response variable, draw the γj variables from Equation (3), given the

preceding draw of W .

3. Generate a vector W from Equation (13).

4. Step through the Gibbs sampler for conditional draws from Equations (6)-(11), each para-

mater based on preceding draws of the other parameters.
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5. Repeat steps 2–4 until the draws for W and the parameters converge.

3.2.1. Some practicalities

If we follow the algorithm above, then the draws for the parameters (β in particular) vary widely

from round to round. Theoretically, the draws should be stable, but the variance in the draws

makes any prediction based on a single draw in step 4 rather unreliable. In order to stabilise the

draws, step 4 of the above procedure is repeated several times, say 200 times, until a conservative

set of draws for the parameters of the skew t-distribution is evident.

While this modification of the algorithm considerably increases its running time, the modification

is necessary if the fitting algorithm is to be used for prediction. In prediction, only a single draw

from the end of the Gibbs sampler is used, and if the variation from one draw to the next is very

high, one is likely to obtain drastically different coefficient estimates from one run of the fitting

procedure to the next.

Through thorough investigation, we are satisfied that this extra smoothing step does not detract

from the implementation of the strobit model except in the case where there are time constraints

for the fitting procedure.

4. Simulation Methodology

4.1. Simulated data

In order to assess the robustness of the probit and strobit models, and their ordered counterparts,

four difference latent data construction scenarios are examined: Normal, skew t, Exponential and

Uniform. We assume U = −1 + 4x+ ξ, where U is the true latent variable, x ∼ N(0.5, 1), and ξ is

an error that depends on the data scenario under question:

1. Normal data: ξi ∼ N(0, 1), i = 1, . . . , n;

2. Skew t data: ξi = −2zi + 0.5w, i = 1, . . . , n, where zi ∼ N(0, 1)Izi>0, in other words, the zi

are positively truncated Normal random variables, and wi ∼ t5;

3. Exponential data: ξi ∼ Exp(1), i = 1, . . . , n or ξi = − ln (1− ui), where ui ∼ UNF (0, 1);

4. Uniform data: ξi, i = 1, . . . , n, is a random integer between 0 and 5.

Once the latent data is generated, the observations are allocated to categories based on this observed

latent data using random category splits in the full simulation analysis, or splitting point(s) -2 (and

2) for the 2-category (3 category) single simulation discussion.

Two sample sizes are considered in the full simulation study, namely n = 200 and n = 1000, but

for the single simulation analysis, the review is restricted to n = 1000.

4.2. Assessment Methods

The primary method of assessing the probit and strobit models, as well as their ordered counter-

parts, is using the mean absolute deviation (MAD) of the predicted category values from their
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actual category values given a new sample for a particular data scenario. This is essentially a

summary of the classification matrices across multiple simulations within each data scenario. In

brief, we proceed using the following steps:

1. Generate latent data dependent on an exogenous Normal random variable, x, an intercept,

and an error appropriate to the data scenario under examination.

2. Split the latent data at random points to generate a categorical variable (ensuring that each

category contains at least 2% of the sample).

3. Estimate parameter values for the (ordered) probit and strobit models on the given simulated

data, using the average of 300 draws from the Gibbs sampler, after a burn-in of 300 draws.

Within the strobit estimation, the smoothing process also burns in 50 draws of the skew

t-distribution parameters within each of the 600 strobit Gibbs sampler runs.

4. Generate a new sample according to the same latent data scenario of step 1.

5. Using the random splits generated in step 2, re-split the new sample into categories.2 These

categories are the ‘correct’ categories for the new sample.

6. Using the estimated parameter values for the regression model estimated in step 3, predict a

latent value for each observation in the new sample, drawing random Normal errors for the

probit and ordered probit predictions, and skew t errors for the stobit and ostrobit models. 3

7. Using the latent predictions and the estimated category splits from the model estimation, re-

categorise the new sample. These categories are the predicted categories of the new sample.

8. Calculate the MAD for a model by averaging the absolute difference between actual and

predicted categories of the new sample.

9. Repeat steps 1–8 for a total of 200 simulations.

5. Simulation Analysis

In this section, a single simulation across all data scenarios is scrutinised, and then the process is

repeated for a total of 200 runs for a thorough assessment of the methodology.

5.1. Single-run analysis

In order to understand the simulation analysis, the histograms of the data, as well as histograms for

the errors that are added to the exogenous covariates, are presented in Figures 1 and 2, for a two-

and three-category simulation, respectively. From these figures, it is clear that the latent data is

modelled as a regression on a Normal covariate and an intercept, and is coupled with varying errors,

including Normality (scenario 1), negative skewness (scenario 2), positive skewness (scenario 3), and

uniformity (scenario 4). The probit and strobit Gibbs sampler draws for the two-category model

estimation (after burn-in) are shown in Figures 3 and 4. These parameter draws are particularly

2It can be noted that in some instances, this procedure led to one category containing all the observations. These

cases were not eliminated, since the model could still theoretically predict an observation outside of the category

bounds containing all these observations, leading to classification error.
3Symmetric t errors combined with a aero-truncated Normal error for skewness
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stable, except for the degrees of freedom, ν, for the strobit estimation. The probit and strobit Gibbs

sampler draws for the three-category model estimation (after burn-in) are shown in Figures 5 and

6. One will notice in these figures that there is sometimes drift in both the γ1 value and a β value.

This drift is not much of a concern as long as the draws drift together — one cannot pin more

than one category boundary down without severely limiting the estimation procedure. One might

argue that for three categories, one could fix the category boundaries and hope that the sampler is

long enough to squeeze and move the underlying latent model to correctly fit the data, but beyond

three categories this would be unrealistically strict. In any case, the drift of the strobit parameter

pairs is not entirely a problem, since we are not using the estimation procedure for interpretation

of fit parameters, but merely for prediction (and classification). Parameter pair drift will not affect

this goal.

Once the probit and strobit models are fitted under each data scenario, the fitted latent distributions

are graphed in Figure 7 for two categories and Figure 8 for three categories. The different shades

indicate the different sequentially observed categories. Note that the fitted latent data is forced to

be separated by category, leading to multi-modal distributions. One would hope that the estimation

algorithms would lead to smooth, uni-modal fitted distributions, but this is not the case, even for

the probit on Normal data.

Once the models are estimated, a new sample is drawn according to the appropriate data scenario,

and the estimated models are used to predict a new distribution of the latent data. Histograms of

these distributions are given in Figure 9 for two categories, and Figure 10 for three categories, and

are shaded according to the categories that the new sample’s observations would be assigned to had

the underlying model been known. It is clear from these figures that there is no way of splitting

all the new observations using their predicted latent data into their correct categories. This leads

to classification error. A visual representation of the classification matrix for the three-category

simulation is given in Figure 11.

For the two simulations represented in the graphs, we have the following classification errors for

the new samples: for two categories, the probit has MAD errors of 18%, 18.8%, 20.6% and 14.9%

for the Normal, skew t, Exponential and Uniform data scenarios respectively, while the srobit has

MAD errors of 13%, 9.9%, 13.7% and 15.6% for the four data scenarios, respectively; for three

categories the probit has MAD errors of 32.1%, 37.7%, 27.2% and 41% for the Normal, skew t,

Exponential and Uniform data scenarios respectively, while the srobit has MAD errors of 21.6%,

24.5%, 19.6% and 28% for the four data scenarios, respectively. These figures have little value

without repeating the simulation process multiple times, as is carried out in the next section.

5.2. Multiple-run analysis

The initial simulation analysis, summarised in Table 1, seems promising for the strobit model. In

all simulation scenarios, across two and three categories, sample sizes of both 200 and 1000, and

across all four data scenarios, the strobit model’s MAD error is more often than not lower than

that of the probit model’s MAD error.

However, upon further analysis, the strobit model loses some of its favour. The first problem

becoming evident is the number of times within the multiple simulation procedure that MAD errors

from the probit and strobit models are the same. In Figures 12 – 15, we plot the difference between

probit and strobit MAD errors against a measure of tail-category sparseness or observation-scarcity,
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Table 1: MAD error superiority proportions, by category, sample size, and data scenario

Categories Sample size Data scenario Probit better Models equal Strobit better

2

200

Normal 20.5% 33.5% 46.0%

skew t 12.5% 41.0% 46.5%

Exponential 16.5% 40.5% 43.0%

Uniform 15.5% 43.0% 41.5%

1000

Normal 28.0% 27.5% 44.5%

skew t 18.5% 31.0% 50.5%

Exponential 18.5% 38.0% 43.5%

Uniform 20.5% 39.0% 40.5%

3

200

Normal 20.5% 33.5% 46.0%

skew t 12.5% 41.0% 46.5%

Exponential 16.5% 40.5% 43.0%

Uniform 15.5% 43.0% 41.5%

1000

Normal 41.0% 4.5% 54.5%

skew t 39.5% 7.0% 53.5%

Exponential 42.5% 9.5% 48.0%

Uniform 29.5% 8.5% 62.0%

namely the negative sum of the natural logs of the proportions of observations in the tail categories.4

We find that in the two-category case the probit and strobit models are misclassifying the same

proportions when tail scarcity is high, i.e. the strobit model is not doing better than the probit

in classifying observations into the correct categories when those categories are sparsely-populated

tail categories. This is quite a concern, since the strobit model, with an underlying heavy-tailed

skew distribution, might naturally be thought of as more capable in this context.

Another issue becomes apparent when one examines the difference in MAD errors between the

probit and strobit models across multiple simulations: this difference is not significantly greater

than zero, i.e. while it is evident that the strobit model’s MAD error is often smaller than that of

the probit, the average strobit MAD error is not significantly lower than that of the probit. This is

illustrated in Figures 16 – 19. The empirical 95% intervals for the probit minus strobit MAD error

crosses over zero for all data scenarios under both the two- and three-category cases.

Apart from a general review of the analyses performed, one can note a few interesting results from

this study. It is clear that the strobit model performs better classifications that the probit when

the latent data is Normally distributed. This is a strange result, but can be partially explained by

the fact that the Normal distribution is a special case of the skew t. Also, for the two-category

scenarios, the strobit does perform better than the probit model when the scarcity measure is not

extremely high, but moderately large (Figures 12 and 14).

6. Conclusion

This paper introduces a new robust Bayesian procedure for modelling ordinal categorical response

data as a function of exogenous covariates. The work is based on the Bayesian estimation processes

of probit, as explained by Albert & Chib (1993), the logit, as explained by Groenewald & Mokgatlhe

(2005), and the robit, as explained by Liu (2005). The modelling procedure expands on the existing

4Or simply negative sum of the natural logs of the proportions of observations in both categories in the two-category

case.
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literature by assuming that the (ordinal) categorical responses are linked to skew t-distributed

latent data — this model is then called the strobit model. Procedures are introduced to estimate

the parameters of this Bayesian strobit model. Since the strobit model fits more parameters than

the probit and logit, the estimation procedure can be quite time consuming, and some practicalities

associated with this process are discussed. It is noted that the Bayesian estimation procedures of

categorical response models such as the probit, logit and strobit, produce parameters that are

linked to unknown underlying latent data, and are thus not useful for interpretation, but only for

prediction or classification of new observations.

The probit and strobit model are compared under two-category and three-category binary responses

based on simulated latent data with various characteristics. The strobit model performs marginally

better than the probit under all data situations (even when the latent data is Normally distributed),

but the difference in performance between the two models is not significant. However, since the

Normal distribution is a special case of the skew t-distribution, and hence the probit is a special

case of the strobit, and since the strobit performs marginally better than the probit model under

varying data scenarios (including Normality), the authors recommend that if computing time is

not of great concern to a modeller, the Bayeian estimation of the strobit model be used in place of

the Bayesian estimation of the probit.

Naturally, this study opens up various topics for further research. The strobit model is built for

implementation in sequential regression multiple imputation (SRMI), and thus further research

into the applicability of this model in that context is warranted. Moreover, this model should

be compared with other categorical imputation procedures, such as the multinomial model that

is commonly used in SRMI, or other categorical response models. Also, the fact that the strobit

model, as it is defined in this paper, does not significantly improve the classification results on

tail categories with low counts, is a concern. Perhaps a skew t model with more allowance for

skewness could be examined (i.e. zi ∼ t3Izi>0 instead of zi ∼ N(0, 1)Izi>0 could be used). As

far as the estimation procedure itself is concerned, work should be done to speed up the Gibbs

sampler, as well as stabilise the actual sampling. This research required sampling-in-sampling to

obtain stabilised parameter estimates, and research can be done on the suitability and efficiency of

such a procedure.
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Figure 1: Latent data under the four data scenarios for the two-category analysis, with embedded errors; n = 1000.
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Figure 2: Latent data under the four data scenarios for the three-category analysis, with embedded errors; n = 1000.
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Figure 3: Probit Gibbs sampler draws after burn-in for the two-category data
probit2 parameter draws after burn−in
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Figure 4: Strobit Gibbs sampler draws after burn-in for the two-category data
strobit2 parameter draws after burn−in
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Figure 5: Probit Gibbs sampler draws after burn-in for the three-category data
probit3 parameter draws after burn−in
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Figure 6: Strobit Gibbs sampler draws after burn-in for the three-category data
strobit3 parameter draws after burn−in
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Figure 7: Fitted latent data (2 categories)

Fitted latent data by observed category
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by the fitting algorithm.
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Figure 8: Fitted latent data (3 categories)
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Figure 9: Predicted latent data (2 categories)

Predicted latent data by observed category
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The different shades represent the two different actual observed categories, and not the categories that are chosen off

the predicted latent data.
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Figure 10: Predicted latent data (3 categories)

Predicted latent data by observed category
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Figure 11: Classification errors for three-category simulation
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Figure 12: Two-category MAD error difference on category sparseness, by data scenario, n = 200
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Scatterplot of probit minus strobit MAD error by negative sum of logs of category proportions for the two-category

multiple simulation procedure.

Figure 13: Three-category MAD error difference on tail category sparseness, by data scenario, n =

200
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Scatterplot of probit minus strobit MAD error by negative sum of logs of outer category proportions for the three-

category multiple simulation procedure.
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Figure 14: Two-category MAD error difference on category sparseness, by data scenario, n = 1000
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Scatterplot of probit minus strobit MAD error by negative sum of logs of category proportions for the two-category

multiple simulation procedure.

Figure 15: Three-category MAD error difference on tail category sparseness, by data scenario, n =

1000
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Scatterplot of probit minus strobit MAD error by negative sum of logs of outer category proportions for the three-

category multiple simulation procedure.
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Figure 16: Two-category mean MAD error difference with 95% interval, by data scenario, n = 200
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Figure 17: Three-category mean MAD error difference with 95% interval, by data scenario, n = 200
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Figure 18: Two-category mean MAD error difference with 95% interval, by data scenario, n = 1000
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Figure 19: Three-category mean MAD error difference with 95% interval, by data scenario, n =

1000
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