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Abstract

By using the medical data analysed by Kang, Lee, Seong, and Hawkins (2007) a Bayesian procedure is
applied to obtain control limits for the standardised mean. Reference and probability matching priors
are derived for a common standardised mean across the range of sample values. By simulating the
posterior predictive density function of a future standardised mean it is shown that the inverse of the
control limits for the standardised mean are e�ectively identical to those calculated by Kang et al.
(2007) for the coe�cient of variation. This article illustrates the �exibility and unique features of the
Bayesian simulation method for obtaining the posterior predictive distribution of δ = µ

σ (the population
standardised mean) predictive interval and run lengths for the future sample standardised means. A
simulation study shows that the 95% Bayesian con�dence intervals for δ has the correct frequentist
coverage.

Keywords: control charts, probability-matching prior, reference prior, standardised normal

1 Introduction

The monitoring of variability is a vital part of modern statistical process control (SPC). Shewart control
charts are widely used SPC tools for detecting changes in the quality of a process. In most settings
where the process is under control the process have readings that have a constant mean (µ) and constant
variance (σ2). In such settings the X̄ chart is usually used to monitor the mean, and the R and S control
charts the variance of the process.

In practice there are some situations though where the mean is not a constant and the usual SPC
reduces to the monitoring of the variability alone. As a further complication it sometimes happens that
the variance of the process is a function of the mean. In these situations the usual R and S charts can
also not be used.

The proposed remedy depends on the nature of the relationship between the mean and the variance of
the process. One common relationship that we will look at is when the mean and standard deviation
is directly proportional so that the standardised mean (δ = µ

σ ) is a constant. According to Kang et al.
(2007) this is often the case in medical research.

Scientists at the Clinical Research Organization, Quintiles, also con�rmed that the standardised mean or
coe�cient of variation of drug concentrations is constant or approximately constant. By using frequentist
methods, Kang et al. (2007), developed a Shewart control chart, equivalent to the S chart, for monitoring
the coe�cient of variation using rational groups of observations. The chart is a time-ordered plot of the
coe�cient of variation for successive samples. It contains three lines:

• A center line;

• The upper control limit (UCL);

• The lower control limit (LCL).

By using the posterior predictive distribution in this paper, a Bayesian procedure will be developed
to obtain control limits for a future sample standardised mean. These limits will be compared to the
classical limits obtained by Kang et al. (2007).

Bayarri and García-Donato (2005) give the following reasons for recommending a Bayesian analysis:

• Control charts are based on future observations and Bayesian methods are very natural for predic-
tion.

• Uncertainty in the estimation of the unknown parameters is adequately handled.
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• Implementation with complicated models and in a sequential scenario poses no methodological
di�culty, the numerical di�culties are easily handled via Monte Carlo methods;

• Objective Bayesian analysis is possible without introduction of external information other than the
model, but any kind of prior information can be incorporated into the analysis, if desired.

2 Frequentist Methods

Assume that Xj (j = 1, 2, . . . , n) are independently, identically normally distributed with mean µ and

variance σ2. X̄ = 1
n

∑n
j=1Xj is the sample mean and S2 = 1

n−1

∑n
j=1

(
Xj − X̄

)2
is the sample variance.

The sample coe�cient of variation is de�ned as

W =
S

X̄

and the sample standardised mean as

W−1 =
X̄

S
.

Kang et al. (2007) suggested a control chart for the sample coe�cient of variation, similar to that of the
X̄, R and S charts. By deriving a canonical form for the distribution of the coe�cient of variation they
obtained control limits for a selection of values of n and γ = σ

µ . The probability of exceeding these limits

is 1
740 on each side when the process is in control.

In this paper the emphasis will rather be on the inverse of the coe�cient of variation, i.e., the standardised
mean. From a statistical point of view it is easier to handle the standardised mean than the coe�cient
of variation.

It is well known that

T =

√
nX̄

S
=
√
nW−1

follows a non-central t distribution with (n− 1) degrees of freedom and non-centrality parameter
√
nδ.

Inferences about a future standardised mean can therefore be made if δ is known.

The Data

The example used by Kang et al. (2007) was that of patients undergoing organ transplantation, for
which Cyclosporine is administered. For patients undergoing immunosuppressive treatment, it is vital
to control the amount of drug circulating in the body. For this reason frequent blood assays were taken
to �nd the best drug stabilizing level for each patient. The dataset consist of m = 105 patients and
the number of assays obtained for each patient is n = 5. By doing a regression test they con�rmed
that there is no evidence that the coe�cient of variation depends on the mean which means that the
assumption of a constant coe�cient of variation is appropriate. They used the weighted root mean

square estimator γ̂ =
√

1
m

∑m
i=1 w

2
i =

√
0.593515

105 = 0.0752 to pool the samples for estimating γ. wi = si
x̄i

is the sample coe�cient of variation for the ith patient. x̄i = 1
n

∑n
j=1 xij and s

2
i = 1

n−1

∑n
j=1 (xij − x̄i)2

where xij is the jth blood assay for the ith patient. By substituting γ̂ as an estimate for the unknown
γ in the distribution of W and by calculating the lower and upper 1

740 percentage points, they obtained
a LCL=0.01218 and UCL=0.15957. The chart was then applied to a fresh data set of 35 observations
from a di�erent laboratory. The data used by Kang et al. (2007) is given in Appendix A.

As mentioned, in this paper the emphasis will be on the standardised mean δ = µ
σ . By using the

predictive distribution, a Bayesian procedure will be developed to obtain control limits for a future
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sample standardised mean. Assuming that the process remains stable, the predictive distribution can be
used to derive the distribution of the �run-length� and �average run-length�. In the last section of this
paper a simulation study will be conducted to evaluate the accuracy of our Bayesian procedure. The
data that will be used are those of Kang et al. (2007). A plot of the sample standardised means against
the sample means are given in Figure 1.

Figure 1: Scatter Plot of Sample Standardised Mean Versus Sample Mean

From Figure 1 and the least squares regression line it is clear that a common standardised mean assump-
tion is appropriate for the Phase I Cyclosporine data. The analysis of variance test in Table 1 con�rms
that there is no evidence that the standardised mean depends on the mean. A common standardised
mean control chart is therefore justi�ed for ongoing control.

Table 1: Regression Test of Dependence of Standardised Mean on Mean
Source SS df MSS F P-value

Regression 8.7093 1 8.7093 0.1272 0.722
Error 7052.7 103 68.4731

Total 7061.4 104 67.8984

Note that the p-value of 0.722 is larger than the p-value of 0.245 calculated by Kang et al. (2007) for
the coe�cient of variation which is an indication that the standardised mean is more appropriate to use
than a common coe�cient of variation.

3 Bayesian Procedure

The non-central t distribution can be used to make inferences about a future standardised mean if δ is
known. In practice δ is usually unknown.

By assigning a prior distribution to the unknown parameters the uncertainty in the estimation of the
unknown parameters can adequately be handled. The information contained in the prior is combined
with the likelihood to obtain the posterior distribution of δ. By using the posterior distribution the
predictive distribution of a future standardised mean can be obtained. The predictive distribution on
the other hand can be used to obtain control limits and to determine the distribution of the �run length�.
Determination of reasonable non-informative priors is however not an easy task. Therefore, in the next
section, reference and probability matching priors will be derived for a common standardised mean across
the range of sample values.
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4 Reference and Probability-Matching Priors for a Common

Standardised Mean

As mentioned the Bayesian paradigm emerges as attractive in many types of statistical problems, also
in the case of the standardised mean.

Prior distributions are needed to complete the Bayesian speci�cation of the model. Determination of
reasonable non-informative priors in multi-parameter problems is not easy; common non-informative
priors, such as the Je�reys' prior can have features that have an unexpectedly dramatic e�ect on the
posterior.

Reference and probability-matching priors often lead to procedures with good frequency properties while
returning to the Bayesian �avor. The fact that the resulting Bayesian posterior intervals of the level
1− α are also good frequentist intervals at the same level is a very desirable situation.

See also Bayarri and Berger (2004) and Severine, Mukerjee, and Ghosh (2002) for a general discussion.

4.1 The Reference Prior

In this section the reference prior of Berger and Bernardo (1992) will be derived for a common standard-
ised mean, δ, across the range of sample values. In general, the derivation depends on the ordering of
the parameters and how the parameter vector is divided into sub-vectors. As mentioned by Pearn and
Wu (2005) the reference prior maximizes the di�erence in information (entropy) about the parameter
provided by the prior and posterior. In other words, the reference prior is derived in such a way that it
provides as little information possible about the parameter of interest. The reference prior algorithm is
relatively complicated and, as mentioned, the solution depends on the ordering of the parameters and
how the parameter vector is partitioned into sub-vectors. In spite of these di�culties, there is growing
evidence, mainly through examples that reference priors provide �sensible� answers from a Bayesian point
of view and that frequentist properties of inference from reference posteriors are asymptotically �good�.
As in the case of the Je�reys' prior, the reference prior is obtained from the Fisher information matrix.
In the case of a scalar parameter, the reference prior is the Je�reys' prior.

Bernardo (1998) derived the reference prior for the standardised mean in the case of a single sample. From
the medical example given in Kang et al. (2007) it is clear that the standard deviation of measurements
is approximately proportional to the mean; that is, the standardised mean is constant across the range
of means, which is an indication that the a reference prior for a common standardised mean should be
derived.

Theorem 1. Let Xij ∼ N
(
µi, σ

2
i

)
where i = 1, 2, . . . ,m; j = 1, 2, . . . , n and the standardised mean is

δ = µ1

σ1
= µ2

σ2
= · · · µmσm . The reference prior for the ordering

{
δ,
(
σ2

1 , σ
2
2 , . . . , σ

2
m

)}
is given by

pR
(
δ, σ2

1 , σ
2
2 , . . . , σ

2
m

)
∝
(

1 +
1

2
δ2

)− 1
2
m∏
i=1

σ−2
i (1)

Proof. The proof is given in Appendix B.

Note: The ordering
{
δ,
(
σ2

1 , σ
2
2 , . . . , σ

2
m

)}
means that the standardised mean is the most important

parameter while the m variance components are of equal importance, but not as important as δ. Also if
m = 1, Equation 1 simpli�es to the reference prior obtained by Bernardo (1998).
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4.2 Probability-Matching Priors

The reference prior algorithm is but one way to obtain a useful non-informative prior. Another type of
non-informative prior is the probability-matching prior. This prior has good frequentist properties. Two
reasons for using probability-matching priors are that they provide a method for constructing accurate
frequentist intervals, and that they could be potentially useful for comparative purposes in a Bayesian
analysis.

There are two methods for generating probability-matching priors due to Tibshirani (1989) and Datta
and Ghosh (1995).

Tibshirani (1989) generated probability-matching priors by transforming the model parameters so that
the parameter of interest is orthogonal to the other parameters. The prior distribution is then taken
to be proportional to the square root of the upper left element of the information matrix in the new
parametrization.

Datta and Ghosh (1995) provided a di�erent solution to the problem of �nding probability-matching
priors. They derived the di�erential equation that a prior must satisfy if the posterior probability of a
one-sided credibility interval for a parametric function and its frequentist probability agree up to O

(
n−1

)
where n is the sample size.

According to Datta and Ghosh (1995) p (θ) is a probability-matching prior for θ =
[
δ, σ2

1 , σ
2
2 , . . . , σ

2
m

]′
the vector of unknown parameters, if the following di�erential equation is satis�ed:

m+1∑
α=1

∂

∂θα
{Υα (θ) p (θ)} = 0

where

Υ (θ) =
F−1 (θ)∇t (θ)√
∇′t (θ)F−1 (θ)∇t (θ)

=
[

Υ1 (θ) Υ2 (θ) · · · Υm+1 (θ)
]′

and

∇t (θ) =
[

∂
∂θ1

t (θ) ∂
∂θ2

t (θ) · · · ∂
∂θm+1

t (θ)
]′
.

t (θ) is a function of θ and F−1 (θ) is the inverse of the Fisher information matrix.

Theorem 2. The probability-matching prior for the standardised mean, δ, and the variance components

is given by

pM
(
δ, σ2

1 , σ
2
2 , . . . , σ

2
m

)
∝
(

1 +
1

2
δ2

)− 1
2
m∏
i=1

σ−2
i

Proof. The proof is provided in Appendix C.

From Theorem 1 and Theorem 2 it can be seen that the reference and probability-matching priors are
equal and the Bayesian analysis using either of these priors will yield exactly the same results.

Note that the reference (probability-matching) prior in terms of δ and the standard deviations, σ1, σ2, . . . , σm
is

p (δ, σ1, σ2, . . . , σm) =

(
1 +

1

2
δ2

)− 1
2
m∏
i=1

σ−1
i .
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4.3 The Joint Posterior Distribution

By combining the prior distribution with the likelihood function the joint posterior distribution of
δ, σ1, σ2, . . . , σm can be obtained:

p (δ, σ1, σ2, . . . , σm|data) ∝
(

1 +
1

2
δ2

)− 1
2
m∏
i=1

σ
−(n+1)
i exp

{
− 1

2σ2
i

[
n (x̄i − σiδ)2

+ (n− 1) s2
i

]}
(2)

where x̄i = 1
n

∑n
j=1 xij and (n− 1) s2

i =
∑n
j=1 (xij − x̄i)2

.

In Theorem 3 it will be proved that the joint posterior distribution is proper and can be used for
inferences.

Theorem 3. The posterior distribution is p (δ, σ1, σ2, . . . , σm|data) is a proper posterior distribution.

Proof. The proof is given in Appendix D.

The conditional posterior distributions follow easily from the joint posterior distribution:

p (δ|σ1, σ2 . . . , σm, data) ∝
(

1 +
1

2
δ2

)− 1
2

exp

{
−n

2

m∑
i=1

1

σ2
1

(x̄i − σiδ)2

}
(3)

and

p (σ1, σ2, . . . , σm|δ, data) ∝
m∏
i=1

(
σ
−(n+1)
i exp

{
− 1

2σ2
i

[
n (x̄i − σiδ)2

+ (n− 1) s2
i

]})
. (4)

By using the conditional posterior distributions (Equation 3 and Equation 4) and Gibbs sampling the
unconditional posterior distributions can be obtained.

In Figure 2 the unconditional posterior distribution of δ (the standardised mean), p (δ|data) from the
medical data is illustrated (m = 105 and n = 5).
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Figure 2: Histogram of the Posterior Distribution of δ = µ
σ

mean (δ) = 13.2984

{mean (δ)}−1
= (13.2984)

−1
= 0.075197 can therefore be used as an estimate for the common coe�cient

of variation, γ. As mentioned in Section 2, Kang et al. (2007) used the weighted root mean square

estimator γ̂ =
√

1
m

∑m
i=1 w

2
i =

√
0.593515

105 = 0.0752 to pool the samples for estimating γ. wi = si
x̄i

is the

sample coe�cient of variation. It is interesting to note that {mean (δ)}−1
is for all practical purposes

the same as γ̂.

Since T =
√
nW−1 =

√
nV follows a non-central t distribution with (n− 1) degrees of freedom and a non-

centrality parameter
√
nδ, f (V |δ) can be obtained. By substituting each of the simulated δ values of the

posterior distribution of δ in f (V |δ) and using the Rao-Blackwell procedure (averaging the conditional
distributions), the unconditional posterior predictive density of f (V |data) (a future standardised mean)
can be obtained. This is illustrated by the smooth curve in Figure 3.

The histogram in Figure 3 is obtained in the following way. De�ne a future sample mean as X̄f and a

future sample standard deviation as Sf . Since V =
X̄f
Sf

= Z̃√
χ2
n−1
n−1

where Z̃ ∼ N
(
δ, 1
n

)
, the histogram of

the distribution of V is obtained by simulating δ from the its posterior distribution and then Z̃ ∼ N
(
δ, 1
n

)
.

Simulate now a χ2
n−1 random variable and calculate V and repeat the process a large number of times.

It is clear that the two distributions are the same.
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Figure 3: Predictive Density f (V |data) for n = 5

mean (V ) = 16.6671
99.73% Equal-tail Interval = (6.212; 83.365)
99.73% HPD Interval = (5.176; 67.777)

According to this the 99.73% equal-tail interval for a future sample coe�cient of variation is
[
(83.365)

−1
; (6.212)

−1
]

=

[0.011995; 0.1609787]. For a 99.73% equal-tail control chart for the coe�cient of variation, Kang et al.
(2007) calculated the lower control limit as 0.1218, the upper control limit as 0.15957 and as central line
they used the root-mean square value γ̂ = 0.075. The frequentist limits calculated by them are for all
practical purposes the same as our Bayesian control limits.

Kang et al. (2007) then applied their control chart to a new dataset of 35 patients from a di�erent
laboratory. Eight of the patients' coe�cient of variation (based on �ve observations) lie outside the
control limits. Since the 99.73% equal-tail prediction interval is e�ectively identical to the control limits
of Kang et al. (2007) our conclusions are the same.

As mentioned the rejection region of size α (α = 0.0027) for the predictive distribution is

α =

ˆ
R(α)

f (V |data) dV.

In the case of the equal-tail interval, R (α) represents those values of V that are smaller than 6.212 or
larger than 83.365.

It is therefore clear that statistical process control is actually implemented in two phases. In Phase I the
primary interest is to assess process stability. The practitioner must therefore be sure that the process
is in statistical control before control limits can be determined for online monitoring in Phase II.

Assuming that the process remains stable, the predictive distribution can be used to derive the distribu-
tion of the �run length� and �average run length�. The �run length� is de�ned as the number of future
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standardised means, r until the control chart signals for the �rst time (Note that r does not include that
standard mean when the control chart signals). Given δ and a stable Phase I process, the distribution
of the run length r is geometric with parameter

Ψ (δ) =

ˆ
R(α)

f (V |δ) dV

where f (V |δ) is the distribution of a future standardised mean (
√
nV is a non-central t distribution with

(n− 1) degrees of freedom and a non-centrality parameter
√
nδ). The value of δ is of course unknown

and its uncertainty is described by its posterior distribution. The predictive distribution of the �run
length� or the �average run length� can therefore easily be obtained.

The mean and variance of r given δ are given by

E (r|δ) =
1− ψ (δ)

ψ (δ)

and

V ar (r|δ) =
1− ψ (δ)

ψ2 (δ)
.

The unconditional moments E (r|data), E
(
r2|data

)
and V ar (r|data) can therefore easily be obtained

by simulation or numerical integration. For further details see Menzefricke (2002, 2007, 2010a,b).

In Figure 4 the predictive distributions of the �run-length� is displayed for the 99.73% equal tail interval
as well as for the 99.73% HPD interval. As mentioned for given δ, the �run-length�, r, is geometric
with parameter ψ (δ). The unconditional �run-length� given in Figure 4 are therefore obtained by the
Rao-Blackwell method, i.e., the average of a large number of conditional �run-lengths�.

Figure 4: Predictive Density of Run Length f (r|data)with n = 5

99.73% Equal-tail Interval:
E (r|data) = 385.943, Median (r|data) = 261.27

99.73% HPD Interval:
E (r|data) = 347.625, Median (r|data) = 238.50
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From the �gure it can be seen that the expected �run-length� E (r|data) = 385.943 for the 99.73%
equal-tail interval is somewhat larger than the ARL of 370 given by Kang et al. (2007). The median
�run-length�, Median (r|data) = 261.27 on the other hand is smaller than the mean �run-length�. This
is clear from the skewness of the distribution. From Figure 4 it is also clear that the �run-length� do not
di�er much for equal-tail and HPD intervals.

Figure 5 illustrates the distribution of E (r|data) for each simulated value of δ, i.e., the distribution of the
expected �run-length� in the case of the 99.73% equal-tail interval while Figure 6 display the distribution
of the expected �run-length� for the 99.73% HPD interval.

Figure 5: Distribution of the Expected Run-Length, Equal-tail Interval, n = 5

Mean = 389.63 and Median = 398.21

Figure 6: Distribution of the Expected Run-Length, HPD Interval, n = 5

Mean = 349.505 and Median = 350.711
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As it should be the corresponding mean �run-lengths� in Figure 4 are for all practical purposes the same
as the mean �run-lengths� in Figure 5 and Figure 6.

Further descriptive statistics for Figure 2 to Figure 6 are given in Appendix E.

5 Simulation Study

In this section a simulation study will be conducted to observe if the 95% Bayesian con�dence intervals
for δ have the correct frequentist coverage.

For the simulation study the following combinations of parameters will be used:

µi 10 20 30 40 50 60 · · · 1000 1010 1020 · · · 1050

σi 0.75 1.5 2.25 3.0 3.75 · · · 75 · · · 78.15

which means that δ = µi
σi

= 13.3333, γ = 0.075, i = 1, 2, . . . ,m and m = 105. These parameter
combinations are representative of the parameter values of the medical dataset on patients undergoing
organ transplantation analysed by Kang et al. (2007). As mentioned, the dataset consist of m = 105
patients and the number assays obtained for each patient is n = 5. As a common estimate for γ, the
weighted mean square γ̂ = 0.075 was used.

For the above given parameter combination a dataset can be simulated consisting of m samples and
n = 5 observations per sample. However since we are only interested in the su�cient statistics X̄i and

Si these can be simulated directly, namely X̄i ∼ N
(
µi,

σ2
i

n

)
and S2

i ∼
σ2
iχ

2
n−1

n−1 .

The simulated X̄i and S
2
i (i = 1, 2, . . . ,m) values are then substituted int he conditional posterior dis-

tributions given in Equation 3 and Equation 4. By using the conditional posterior distributions and
Gibbs sampling the unconditional posterior distribution p (δ|data) can be obtained. A con�dence inter-
val for δ will be calculated as follows: Simulate l = 10, 000 values of δ and sort them in ascending order
δ̃(1) ≤ δ̃(2) ≤ · · · ≤ δ̃(l).

LetK1 =
[
α
2 l
]
andK2 =

[(
1− α

2

)
l
]
where [a] denotes the largest integer not greater than a.

{
δ̃(K1), δ̃(K2)

}
is then a 100 (1− α) % Bayesian con�dence interval for δ. By repeating the procedure for R = 3, 000
datasets it is found that the 3, 000, 95% Bayesian con�dence intervals (α = 0.05) cover the true parameter
value δ = 13.333 in 2, 841 cases.

An estimate of the frequentist probability of coverage is therefore P
{
δ̃(K1) ≤ δ ≤ δ̃(K2)

}
= 0.9470. Also,

P
{
δ ≤ δ̃(K1)

}
= 0.0313 and P

{
δ ≥ δ̃(K2)

}
= 0.0217.

For each dataset the posterior mean, δ∗ of the l = 10, 000 simulated δ values is calculated as well as
d = 13.3333−δ∗, the di�erence between the posterior mean and the true parameter value. The histograms
of the R = 3, 000 δ∗ and d values are displayed in Figure 7 and Figure 8. The histogram of the posterior
means δ∗ (Figure 7) is for all practical purposes symmetrical. For the d values (Figure 8), the histogram
is slightly skew to the left.
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Figure 7: Histogram of Posterior Means δ∗

Mean (δ∗) = 13.356; Median (δ∗) = 13.3439; V ar (δ∗) = 0.2177; 95% Interval = (12.492; 14.298)

Figure 8: Histogram of d = δ − δ∗

Mean (d) = −0.0227; Median (d) = −0.0106; V ar (d) = 0.2177; 95% Interval = (−0.968; 0.838)
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6 Conclusion

This paper develops a Bayesian control chart for monitoring a common standardised mean across a
range of sample values. In the Bayesian approach prior knowledge about the unknown parameters is
formally incorporated into the process of inference by assigning a prior distribution to the parameters.
The information contained in the prior is combined with the likelihood function to obtain the posterior
distribution. By using the posterior distribution the predictive distribution of a future standardised
mean can be obtained.

Determination of reasonable non-informative priors in multi-parameter problems is not an easy task. The
Je�reys' prior for example can have a bad e�ect on the posterior distribution. Reference and probability
matching priors are therefore derived for a constant standardised mean across a range of sample values.
The theory and results are applied to a real problem of patients undergoing organ transplantation for
which Cyclosporine is administered. This problem is discussed in detail by Kang et al. (2007). The
99.73% equal tail prediction interval of a future coe�cient of variation (inverse of the standardised
mean) is e�ectively identical to the lower and upper control chart limits calculated by Kang et al. (2007).
A simulation study shows that the 95% Bayesian con�dence intervals for δ has the correct frequentist
coverage.

The example illustrates the �exibility and unique features of the Bayesian simulation method for obtain-
ing posterior distributions, prediction intervals and run lengths.
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Appendices

A Data for Medical Example

m X wi × 100 m X wi × 100 m X wi × 100

1 31.7 12.4 36 120.3 5.8 71 361.4 8.3
2 37.7 15.3 37 143.7 5.6 72 361.5 13.4
3 40.6 9.1 38 148.6 5.5 73 361.8 6.1
4 50.5 4.6 39 149.1 3.1 74 374.6 5.8
5 52 10.5 40 149.9 2 75 376.3 2.8

6 57.6 6.2 41 151 4.4 76 382.3 5.8
7 58.3 6.6 42 153.6 6.6 77 401.7 7.3
8 58.9 8.4 43 172.2 7.2 78 415.2 15.1
9 61.2 8.1 44 179.8 7.9 79 428.8 4.5
10 64.3 7 45 185.3 7.6 80 442.1 9.9

11 64.5 8.8 46 192.1 5.3 81 450.1 7.4
12 65.6 4.1 47 193.8 5.9 82 496.5 4.8
13 68 3.7 48 195.1 11 83 499.7 10
14 71.8 6.2 49 195.2 5.1 84 504.6 8.4
15 72.1 8.4 50 195.4 9.4 85 523.1 5

16 78.4 6.8 51 196.4 5.6 86 531.7 8.5
17 78.4 4.6 52 199.6 6.8 87 556.4 11.8
18 79.5 5.7 53 204.4 3.7 88 571.4 5.9
19 83.2 10.5 54 207.8 12.4 89 584.1 8.3
20 85.1 4.8 55 219 7.6 90 597.6 4.2

21 85.6 5.4 56 222.9 4.8 91 606.2 8.2
22 86 10.1 57 225.1 5.7 92 609 9.7
23 87.3 7.9 58 227.6 6.5 93 635.4 5.6
24 89.1 10.3 59 240.5 3.8 94 672.2 7.2
25 95.4 6.2 60 241.1 8.4 95 695.9 2.7

26 101.9 4.8 61 252.2 8.3 96 696.4 10.6
27 105.4 5.6 62 262.2 5.8 97 721.3 9.8
28 107.2 2.2 63 277.9 8.7 98 752 4.2
29 108.2 3.3 64 278.3 6.2 99 769.5 9.7
30 112 8.7 65 303.4 8.8 100 772.7 9.6

31 112.3 5.7 66 309.7 3.9 101 791.6 2
32 113.5 9.4 67 323.9 4.1 102 799.9 11.4
33 114.3 3.5 68 328.7 4.1 103 948.6 5.2
34 116.8 6 69 341.2 6.5 104 971.8 11.1
35 117.8 5.7 70 347.3 4.9 105 991.2 8.8

B Proof of Theorem 1

Proof. The likelihood function is given by

L
(
δ, σ2

1 , σ
2
2 , . . . , σ

2
m|data

)
∝

m∏
i=1

(
σ2
i

)−n2 exp

{
− 1

2σ2
i

[
n (x̄i − δσi)2

+ (n− 1)S2
i

]}

where x̄i = 1
n

∑n
i=1 xij and (n− 1)S2

i =
∑n
j=1 (xij − x̄i)2

.
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By di�erentiating the log likelihood function l̃ twice with respect to the unknown parameters and taking
expected values, the Fisher Information matrix can be obtained.

l̃ = logL
(
δ, σ2

1 , σ
2
2 , . . . , σ

2
m|data

)
= −n

2

m∑
i=1

log σ2
i −

1

2

m∑
i=1

1

σ2
i

[
n (x̄i − δσi)2

+ (n− 1)S2
i

]

and

∂2 l̃

(∂σ2
i )

2 =
n

2

(
1

σ2
i

)2

− 2nx̄2
i

2 (σ2
i )

3 +
3nx̄iδ

4σ5
i

− (n− 1)S2
i

(σ2
i )

3 .

Therefore

−E

[
∂2 l̃

(∂σ2
i )

2

]
=
n

2

(
1

σ2
i

)2{
1 +

1

2
δ2

}
where i = 1, 2, . . .m.

Also

−E

(
∂2 l̃

∂σ2
i ∂σ

2
l

)
= 0.

Further
∂2 l̃

(∂δ)
2 = −1

2

m∑
i=1

1

σ2
i

(
2nσ2

i

)
= −nm

∴ −E

(
∂2 l̃

(∂δ)
2

)
= nm.

If we di�erentiate l̃ with respect to δ and σ2
i we get

∂2 l̃

∂δ∂σ2
i

=
−nx̄i
2σ3

i

and

−E

(
∂2 l̃

∂δ∂σ2
i

)
=

nδ

2σ2
i

i = 1, 2, . . . ,m.

The Fisher Information matrix now follows as

F (θ) = F
(
δ, σ2

1 , σ
2
2 , . . . , σ

2
m

)
=

[
F11 F12

F21 F22

]

where
F11 = nm, F12 = F

′

21 =
[
nδ
2σ2

1

nδ
2σ2

2
· · · nδ

2σ2
m

]
and

F22 =



n
2

(
1
σ2
1

)2 {
1 + 1

2δ
2
}

0 · · · 0

0 n
2

(
1
σ2
2

)2 {
1 + 1

2δ
2
}
· · · 0

...
...

. . .
...

0 0 · · · n
2

(
1
σ2
m

)2 {
1 + 1

2δ
2
}


.
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To calculate the reference prior for the ordering
{
δ,
(
σ2

1 , σ
2
2 , . . . , σ

2
m

)}
, F11·2 must �rst be calculated and

then |F22|. Now

F11·2 = F11 − F12F
−1
22 F21 = nm− 1

2
nmδ2

(
1 +

1

2
δ2

)−1

=
nm(

1 + 1
2δ

2
) = h1

and

p (δ) ∝ h
1
2
1 ∝

(
1 +

1

2
δ2

)− 1
2

.

Also

|F22| =
{
n

2

(
1 +

1

2
δ2

)}m m∏
i=1

(
1

σ2
i

)2

= h2.

This means that

p
(
σ2

1 , σ
2
2 , . . . , σ

2
m|δ
)
∝ h

1
2
2 =

m∏
i=1

(
1

σ2
i

)
.

Therefore the reference prior for the ordering
{
δ,
(
σ2

1 , σ
2
2 , . . . , σ

2
m

)}
is

pR
(
δ, σ2

1 , σ
2
2 , . . . , σ

2
m

)
= p (δ) p

(
σ2

1 , σ
2
2 , . . . , σ

2
m|data

)
∝
(

1 +
1

2
δ2

)− 1
2
m∏
i=1

σ−2
i .
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C Proof of Theorem 2

Proof. The inverse of the Fisher Information matrix is given by

F−1 (θ) = F−1
(
δ, σ2

1 , σ
2
2 , . . . , σ

2
m

)
=


F 11 F 12 F 13 · · · F 1,m+1

F 21 F 22 F 23 · · · F 2,m+1

...
...

...
. . .

...
Fm+1,1 Fm+1,2 Fm+1,3 · · · Fm+1,m+1

 .
Let

t (θ) = t
(
δ, σ2

1 , σ
2
2 , . . . , σ

2
m

)
= δ.

Since
∇
′

t (θ) =
[
∂
∂δ t (θ) ∂

∂σ2
1
t (θ) · · · ∂

∂σ2
m
t (θ)

]
=
[
1 0 · · · 0

]
we have that

∇
′

t (θ)F−1 (θ) =
[
F 11 F 12 · · · F 1,m+1

]
=
[

2+δ2

2mn
−δσ2

1

mn
−δσ2

2

mn · · · −δσ2
m

mn

]
and √

∇′t (θ)F−1 (θ)∇t (θ) =

(
2 + δ2

2mn

) 1
2

.

Further

Υ
′
(θ) =

∇′t (θ)F−1 (θ)√
∇′t (θ)F−1 (θ)∇t (θ)

=
[
Υ1 (θ) Υ2 (θ) · · · Υm (θ)

]
where

Υ1 (θ) =

(
2 + δ2

2mn

) 1
2

,

Υ2 (θ) =
−
√

2δσ2
1

(mn)
1
2 (2 + δ2)

1
2

,

Υ3 (θ) =
−
√

2δσ2
2

(mn)
1
2 (2 + δ2)

1
2

and

Υm+1 (θ) =
−
√

2δσ2
m

(mn)
1
2 (2 + δ2)

1
2

.

The prior

pM (θ) = pM
(
δ, σ2

1 , σ
2
2 , . . . , σ

2
m

)
∝ 1

(2 + δ2)
1
2

m∏
i=1

σ−2
i

is therefore a probability matching prior since

∂

∂δ
{Υ1 (θ) pM (θ)}+

∂

∂σ2
1

{Υ2 (θ) pM (θ)}+ · · ·+ ∂

∂σ2
m

{Υm+1 (θ) pM (θ)} = 0.
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D Proof of Theorem 3

Proof. The joint posterior distribution given in Equation 2 can be written as

p (δ, σ1, σ2, . . . , σm|data) ∝
(

1 +
1

2
δ2

)− 1
2
m∏
i=1

exp

[
−nδ

2

2

(
1− x̄2

i

D2
i

)]
×
(

1

σi

)n+1

exp

[
−n

2
D2
i

(
1

σi
− x̄iδ

D2
i

)]

where x̄i = 1
n

∑n
j=1 xij and D

2
i = 1

n

∑n
j=1 x

2
ij .

Therefore

p (δ|data) =

ˆ ∞
0

· · ·
ˆ ∞

0

p (δ, σ1, σ2, . . . , σm|data) dσ1dσ2 . . . dσm

∝
(

1 +
1

2
δ2

)− 1
2

exp

{
−nδ

2

2

m∑
i=1

(
1− x̄2

i

D2
i

)} m∏
i=1

{(
1

σi

)n+1

exp

[
−n

2
D2
i

(
1

σi
− x̄iδ

D2
i

)2
]}

which is proper. As mentioned by Berger et al. (1999) it is usually the case that the reference and
Je�rey's priors will yield proper posterior distributions.
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E Descriptive Statistics for Medical Data

Figure

Descriptive

Statistics

1

p (δ|data)
2

f (V |data)
3

f (r|data)
Equal Tail

4

Exp Run Length

Equal Tail

5

f (r|data)
HPD Limits

6

Exp Run Length

HPD Limits

Mean 13.2984 16.6671 385.943 389.630 347.625 349.505

Median 13.2733 14.276 261.27 398.210 238.500 350.711

Mode 13.230 11.910 - - - -

Variance 0.2296 75.0494 1.5538e5 5.6568e3 1.2292e5 1.7614e3

95% Equal Tail (12.4056; 14.2805) (7.661; 37.540) (8.41; 1469.42) (226.052; 494.735) (7.70; 1298.75) (267.230; 428.919)
95% HPD (12.3796; 14.2500) (6.830; 32.703) (0; 1183.63) (252.514; 495.817) (0; 1050.56) (268.621; 430.002)

99.73% Equal

Tail

- (6.212; 83.365) - - - -

99.73% HPD - (5.179; 67.777) - - - -
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