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Abstract

By using air-lead data analysed by Krishnamoorthy and Mathew (2009) a Bayesian procedure is applied
to obtain control limits for the upper one-sided tolerance limit. Reference and probability matching
priors are derived for the pth quantile of a normal distribution. By simulating the predictive density
of a future upper one-sided tolerance limit, �run-lengths� and average �run-lengths� are derived. This
article illustrates the �exibility and unique features of the Bayesian simulation method for obtaining the
posterior predictive distribution of a future one-sided tolerance limit.
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1 Introduction

Krishnamoorthy and Mathew (2009) and Hahn and Meeker (1991) de�ned a tolerance interval as an
interval that is constructed in such a way that it will contain a speci�ed proportion or more of the
population with a certain degree of con�dence. The proportion is also called the content of the tolerance
interval. As opposed to con�dence intervals that give information on unknown population parameters,
a one-sided upper tolerance limit for example provides information about a quantile of the population.
According to Hahn and Meeker (1991) tolerance intervals would be of importance in obtaining limits on
the process capability of a product manufactured in large quantities. Further application examples of
tolerance intervals include statistical process control, wood manufacturing, clinical and industrial appli-
cations, environmental monitoring and assessment and for exposure data analysis. For more applications
see Krishnamoorthy and Mathew (2009) and Hugo (2012).

Suppose X1, X2, . . . , Xn is a random sample from a N
(
µ, σ2

)
population. The maximum likelihood

estimators of the unknown mean, µ and unknown variance, σ2 are the sample mean X̄ = 1
n

∑n
i=1Xi and

sample variance S2 = 1
n−1

∑n
i=1

(
Xi − X̄

)2
. Using the same notation as given in Krishnamoorthy and

Mathew (2009), the pth quantile of a N
(
µ, σ2

)
population is

qp = µ+ zpσ (1)

where zp denotes the pth quantile of a standard normal distribution.

A 1 − α upper con�dence limit for qp is a (p, 1− α) one-sided upper tolerance limit for the normal
distribution. By using the posterior predictive distribution a Bayesian procedure will be developed to
obtain control limits for a one-sided upper tolerance limit in the case of future samples.

Bayarri and García-Donato (2005) give the following reasons for recommending a Bayesian analysis:

• Control charts are based on future observations and Bayesian methods are very natural for predic-
tion.

• Uncertainty in the estimation of the unknown parameters is adequately handled.

• Implementation with complicated models and in a sequential scenario poses no methodological
di�culty, the numerical di�culties are easily handled via Monte Carlo methods;

• Objective Bayesian analysis is possible without introduction of external information other than the
model, but any kind of prior information can be incorporated into the analysis, if desired.

There do not appear to be many papers on control charts for tolerance intervals from a Bayesian point of
view. Hamada (2002) derived Bayesian tolerance interval control limits for np, p, c and u charts which
control the probability content at a speci�ed level with a given con�dence while we are deriving posterior
predictive intervals. It is therefore clear that our Bayesian method di�ers substantially from his.
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2 Bayesian Procedure

By assigning a prior distribution to the unknown parameters the uncertainty in the estimation of the
unknown parameters can adequately be handled. The information contained in the prior is combined with
the likelihood function to obtain the posterior distribution of qp. By using the posterior distribution the
predictive distribution of a future sample one-sided upper tolerance limit can be obtained. The predictive
distribution on the other hand can be used to obtain control limits and to determine the distribution
of the �run length� and �expected run length�. Determination of reasonable non-informative priors is
however not an easy task. Therefore, in the next section, reference and probability matching priors will
be derived for qp = µ+ zpσ the pth quantile of a N

(
µ, σ2

)
distribution.

3 Reference and Probability-Matching Priors for qp = µ+ zpσ

As mentioned the Bayesian paradigm emerges as attractive in many types of statistical problems, also
in the case of qp, the pth quantile of a N

(
µ, σ2

)
population.

Prior distributions are needed to complete the Bayesian speci�cation of the model. Determination of
reasonable non-informative priors in multi-parameter problems is not easy; common non-informative
priors, such as the Je�reys' prior can have features that have an unexpectedly dramatic e�ect on the
posterior.

Reference and probability-matching priors often lead to procedures with good frequency properties while
returning the Bayesian �avour. The fact that the resulting Bayesian posterior intervals of the level 1−α
are also good frequentist intervals at the same level is a very desirable situation.

See also Bayarri and Berger (2004) and Severine, Mukerjee, and Ghosh (2002) for a general discussion.

3.1 The Reference Prior

In this section the reference prior of Berger and Bernardo (1992) will be derived for qp = µ + zpσ. In
general, the derivation of the reference prior depends on the ordering of the parameters and how the
parameter vector is divided into sub-vectors. As mentioned by Pearn and Wu (2005) the reference prior
maximizes the di�erence in information (entropy) about the parameter provided by the prior and pos-
terior. In other words, the reference prior is derived in such a way that it provides as little information
possible about the parameter of interest. The reference prior algorithm is relatively complicated and,
as mentioned, the solution depends on the ordering of the parameters and how the parameter vector
is partitioned into sub-vectors. In spite of these di�culties, there is growing evidence, mainly through
examples that reference priors provide �sensible� answers from a Bayesian point of view and that fre-
quentist properties of inference from reference posteriors are asymptotically �good�. As in the case of
the Je�reys' prior, the reference prior is obtained from the Fisher information matrix. In the case of a
scalar parameter, the reference prior is the Je�reys' prior.

The following theorem can be proved:

Theorem 1. The reference prior for the ordering
{
qp, σ

2
}

is given by pR
(
qp, σ

2
)
∝ σ−2.

In the (µ, σ) parametrization this corresponds to pR (µ, σ) ∝ σ−2.

Proof. The proof is given in Appendix A.

Note: The ordering
{
qp, σ

2
}
means that the parameter qp = µ + zpσ is a more important parameter

than σ2.
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3.2 Probability-Matching Priors

The reference prior algorithm is but one way to obtain a useful non-informative prior. Another type of
non-informative prior is the probability-matching prior. This prior has good frequentist properties. Two
reasons for using probability-matching priors are that they provide a method for constructing accurate
frequentist intervals, and that they could be potentially useful for comparative purposes in a Bayesian
analysis.

There are two methods for generating probability-matching priors due to Tibshirani (1989) and Datta
and Ghosh (1995).

Tibshirani (1989) generated probability-matching priors by transforming the model parameters so that
the parameter of interest is orthogonal to the other parameters. The prior distribution is then taken
to be proportional to the square root of the upper left element of the information matrix in the new
parametrization.

Datta and Ghosh (1995) provided a di�erent solution to the problem of �nding probability-matching
priors. They derived the di�erential equation that a prior must satisfy if the posterior probability of a
one-sided credibility interval for a parametric function and its frequentist probability agree up to O

(
n−1

)
where n is the sample size. Using the method of Datta and Ghosh (1995) the following theorem will be
proved.

Theorem 2. The probability-matching prior for qp and σ2 is pM
(
qp, σ

2
)
∝ σ−2.

Proof. The proof is given in Appendix B.

3.3 The Posterior Distribution

As mentioned, by combining the information contained in the prior with the likelihood function the pos-
terior distribution can be obtained. Since our non-informative prior for qp in the (µ, σ) parametrization
is p

(
µ, σ2

)
∝ σ−1, it follows that the posterior distribution of σ2 has an inverse gamma distribution

which means that (n−1)S2

σ2 ∼ χ2
n−1 and µ|σ2, data ∼ N

(
X̄, σ

2

n

)
.

The posterior distribution of qp is therefore equal to

X̄ +
Z + zp

√
n

U

S√
n

= X̄ +
1√
n
tn−1

(
zp
√
n
)
S

where Z ∼ N (0, 1) and independently distributed of U2 ∼ χ2
n−1

n−1 . Thus a (p, 1− α) upper tolerance limit
is given by

X̄ + k1S = X̄ + tn−1;1−α
(
zp
√
n
) S√

n

where tn−1;1−α (zp
√
n) denotes the 1 − α quantile of a non-central t distribution with n − 1 degrees of

freedom and non-centrality parameter zp
√
n. X̄ + k1S is an exact tolerance limit (i.e., has the correct

coverage probability) and as mentioned by Krishnamoorthy and Mathew (2009) is the same solution that
is obtained by the frequentist approach. The tolerance factor k1, which is derived from the non-central
t-distribution, can be obtained from Table B1 in Krishnamoorthy and Mathew (2009).

In this paper we are �rstly interested in the predictive distribution of a future sample one-sided upper
tolerance limit. By using the predictive distribution a Bayesian procedure will be developed to obtain
control limits for a future sample one-sided upper tolerance limit. Assuming that the process remains
stable, the predictive distribution can be used to derived the distribution of the �run length� and �average
run length�.
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4 A Future Sample One-sided Upper Tolerance Limit

Consider a future sample of m observations from the N
(
µ, σ2

)
population: X1f , X2f , . . . , Xmf . The fu-

ture sample mean is de�ned as X̄f = 1
m

∑m
j=1Xjf and a future sample variance by S2

f = 1
m−1

∑m
j=1

(
Xjf − X̄f

)2
.

A (p, 1− α) upper tolerance limit for the future sample is de�ned as

q̃ = X̄f + k̃1Sf (2)

where

k̃1 =
1√
m
tm−1;1−α

(
zp
√
m
)
.

Although the posterior predictive distribution of q̃ can easily be obtained by simulation, the exact mean
and variance can be derived analytically. The following theorem can now be proved.

Theorem 3. The exact mean and variance of q̃ = X̄f + k̃1Sf is given by

E (q̃|data) = X̄ + k̃1
Γ
(
m
2

)
Γ
(
m−1
2

) Γ
(
n−2
2

)
Γ
(
n−1
2

) √n− 1√
m− 1

S

and

V ar (q̃|data) =

(
m+ n

nm

)(
n− 1

n− 3

)
+ k̃21

{
n− 1

n− 3
−

Γ2
(
m
2

)
Γ2
(
n−2
2

)
(n− 1)

Γ2
(
m−1
2

)
Γ2
(
n−1
2

)
(m− 1)

}
S2

Proof. The proof is given in Appendix C.

Corollary 4. If m = n, then

E (q̃|data) = X̄ + k̃1
Γ
(
n
2

)
Γ
(
n−2
2

)
Γ2
(
n−1
2

) S

and

V ar (q̃|data) =
2

n

(
n− 1

n− 3

)
+ k̃21

(
n− 1

n− 3
−

Γ2
(
n
2

)
Γ2
(
n−2
2

)
Γ4
(
n−1
2

) )
S2.

5 The predictive distribution of q̃ = X̄f + k̃1Sf

As mentioned the posterior predictive distribution of q̃ can easily be simulated. This can be done in the
following way:

q̃|σ2, S2
f , data ∼ N

(
X̄ + k̃1Sf , σ

2

(
1

m
+

1

n

))
.

Therefore

f
(
q̃|σ2, S2

f , data
)

=

(
mn

σ2 (m+ n) 2π

) 1
2

exp

{
− mn

2σ2 (m+ n)

[
q̃ −

(
X̄ + k̃1Sf

)]2}
. (3)

The unconditional predictive distribution can be obtained by �rst simulating σ2 and then Sf . From

the posterior distribution it follows that σ2 ∼ (n−1)S2

χ2
n−1

and given σ2, Sf ∼
{
σ2χ2

m−1

m−1

} 1
2

. Substitute the

simulated σ2 and Sf values in equation 3 and draw the normal density function. Repeat the procedure
l times and average the l simulated normal density functions (Rao-Blackwell method) to obtain the
unconditional predictive density function f (q̃|data). In the example that follows l = 100, 000.
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6 Example

According to Krishnamoorthy and Mathew (2009) one-sided upper tolerance limits can commonly be
used to assess the pollution level in a work place or in a region. The data in Table 1 represent air lead
levels collected by the National Institute of Occupational Safety and Health at a laboratory, for health
hazard evaluation. The air lead levels were collected from n = 15 di�erent areas within the facility.

Table 1: Air Lead Levels
(
µg/m3

)
200 120 15 7 8 6 48 61
380 80 29 1,000 350 1,400 110

A normal distribution �tted the log-transformed lead levels quite well. The sample mean and standard
deviation of the log-transformed data are calculated as X̄ = 4.3329 and S = 1.7394. For n = 15, 1−α =
0.90, p = 0.95 and using the non-central t distribution in MATLAB, k1 = 1√

n
tn−1,1−α (zp

√
n) = 2.3290.

A (0.95, 0.90) upper tolerance limit for the air lead level is X̄ + k1S = 8.3840.

In this manuscript we are however interested in the predictive distribution of q̃ = X̄f + k̃1Sf the tolerance
limit for a future sample ofm = n = 15 observations. Using the simulated procedure described in Section
5, the predictive distribution is illustrated in Figure 1.

Figure 1: Predictive Density Function of a Future Tolerance Limit q̃ = X̄f + k̃1Sf

4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

q̃

Mean = 8.5214, Mode = 8.2741

The mean of the predictive distribution of q̃ is somewhat larger and the mode somewhat smaller than
8.384 the sample upper tolerance limit of the air lead level.

In Table 2 it is shown that the calculated means and variances from the simulation and formulae are for
all practical purposes the same.

Table 2: Mean and Variance of q̃
E (q̃|data) V ar (q̃|data)

From simulated q̃ 8.5214 1.8981
Using Formulae 8.5427 1.8950
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In Table 3 con�dence limits for q̃ are given

Table 3: Con�dence Limits for q̃
95% Left One-sided 95% Right One-sided 95% Two-sided

Left Limit 6.5683 - 6.2421
Right Limit - 11.0320 11.6827

7 Control Chart for a Future One-sided Upper Tolerance Limit

Statistically, quality control is actually implemented in two phases. In Phase I the primary interest is to
assess process stability. The practitioner must therefore be sure that the process is in statistical control
before control limits can be determined for online monitoring in Phase II.

By using the predictive distribution a Bayesian procedure will be developed to obtain a control chart for a
future one-sided upper tolerance limit. Assuming the process remains stable, the predictive distribution
can be used to derive the distribution of the �run-length� and average �run-length�. From Figure 1 it
follows a 99.73% upper control limit for q̃ = X̄f + k̃1Sf is 13.7. Therefore the the rejection region of size
β (β = 0.0027) for the predictive distribution is

β =

ˆ
R(β)

f (q̃|data) dq̃

where R (β) represents those values of q̃ that are larger than 13.7.

The �run-length� is de�ned as the number of future q̃ values (r) until the control chart signals for the
�rst time (Note that r does not include that q̃ value when the control chart signals). Given µ and σ2

and a stable Phase I process, the distribution of the �run-length� r is geometric with parameter

ψ
(
µ, σ2

)
=

ˆ
R(β)

f
(
q̃|µ, σ2

)
dq̃

where f
(
q̃|µ, σ2

)
is the distribution of a future q̃ given that µ and σ2 are known. The values of µ and σ2

are however unknown and the uncertainty of these parameter values are described by their joint posterior
distribution p

(
µ, σ2|data

)
. By simulating µ and σ2 from p

(
µ, σ2|data

)
, the probability density function

f
(
q̃|µ, σ2

)
(for the charting statistic q̃) can be obtained in the following way:

1. q̃|µ, σ2, χ2
m−1 ∼ N

(
µ+ k1σ

√
χ2
m−1√
m−1 ,

σ2

m

)
.

2. The next step is to simulate l = 100, 000 χ2
m−1 values to obtain l normal density functions for given

µ and σ2.

3. By averaging the l density functions (Rao-Blackwell method), f
(
q̃|µ, σ2

)
can be obtained.

This must be done for each future sample. In other words for each future sample µ and σ2 must �rst be
simulated from p

(
µ, σ2|data

)
and then the steps described in (1), (2) and (3).

As mentioned the distribution of the average �run-length� r given µ and σ2 is geometrically distributed
with

E
(
r|µ, σ2

)
=

1− ψ
(
µ, σ2

)
ψ (µ, σ2)

and

V ar
(
r|µ, σ2

)
=

1− ψ
(
µ, σ2

)
ψ2 (µ, σ2)

.
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The unconditional moments E (r|data), E
(
r2|data

)
and V ar (r|data) can therefore easily be obtained

by simulation or numerical integration. For further details refer to Menzefricke (2002, 2007, 2010a,b).

In Figure 2 the predictive distribution of the �run-length� is displayed for the 99.73% upper control
limit. As mentioned for given µ and σ2 the �run-length� r is geometric with parameter ψ

(
µ, σ2

)
. The

unconditional �run-length� as given in Figure 2 is therefore obtained using the Rao-Blackwell method,
i.e., the average of a large number of conditional �run-lengths�

Figure 2: Predictive Distribution of the �Run-length� f (r|data) for n = m = 15
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E (r|data) = 396.27438,Median (r|data) = 251, V ar (r|data) = 2.0945e5

95% Equal-tail Interval = (8; 1644) Length = 1636
95% HPD Interval = (3; 1266) Length = 1263

In Figure 3 the distribution of the average �run-length� is given.

Figure 3: Distribution of the Average �Run-length�
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Mean = 400.1084,Median = 353.5753, V ar = 3.5605e4

95% Equal-tail Interval = (202.1834; 874.6607) Length = 672.4773
95% HPD Interval = (163.4804; 566.0842) Length = 402.6038
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For known µ and σ the expected �run-length� is 1
0.0027 = 370. If µ and σ2 are unknown and estimated

from the posterior distribution the expected �run-length� will usually be larger than 370 - especially if
the sample size is small.

8 Conclusion

This paper develops a Bayesian control chart for monitoring a upper one-sided tolerance limit across a
range of sample values. In the Bayesian approach prior knowledge about the unknown parameters is
formally incorporated into the process of inference by assigning a prior distribution to the parameters.
The information contained in the prior is combined with the likelihood function to obtain the posterior
distribution. By using the posterior distribution the predictive distribution of a upper one-sided tolerance
limit can be obtained.

Determination of reasonable non-informative priors in multi-parameter problems is not an easy task. The
Je�reys' prior for example can have a bad e�ect on the posterior distribution. Reference and probability
matching priors are therefore derived for the pth quantile of a normal distribution. The theory and results
have been applied to air-lead level data analysed by Krishnamoorthy and Mathew (2009) to illustrate the
�exibility and unique features of the Bayesian simulation method for obtaining posterior distributions,
prediction intervals and run lengths.

The Bayesian procedure can easily be extended to control charts of one-sided tolerance limits for a
distribution of the di�erence between two independent normal variables.
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Appendices

A Proof of Theorem 1

Assume Xi (i = 1, 2, . . . , n) are independently and identically normally distributed with mean µ and

variance σ2. The Fisher information matrix for the parameter vector θ =
[
µ, σ2

]′
is given by

F
(
µ, σ2

)
=

 n
σ2 0

0 n
2(σ2)2

 .
Let qp = µ+ zpσ = t

(
µ, σ2

)
= t (θ).

To obtain the reference prior, the Fisher information matrix F (t (θ) , σ) must �rst be derived.

Let

A =


∂µ

∂t(θ)
∂µ
∂σ2

∂σ2

∂t(θ)
∂σ2

∂σ2

 =

1 − 1
2
zp
σ

0 1

 .

Now

F
(
t (θ) , σ2

)
= A′F

(
µ, σ2

)
A =

 n
σ2 −nzp2σ3

−nzp2σ3

nz2p
4σ4 + n

2σ4

 =

F11 F12

F21 F22


and the inverse

F−1
(
t (θ) , σ2

)
=

2σ6

n2

 n
2σ4

(
z2p
2 + 1

)
nzp
2σ3

nzp
2σ3

n
σ2

 =

F 11 F 12

F 21 F 22

 .
Therefore

F 11 =
σ2

n

(
z2p
2

+ 1

)
,

(
F 11

)−1
=

n

σ2

(
z2p
2

+ 1

)−1
= h1

and
p (t (θ)) ∝ h

1
2
1 ∝ constant because it does not contain t (θ) .

Further

h2 = F22 =
n

2σ4

(
z2p
2

+ 1

)
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and
p
(
σ2|t (θ)

)
∝ h

1
2
2 ∝ σ−2.

Therefore the reference prior for the ordering
{
t (θ) , σ2

}
=
{
qp, σ

2
}
is PR

(
qp, σ

2
)
∝ σ−2.

In the
(
µ, σ2

)
parametrization this corresponds to PR

(
µ, σ2

)
= p

(
t (θ) , σ2

) ∣∣∣∣∂t(θ)∂µ

∣∣∣∣.
Since

∣∣∣∣∂t(θ)∂µ

∣∣∣∣ = 1, it follows that PR
(
µ, σ2

)
∝ σ−2.

B Proof of Theorem 2

Let
t (θ) = t

(
µ, σ2

)
= qp

and
∇
′

t (θ) =
[
∂
∂qp

t (θ) ∂
∂σ2 t (θ)

]
=
[
1 0

]
.

Also

∇
′

t (θ)F−1
(
t (θ) , σ2

)
=
[
F 11 F 12

]
and √

∇′t (θ)F−1 (t (θ) , σ2)∇t (θ) =
(
F 11

) 1
2 .

Further

Υ
′
(θ) =

∇′t (θ)F−1
(
t (θ) , σ2

)√
∇′t (θ)F−1 (t (θ) , σ2)∇t (θ)

=
[
Υ1 (θ) Υ2 (θ)

]
where

Υ1 (θ) =
(
F 11

) 1
2 =

σ√
n

(
z2p
2

+ 1

) 1
2

and

Υ2 (θ) =
F 12

√
F 11

=
σ2zp√
n

(
z2p
2

+ 1

)− 1
2

.

According to Datta and Ghosh (1995) a prior PM (θ) = PM
(
qp, σ

2
)
will be a probability matching prior

if the following di�erential equation is satis�ed

∂

∂qp
{Υ1 (θ)PM (θ)}+

∂

∂σ2
{Υ2 (θ)PM (θ)} = 0

.

It is therefore clear that if PM (θ) ∝ σ−2 the di�erential equation is satis�ed.
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C Proof of Theorem 3

If is well known that if Y ∼ χ2
u, then

E (Y r) =
2rΓ

(
u
2 + r

)
Γ
(
u
2

) .

Also since X̄f |µ, σ2 ∼ N
(
µ, σ

2

m

)
and Sf ∼

{
σ2χ2

m−1

m−1

} 1
2

for given σ2, it follows that

E
(
q̃|µ, σ2

)
= µ+

k̃1
√

2σ√
m− 1

Γ
(
m
2

)
Γ
(
m−1
2

)
and

E
(
q̃2|µ, σ2

)
= µ2 + 2k̃1µ

σ
√

2Γ
(
m
2

)
√
m− 1Γ

(
m−1
2

) + σ2

(
1

m
+ k̃21

)
.

From the posterior distribution it follows that µ|σ2, data ∼ N
(
X̄, σ

2

n

)
and σ ∼

{
(n−1)S2

χ2
n−1

}
given the

data. Therefore

E (q̃|data) = X̄ + k̃1

√
n− 1

m− 1

Γ
(
m
2

)
Γ
(
n−2
2

)
Γ
(
m−1
2

)
Γ
(
n−1
2

)S (4)

and

E
(
q̃2|data

)
= X̄2 + 2k̃1X̄

√
n− 1

m− 1

Γ
(
m
2

)
Γ
(
n−2
2

)
Γ
(
m−1
2

)
Γ
(
n−1
2

)S +

(
1

n
+

1

m
+ k̃21

)(
n− 1

n− 3

)
S (5)

By making use of Equations 4 and 5 and the fact that

V ar (q̃|data) = E
(
q̃2|data

)
− {E (q̃|data)}2

it follows that

V ar (q̃|data) =

(
m+ n

nm

)(
n− 1

n− 3

)
+ k̃21

{
n− 1

n− 3
−

Γ2
(
m
2

)
Γ2
(
n−2
2

)
(n− 1)

Γ2
(
m−1
2

)
Γ2
(
n−1
2

)
(m− 1)

}
S2.
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