A Bayesian Control Chart for a One-sided Upper Tolerance Limit for the Normal Population

R. van Zyl1, A.J. van der Merwe2

1Quintiles International, ruaanvz@gmail.com

2University of the Free State
Abstract

By using air-lead data analysed by Krishnamoorthy and Mathew (2009) a Bayesian procedure is applied to obtain control limits for the upper one-sided tolerance limit. Reference and probability matching priors are derived for the \(p \)th quantile of a normal distribution. By simulating the predictive density of a future upper one-sided tolerance limit, “run-lengths” and average “run-lengths” are derived. This article illustrates the flexibility and unique features of the Bayesian simulation method for obtaining the posterior predictive distribution of a future one-sided tolerance limit.

Keywords: tolerance limits, control charts, probability Matching prior, reference prior

1 Introduction

Krishnamoorthy and Mathew (2009) and Hahn and Meeker (1991) defined a tolerance interval as an interval that is constructed in such a way that it will contain a specified proportion or more of the population with a certain degree of confidence. The proportion is also called the content of the tolerance interval. As opposed to confidence intervals that give information on unknown population parameters, a one-sided upper tolerance limit for example provides information about a quantile of the population. According to Hahn and Meeker (1991) tolerance intervals would be of importance in obtaining limits on the process capability of a product manufactured in large quantities. Further application examples of tolerance intervals include statistical process control, wood manufacturing, clinical and industrial applications, environmental monitoring and assessment and for exposure data analysis. For more applications see Krishnamoorthy and Mathew (2009) and Hugo (2012).

Suppose \(X_1, X_2, \ldots, X_n \) is a random sample from a \(N(\mu, \sigma^2) \) population. The maximum likelihood estimators of the unknown mean, \(\mu \) and unknown variance, \(\sigma^2 \) are the sample mean \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \) and sample variance \(S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \). Using the same notation as given in Krishnamoorthy and Mathew (2009), the \(p \)th quantile of a \(N(\mu, \sigma^2) \) population is

\[
q_p = \mu + z_p \sigma
\]

where \(z_p \) denotes the \(p \)th quantile of a standard normal distribution.

A \(1 - \alpha \) upper confidence limit for \(q_\alpha \) is a \((p, 1- \alpha) \) one-sided upper tolerance limit for the normal distribution. By using the posterior predictive distribution a Bayesian procedure will be developed to obtain control limits for a one-sided upper tolerance limit in the case of future samples.

Bayarri and García-Donato (2005) give the following reasons for recommending a Bayesian analysis:

- Control charts are based on future observations and Bayesian methods are very natural for prediction.
- Uncertainty in the estimation of the unknown parameters is adequately handled.
- Implementation with complicated models and in a sequential scenario poses no methodological difficulty, the numerical difficulties are easily handled via Monte Carlo methods;
- Objective Bayesian analysis is possible without introduction of external information other than the model, but any kind of prior information can be incorporated into the analysis, if desired.

There do not appear to be many papers on control charts for tolerance intervals from a Bayesian point of view. Hamada (2002) derived Bayesian tolerance interval control limits for \(np, p, c \) and \(u \) charts which control the probability content at a specified level with a given confidence while we are deriving posterior predictive intervals. It is therefore clear that our Bayesian method differs substantially from his.
2 Bayesian Procedure

By assigning a prior distribution to the unknown parameters the uncertainty in the estimation of the unknown parameters can adequately be handled. The information contained in the prior is combined with the likelihood function to obtain the posterior distribution of \(q_p \). By using the posterior distribution the predictive distribution of a future sample one-sided upper tolerance limit can be obtained. The predictive distribution on the other hand can be used to obtain control limits and to determine the distribution of the “run length” and “expected run length”. Determination of reasonable non-informative priors is however not an easy task. Therefore, in the next section, reference and probability matching priors will be derived for \(q_p = \mu + z_p \sigma \) the \(p \)th quantile of a \(N (\mu, \sigma^2) \) distribution.

3 Reference and Probability-Matching Priors for \(q_p = \mu + z_p \sigma \)

As mentioned the Bayesian paradigm emerges as attractive in many types of statistical problems, also in the case of \(q_p \), the \(p \)th quantile of a \(N (\mu, \sigma^2) \) population.

Prior distributions are needed to complete the Bayesian specification of the model. Determination of reasonable non-informative priors in multi-parameter problems is not easy; common non-informative priors, such as the Jeffreys’ prior can have features that have an unexpectedly dramatic effect on the posterior.

Reference and probability-matching priors often lead to procedures with good frequency properties while returning the Bayesian flavour. The fact that the resulting Bayesian posterior intervals of the level \(1 - \alpha \) are also good frequentist intervals at the same level is a very desirable situation.

See also Bayarri and Berger (2004) and Severine, Mukerjee, and Ghosh (2002) for a general discussion.

3.1 The Reference Prior

In this section the reference prior of Berger and Bernardo (1992) will be derived for \(q_p = \mu + z_p \sigma \). In general, the derivation of the reference prior depends on the ordering of the parameters and how the parameter vector is divided into sub-vectors. As mentioned by Peam and Wu (2005) the reference prior maximizes the difference in information (entropy) about the parameter provided by the prior and posterior. In other words, the reference prior is derived in such a way that it provides as little information possible about the parameter of interest. The reference prior algorithm is relatively complicated and, as mentioned, the solution depends on the ordering of the parameters and how the parameter vector is partitioned into sub-vectors. In spite of these difficulties, there is growing evidence, mainly through examples that reference priors provide “sensible” answers from a Bayesian point of view and that frequentist properties of inference from reference posteriors are asymptotically “good”. As in the case of the Jeffreys’ prior, the reference prior is obtained from the Fisher information matrix. In the case of a scalar parameter, the reference prior is the Jeffreys’ prior.

The following theorem can be proved:

Theorem 1. The reference prior for the ordering \(\{q_p, \sigma^2\} \) is given by \(p_R (q_p, \sigma^2) \propto \sigma^{-2} \).

In the \((\mu, \sigma) \) parametrization this corresponds to \(p_R (\mu, \sigma) \propto \sigma^{-2} \).

Proof. The proof is given in Appendix A.

Note: The ordering \(\{q_p, \sigma^2\} \) means that the parameter \(q_p = \mu + z_p \sigma \) is a more important parameter than \(\sigma^2 \).
3.2 Probability-Matching Priors

The reference prior algorithm is but one way to obtain a useful non-informative prior. Another type of non-informative prior is the probability-matching prior. This prior has good frequentist properties. Two reasons for using probability-matching priors are that they provide a method for constructing accurate frequentist intervals, and that they could be potentially useful for comparative purposes in a Bayesian analysis.

There are two methods for generating probability-matching priors due to Tibshirani (1989) and Datta and Ghosh (1995).

Tibshirani (1989) generated probability-matching priors by transforming the model parameters so that the parameter of interest is orthogonal to the other parameters. The prior distribution is then taken to be proportional to the square root of the upper left element of the information matrix in the new parametrization.

Datta and Ghosh (1995) provided a different solution to the problem of finding probability-matching priors. They derived the differential equation that a prior must satisfy if the posterior probability of a one-sided credibility interval for a parametric function and its frequentist probability agree up to $O\left(n^{-1} \right)$ where n is the sample size. Using the method of Datta and Ghosh (1995) the following theorem will be proved.

Theorem 2. The probability-matching prior for q_p and σ^2 is $p_M(q_p,\sigma^2) \propto \sigma^{-2}$.

Proof. The proof is given in Appendix B. \hfill \square

3.3 The Posterior Distribution

As mentioned, by combining the information contained in the prior with the likelihood function the posterior distribution can be obtained. Since our non-informative prior for q_p in the (μ, σ) parametrization is $p(\mu, \sigma^2) \propto \sigma^{-1}$, it follows that the posterior distribution of σ^2 has an inverse gamma distribution which means that $(n-1)S^2 \sim \chi_n^2$ and $\mu|\sigma^2, \text{data} \sim N\left(\bar{X}, \frac{\sigma^2}{n} \right)$.

The posterior distribution of q_p is therefore equal to

$$\bar{X} \pm \frac{Z + z_p \sqrt{n}}{U} \frac{S}{\sqrt{n} \sqrt{n}} = \bar{X} + \frac{1}{\sqrt{n}} t_{n-1} \left(z_p \sqrt{n} \right) S$$

where $Z \sim N\left(0, 1 \right)$ and independently distributed of $U^2 \sim \chi_n^2$. Thus a $(p, 1-\alpha)$ upper tolerance limit is given by

$$\bar{X} + k_1 S = \bar{X} + t_{n-1,1-\alpha} \left(z_p \sqrt{n} \right) \frac{S}{\sqrt{n}}$$

where $t_{n-1,1-\alpha} \left(z_p \sqrt{n} \right)$ denotes the $1-\alpha$ quantile of a non-central t distribution with $n-1$ degrees of freedom and non-centrality parameter $z_p \sqrt{n}$. $\bar{X} + k_1 S$ is an exact tolerance limit (i.e., has the correct coverage probability) and as mentioned by Krishnamoorthy and Mathew (2009) is the same solution that is obtained by the frequentist approach. The tolerance factor k_1, which is derived from the non-central t-distribution, can be obtained from Table B1 in Krishnamoorthy and Mathew (2009).

In this paper we are firstly interested in the predictive distribution of a future sample one-sided upper tolerance limit. By using the predictive distribution a Bayesian procedure will be developed to obtain control limits for a future sample one-sided upper tolerance limit. Assuming that the process remains stable, the predictive distribution can be used to derived the distribution of the “run length” and “average run length”.
4 A Future Sample One-sided Upper Tolerance Limit

Consider a future sample of \(m \) observations from the \(N(\mu, \sigma^2) \) population: \(X_{1f}, X_{2f}, \ldots, X_{mf} \). The future sample mean is defined as \(\bar{X}_f = \frac{1}{m} \sum_{j=1}^{m} X_{jf} \) and a future sample variance by \(S_f^2 = \frac{1}{m-1} \sum_{j=1}^{m} (X_{jf} - \bar{X}_f)^2 \).

A \((p, 1 - \alpha)\) upper tolerance limit for the future sample is defined as

\[
\tilde{q} = \bar{X}_f + \tilde{k}_1 S_f
\]

where

\[
\tilde{k}_1 = \frac{1}{\sqrt{m}} t_{m-1, 1-\alpha} (z_p \sqrt{m}).
\]

Although the posterior predictive distribution of \(\tilde{q} \) can easily be obtained by simulation, the exact mean and variance can be derived analytically. The following theorem can now be proved.

Theorem 3. The exact mean and variance of \(\tilde{q} = \bar{X}_f + \tilde{k}_1 S_f \) is given by

\[
E(\tilde{q}|\text{data}) = \bar{X} + \tilde{k}_1 \frac{\Gamma \left(\frac{m}{2} \right) \Gamma \left(\frac{n-2}{2} \right)}{\Gamma \left(\frac{m+n}{2} \right)} \sqrt{n-1} \sigma S
\]

and

\[
Var(\tilde{q}|\text{data}) = \left(\frac{m + n}{nm} \right) \left(\frac{n-1}{n-3} \right) + \tilde{k}_1^2 \left(\frac{n-1}{n-3} - \frac{\Gamma^2 \left(\frac{m}{2} \right) \Gamma^2 \left(\frac{n-2}{2} \right)}{\Gamma^2 \left(\frac{m+n}{2} \right)} \right) S^2.
\]

Proof. The proof is given in Appendix C. \(\square \)

Corollary 4. If \(m = n \), then

\[
E(\tilde{q}|\text{data}) = \bar{X} + \tilde{k}_1 \frac{\Gamma \left(\frac{n}{2} \right) \Gamma \left(\frac{n-2}{2} \right)}{\Gamma^2 \left(\frac{n}{2} \right)} \sigma S
\]

and

\[
Var(\tilde{q}|\text{data}) = \frac{2}{n} \left(\frac{n-1}{n-3} \right) + \tilde{k}_1^2 \left(\frac{n-1}{n-3} - \frac{\Gamma^2 \left(\frac{n}{2} \right) \Gamma^2 \left(\frac{n-2}{2} \right)}{\Gamma^4 \left(\frac{n}{2} \right)} \right) S^2.
\]

5 The predictive distribution of \(\tilde{q} = \bar{X}_f + \tilde{k}_1 S_f \)

As mentioned the posterior predictive distribution of \(\tilde{q} \) can easily be simulated. This can be done in the following way:

\[
\tilde{q}|\sigma^2, S_f^2, \text{data} \sim N \left(\bar{X} + \tilde{k}_1 S_f, \sigma^2 \left(\frac{1}{m} + \frac{1}{n} \right) \right).
\]

Therefore

\[
f(\tilde{q}|\sigma^2, S_f^2, \text{data}) = \left(\frac{mn}{\sigma^2 (m+n) 2\pi} \right)^\frac{1}{2} \exp \left\{ -\frac{mn}{2\sigma^2 (m+n)} \left[\tilde{q} - \left(\bar{X} + \tilde{k}_1 S_f \right) \right]^2 \right\}.
\]
6 Example

According to Krishnamoorthy and Mathew (2000) one-sided upper tolerance limits can commonly be used to assess the pollution level in a workplace or in a region. The data in Table 1 represent air lead levels collected by the National Institute of Occupational Safety and Health at a laboratory for health hazard evaluation. The air lead levels were collected from \(n = 15 \) different areas within the facility.

<table>
<thead>
<tr>
<th>Table 1: Air Lead Levels (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
</tr>
<tr>
<td>380</td>
</tr>
</tbody>
</table>

A normal distribution fitted the log-transformed lead levels quite well. The sample mean and standard deviation of the log-transformed data are calculated as \(\bar{X} = 4.3329 \) and \(S = 1.7394 \). For \(n = 15 \), \(1 - \alpha = 0.90 \), \(p = 0.95 \) and using the non-central t distribution in MATLAB, \(k_1 = \frac{1}{\sqrt{n}} \cdot \frac{n-1-\alpha}{\left(z_p \sqrt{n}\right)} = 2.3290 \). A \((0.95, 0.90)\) upper tolerance limit for the air lead level is \(\bar{X} + k_1S = 8.3840 \).

In this manuscript we are however interested in the predictive distribution of \(\tilde{q} = \bar{X}_f + k_1S_f \) the tolerance limit for a future sample of \(m = n = 15 \) observations. Using the simulated procedure described in Section 5, the predictive distribution is illustrated in Figure 1.

![Figure 1: Predictive Density Function of a Future Tolerance Limit \(\tilde{q} = \bar{X}_f + k_1S_f \)](image)

Mean = 8.5214, Mode = 8.2741

The mean of the predictive distribution of \(\tilde{q} \) is somewhat larger and the mode somewhat smaller than 8.384 the sample upper tolerance limit of the air lead level.

In Table 2 it is shown that the calculated means and variances from the simulation and formulae are for all practical purposes the same.

<table>
<thead>
<tr>
<th>Table 2: Mean and Variance of (\tilde{q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E(\tilde{q}</td>
</tr>
<tr>
<td>From simulated (\tilde{q})</td>
</tr>
<tr>
<td>Using Formulae</td>
</tr>
</tbody>
</table>
In Table 3 confidence limits for \tilde{q} are given.

<table>
<thead>
<tr>
<th></th>
<th>95% Left One-sided</th>
<th>95% Right One-sided</th>
<th>95% Two-sided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Limit</td>
<td>6.5683</td>
<td>-</td>
<td>6.2421</td>
</tr>
<tr>
<td>Right Limit</td>
<td>-</td>
<td>11.0320</td>
<td>11.6827</td>
</tr>
</tbody>
</table>

7 Control Chart for a Future One-sided Upper Tolerance Limit

Statistically, quality control is actually implemented in two phases. In Phase I the primary interest is to assess process stability. The practitioner must therefore be sure that the process is in statistical control before control limits can be determined for online monitoring in Phase II.

By using the predictive distribution a Bayesian procedure will be developed to obtain a control chart for a future one-sided upper tolerance limit. Assuming the process remains stable, the predictive distribution can be used to derive the distribution of the “run-length” and average “run-length”. From Figure 1 it follows a 99.73% upper control limit for $\tilde{q} = \bar{X}_f + k_1S_f$ is 13.7. Therefore the the rejection region of size β ($\beta = 0.0027$) for the predictive distribution is

$$\beta = \frac{1}{R(\beta)} \int_{R(\beta)} f(\tilde{q}|\text{data}) \, d\tilde{q}$$

where $R(\beta)$ represents those values of \tilde{q} that are larger than 13.7.

The "run-length" is defined as the number of future \tilde{q} values (r) until the control chart signals for the first time (Note that r does not include that \tilde{q} value when the control chart signals). Given μ and σ^2 and a stable Phase I process, the distribution of the "run-length" r is geometric with parameter

$$\psi(\mu, \sigma^2) = \frac{1}{R(\beta)} \int_{R(\beta)} f(\tilde{q}|\mu, \sigma^2) \, d\tilde{q}$$

where $f(\tilde{q}|\mu, \sigma^2)$ is the distribution of a future \tilde{q} given that μ and σ^2 are known. The values of μ and σ^2 are however unknown and the uncertainty of these parameter values are described by their joint posterior distribution $p(\mu, \sigma^2|\text{data})$. By simulating μ and σ^2 from $p(\mu, \sigma^2|\text{data})$, the probability density function $f(\tilde{q}|\mu, \sigma^2)$ (for the charting statistic \tilde{q}) can be obtained in the following way:

1. $\tilde{q}|\mu, \sigma^2, \chi^2_{m-1} \sim N\left(\mu + k_1 \sigma \frac{\sqrt{\chi^2_{m-1}}}{\sqrt{m}}, \frac{\sigma^2}{m}\right)$.
2. The next step is to simulate $l = 100,000 \chi^2_{m-1}$ values to obtain l normal density functions for given μ and σ^2.
3. By averaging the l density functions (Rao-Blackwell method), $f(\tilde{q}|\mu, \sigma^2)$ can be obtained.

This must be done for each future sample. In other words for each future sample μ and σ^2 must first be simulated from $p(\mu, \sigma^2|\text{data})$ and then the steps described in (1), (2) and (3).

As mentioned the distribution of the average "run-length" r given μ and σ^2 is geometrically distributed with

$$E(r|\mu, \sigma^2) = \frac{1 - \psi(\mu, \sigma^2)}{\psi(\mu, \sigma^2)}$$

and

$$Var(r|\mu, \sigma^2) = \frac{1 - \psi(\mu, \sigma^2)}{\psi^2(\mu, \sigma^2)}.$$
The unconditional moments $E(r|data)$, $E(r^2|data)$ and $Var(r|data)$ can therefore easily be obtained by simulation or numerical integration. For further details refer to Menzefricke (2002, 2007, 2010a,b).

In Figure 2 the predictive distribution of the “run-length” is displayed for the 99.73% upper control limit. As mentioned for given μ and σ^2 the “run-length” r is geometric with parameter $\psi(\mu, \sigma^2)$. The unconditional “run-length” as given in Figure 2 is therefore obtained using the Rao-Blackwell method, i.e., the average of a large number of conditional “run-lengths”

Figure 2: Predictive Distribution of the “Run-length” $f(r|data)$ for $n = m = 15$

$$E(r|data) = 396.27438, \text{Median}(r|data) = 251, Var(r|data) = 2.0945e^5$$

95% Equal-tail Interval = (8; 1644) Length = 1636

95% HPD Interval = (3; 1266) Length = 1263

In Figure 3 the distribution of the average “run-length” is given.

Figure 3: Distribution of the Average “Run-length”

$$Mean = 400.1084, Median = 353.5753, Var = 3.5605e^4$$

95% Equal-tail Interval = (202.1834; 874.6607) Length = 672.4773

95% HPD Interval = (163.4804; 566.0842) Length = 402.6038
For known μ and σ the expected “run-length” is $\frac{1}{0.0027} = 370$. If μ and σ^2 are unknown and estimated from the posterior distribution the expected “run-length” will usually be larger than 370 - especially if the sample size is small.

8 Conclusion

This paper develops a Bayesian control chart for monitoring a upper one-sided tolerance limit across a range of sample values. In the Bayesian approach prior knowledge about the unknown parameters is formally incorporated into the process of inference by assigning a prior distribution to the parameters. The information contained in the prior is combined with the likelihood function to obtain the posterior distribution. By using the posterior distribution the predictive distribution of a upper one-sided tolerance limit can be obtained.

Determination of reasonable non-informative priors in multi-parameter problems is not an easy task. The Jeffreys’ prior for example can have a bad effect on the posterior distribution. Reference and probability matching priors are therefore derived for the pth quantile of a normal distribution. The theory and results have been applied to air-lead level data analysed by Krishnamoorthy and Mathew (2009) to illustrate the flexibility and unique features of the Bayesian simulation method for obtaining posterior distributions, prediction intervals and run lengths.

The Bayesian procedure can easily be extended to control charts of one-sided tolerance limits for a distribution of the difference between two independent normal variables.

References

Appendices

A Proof of Theorem 1

Assume \(X_i (i = 1, 2, \ldots, n) \) are independently and identically normally distributed with mean \(\mu \) and variance \(\sigma^2 \). The Fisher information matrix for the parameter vector \(\theta = [\mu, \sigma^2] \) is given by

\[
F(\mu, \sigma^2) = \begin{bmatrix}
\frac{n}{\sigma^2} & 0 \\
0 & \frac{n}{2(\sigma^2)^2}
\end{bmatrix}.
\]

Let \(q = \mu + z_p \sigma = t(\mu, \sigma^2) = t(\theta) \).

To obtain the reference prior, the Fisher information matrix \(F(t(\theta), \sigma) \) must first be derived.

Let

\[
A = \begin{bmatrix}
\frac{\partial \mu}{\partial t(\theta)} & \frac{\partial \mu}{\partial \sigma^2} \\
\frac{\partial \sigma^2}{\partial t(\theta)} & \frac{\partial \sigma^2}{\partial \sigma^2}
\end{bmatrix} = \begin{bmatrix}
1 & -\frac{1}{2} \frac{z_p}{\sigma} \\
0 & 1
\end{bmatrix}.
\]

Now

\[
F(t(\theta), \sigma^2) = A' F(\mu, \sigma^2) A = \begin{bmatrix}
\frac{n}{\sigma^2} & -\frac{nz_p}{2\sigma^3} \\
\frac{nz_p}{2\sigma^3} & \frac{n}{\sigma^2} + \frac{n}{2\sigma^2}
\end{bmatrix} = \begin{bmatrix}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{bmatrix}
\]

and the inverse

\[
F^{-1}(t(\theta), \sigma^2) = \frac{2\sigma^6}{n^2} \begin{bmatrix}
\frac{n}{2\sigma^3} \left(\frac{z_p^2}{2} + 1 \right) & \frac{nz_p}{2\sigma^3} \\
\frac{nz_p}{2\sigma^3} & \frac{n}{\sigma^2}
\end{bmatrix} = \begin{bmatrix}
F^{11} & F^{12} \\
F^{21} & F^{22}
\end{bmatrix}.
\]

Therefore

\[
F^{11} = \frac{\sigma^2}{n} \left(\frac{z_p^2}{2} + 1 \right),
\]

\[
(F^{11})^{-1} = \frac{n}{\sigma^2} \left(\frac{z_p^2}{2} + 1 \right)^{-1} = h_1
\]

and

\[
p(t(\theta)) \propto h_1^{-\frac{1}{2}} \propto \text{constant because it does not contain } t(\theta).
\]

Further

\[
h_2 = F_{22} = \frac{n}{2\sigma^4} \left(\frac{z_p^2}{2} + 1 \right).
\]
and

\[p(\sigma^2 | t(\theta)) \propto h_{\frac{1}{2}} \propto \sigma^{-2}. \]

Therefore the reference prior for the ordering \(\{ t(\theta), \sigma^2 \} = \{ q_p, \sigma^2 \} \) is \(P_R(q_p, \sigma^2) \propto \sigma^{-2}. \)

In the \((\mu, \sigma^2)\) parametrization this corresponds to \(P_R(\mu, \sigma^2) = p(t(\theta), \sigma^2) \left| \frac{\partial t(\theta)}{\partial \mu} \right|. \)

Since \(\left| \frac{\partial t(\theta)}{\partial \mu} \right| = 1 \), it follows that \(P_R(\mu, \sigma^2) \propto \sigma^{-2}. \)

\[\text{B Proof of Theorem 2} \]

Let

\[t(\theta) = t(\mu, \sigma^2) = q_p \]

and

\[\nabla_t(\theta) = \left[\frac{\partial}{\partial q_p} t(\theta), \frac{\partial}{\partial \sigma^2} t(\theta) \right] = [1 \ 0]. \]

Also

\[\nabla_t(\theta) F^{-1}(t(\theta), \sigma^2) = [F^{11} \ F^{12}] \]

and

\[\sqrt{\nabla_t(\theta) F^{-1}(t(\theta), \sigma^2)} \nabla_t(\theta) = (F^{11})^{\frac{1}{2}}. \]

Further

\[\Upsilon(\theta) = \frac{\nabla_t(\theta) F^{-1}(t(\theta), \sigma^2)}{\sqrt{\nabla_t(\theta) F^{-1}(t(\theta), \sigma^2)} \nabla_t(\theta)} = \left[\Upsilon_1(\theta) \ \Upsilon_2(\theta) \right] \]

where

\[\Upsilon_1(\theta) = (F^{11})^{\frac{1}{2}} = \frac{\sigma}{\sqrt{n}} \left(\frac{z_p^2}{2} + 1 \right)^{\frac{1}{2}} \]

and

\[\Upsilon_2(\theta) = \frac{F^{12}}{\sqrt{F^{11}}} = \frac{\sigma^2 z_p}{\sqrt{n}} \left(\frac{z_p^2}{2} + 1 \right)^{-\frac{1}{2}}. \]

According to Datta and Ghosh (1995) a prior \(P_M(\theta) = P_M(q_p, \sigma^2) \) will be a probability matching prior if the following differential equation is satisfied

\[\frac{\partial}{\partial q_p} \{ \Upsilon_1(\theta) P_M(\theta) \} + \frac{\partial}{\partial \sigma^2} \{ \Upsilon_2(\theta) P_M(\theta) \} = 0. \]

It is therefore clear that if \(P_M(\theta) \propto \sigma^{-2} \) the differential equation is satisfied.
C Proof of Theorem 3

If it is well known that if \(Y \sim \chi^2_u \), then

\[
E(Y^r) = \frac{2^r \Gamma\left(\frac{u}{2} + r\right)}{\Gamma\left(\frac{u}{2}\right)}.
\]

Also since \(\bar{X}_f|\mu, \sigma^2 \sim N\left(\mu, \frac{\sigma^2}{m}\right) \) and \(S_f \sim \left\{ \frac{\sigma^2 \chi^2_{m-1}}{m-1} \right\}^{\frac{1}{2}} \) for given \(\sigma^2 \), it follows that

\[
E(\bar{q}|\mu, \sigma^2) = \mu + \frac{k_1 \sqrt{2}\sigma}{\sqrt{m-1}} \Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{m-1}{2}\right)
\]

and

\[
E(\bar{q}^2|\mu, \sigma^2) = \mu^2 + 2k_1 \mu \frac{\sigma \sqrt{2} \Gamma\left(\frac{m}{2}\right)}{\sqrt{m-1} \Gamma\left(\frac{m-1}{2}\right)} + \sigma^2 \left(1 + \frac{1}{m} + \frac{k_1^2}{m}\right).
\]

From the posterior distribution it follows that \(\mu|\sigma^2, \text{data} \sim N\left(\bar{X}, \frac{\sigma^2}{n}\right) \) and \(\sigma \sim \left\{ \frac{(n-1)S^2}{\chi^2_{n-1}} \right\} \) given the data. Therefore

\[
E(\bar{q}|\text{data}) = \bar{X} + \frac{k_1 \sqrt{2}\sigma}{\sqrt{m-1}} \Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{m-1}{2}\right) S
\]

(4)

and

\[
E(\bar{q}^2|\text{data}) = \bar{X}^2 + 2k_1 \bar{X} \sqrt{\frac{n-1}{m-1}} \Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n-2}{2}\right) \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{m-1}{2}\right) S + \left(1 + \frac{1}{m} + \frac{k_1^2}{m}\right) \left(\frac{n-1}{n-3}\right) S
\]

(5)

By making use of Equations 4 and 5 and the fact that

\[
Var(\bar{q}|\text{data}) = E(\bar{q}^2|\text{data}) - \{E(\bar{q}|\text{data})\}^2
\]

it follows that

\[
Var(\bar{q}|\text{data}) = \left(\frac{m+n}{nm}\right) \left(\frac{n-1}{n-3}\right) + \frac{k_1^2}{n-3} \left\{ \frac{n-1}{\Gamma^2\left(\frac{m}{2}\right) \Gamma^2\left(\frac{n-2}{2}\right) (n-1)} \left(\frac{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n-2}{2}\right) (n-1)}{\Gamma\left(\frac{m-1}{2}\right) \Gamma\left(\frac{n-1}{2}\right) (m-1)}\right) S^2. \right. \]