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Abstract

By using failure mileages of military carriages by Grubbs (1971) and Krishnamoorthy and Mathew
(2009) a Bayesian procedure is applied to obtain control limits for a one-sided upper tolerance limit for
the the two-parameter exponential distribution. The Je�reys' prior p (θ, µ) ∝ θ−1 is used and it is shown
that the posterior distributions of µ and θ match the generalized pivotal quantities for µ and θ. By
using simulation methods for the one-sided tolerance limit, �run-lengths� and average �run-lengths� are
derived. This article illustrates the �exibility and unique features of Bayesian simulation for obtaining
the posterior predictive distribution of a future one-sided tolerance limit.

Keywords: Je�reys' prior, two-parameter exponential, tolerance limits, run-length, control chart

1 Introduction

The two-parameter exponential distribution plays an important role in engineering, life testing and
medical sciences. In these studies where the data are positively skewed, the exponential distribution is
as important as the normal distribution is in sampling theory and agricultural statistics. Researchers
have studied various aspects of estimation and inference for the two-parameter exponential distribution
using either the frequentist approach or the Bayesian procedure.

However, while parameter estimation and hypothesis testing related to the two-parameter exponential
distribution are well documented in the literature, the research on control charts has received little
attention. Ramalhoto and Morais (1999) developed a control chart for monitoring the scale parameter
while Sürücü and Sazak (2009) presented a control chart scheme in which moments are used. Mukherjee,
McCracken, and Chakraborti (2014) on the other hand proposed several control charts and monitoring
schemes for the location and the scale parameters of the two-parameter exponential distribution.

In this paper a one-sided upper tolerance limit for the two-parameter exponential distribution will be
developed by using generalized pivotal quantities and a Bayesian procedure.

Bayarri and García-Donato (2005) give the following reasons for recommending a Bayesian analysis:

• Control charts are based on future observations and Bayesian methods are very natural for predic-
tion.

• Uncertainty in the estimation of the unknown parameters is adequately handled.

• Implementation with complicated models and in a sequential scenario poses no methodological
di�culty, the numerical di�culties are easily handled via Monte Carlo methods;

• Objective Bayesian analysis is possible without introduction of external information other than the
model, but any kind of prior information can be incorporated into the analysis, if desired.

Krishnamoorthy and Mathew (2009) and Hahn and Meeker (1991) de�ned a tolerance interval as an
interval that is constructed in such a way that it will contain a speci�ed proportion or more of the
population with a certain degree of con�dence. The proportion is also called the content of the tolerance
interval. As opposed to con�dence intervals that give information on unknown population parameters,
a one-sided upper tolerance limit for example provides information about a quantile of the population.
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2 Preliminary and Statistical Results

In this section the same notation will be used as given in Krishnamoorthy and Mathew (2009).

The two-parameter exponential distribution has the probability density function

f (x;µ, θ) =
1

θ
exp

{
− (x− µ)

θ

}
x > µ, −∞ < µ <∞, θ > 0

where µ is the location parameter and θ is the scale parameter. Krishnamoorthy and Mathew (2009)
de�ned the two-parameter exponential for µ > 0. Our de�nition is for −∞ < µ < ∞ and therefore
di�ers somewhat from theirs. In the literature, see for example Johnson and Kotz (1970), where the
two-parameter exponential has been de�ned for −∞ < µ <∞.

Let X1, X2, . . . , Xn be a sample of n observations from the two-parameter exponential distribution. The
maximum likelihood estimators for µ and θ are given by

µ̂ = X(1)

and

θ̂ =
1

n

n∑
i=1

(
Xi −X(1)

)
= X̄ −X(1)

where X(1) is the minimum or the �rst order statistic of the sample. It is well known (see Johnson

and Kotz (1970); Lawless (1982); Krishnamoorthy and Mathew (2009)) that µ̂ and θ̂ are independently
distributed with

(µ̂− µ)

θ
∼ χ2

2

2n
and

θ̂

θ
∼
χ2

2n−2

2n
(2.1)

Let µ̂0 and θ̂0 be observed values of µ̂ and θ̂ then it follows from Equation 2.1 that a generalized pivotal
quantity (GPQ) for µ is given by

Gµ = µ̂0 −
χ2

2

χ2
2n−2

θ̂0 (2.2)

and a GPQ for θ is given by

Gθ =
2nθ̂0

χ2
2n−2

(2.3)

From a Bayesian perspective it will be shown that Gµ and Gθ are actually the posterior distributions of
µ and θ if the prior p (µ, θ) ∝ θ−1 is used.
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3 Tolerance Limits - Generalized Variable Approach

Theorem 3.1. The p quantile of a two-parameter exponential distribution is given by qp = µ−θ ln (1− p).

Proof. The proof is provided in Appendix A.

By replacing the parameters by their GPQ's a GPQ for qp can be obtained and is given by

Gqp = Gp −Gθ ln (1− p)

= µ̂0 −
[
χ2
2+2n ln(1−p)
χ2
2n−2

]
θ̂0.

Let Ep;α denotes the α quantile of Ep =
χ2
2+2n ln(1−p)
χ2
2n−2

, then as mentioned by Krishnamoorthy and

Mathew (2009)

µ̂− Ep;αθ̂0

is a 1− α upper con�dence limit for qp, which means that (p, 1− α) is an upper tolerance limit for the
exponential (µ, θ) distribution. Also

µ̂0 − E1−p,1−αθ̂0

is a 1 − α tolerance limit for q1−p = µ − θ ln p, or equivalently a (p, 1− α) lower tolerance limit for the
exponential (µ, θ) distribution.

It is shown in Roy and Mathew (2005) and Krishnamoorthy and Mathew (2009) that the upper and
lower tolerance limits obtained using the generalized variable approach are actually exact, which means
that they have the correct frequentist coverage probabilities.

4 Bayesian Procedure

In this section it will be shown that the Bayesian procedure is the same as the generalized variable
approach.

If a sample of n observations are drawn from the two-parameter exponential distribution, then the
likelihood function is given by

L (µ, θ|data) =

(
1

θ

)n
exp

{
−1

θ

n∑
i=1

(xi − µ)

}
.

As prior the Je�reys' prior
p (µ, θ) ∝ θ−1

will be used.

The joint posterior distribution of µ and θ is

p (θ, µ|data) ∝ p (µ, θ)L (µ, θ|data)

= K1

(
1
θ

)n+1
exp

{
−nθ (x̄− µ)

}
−∞ < µ < x(1), 0 < θ <∞

(4.1)
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It can easily be shown that

K1 =
nn
(
θ̂
)n−1

Γ (n− 1)
where θ̂ = x̄− x(1).

The posterior distribution of µ is

p (µ|data) =
´∞

0
p (θ, µ|data) dθ

= (n− 1)
(
θ̂
)n−1 (

1
x̄−µ

)n (4.2)

and the posterior distribution of θ is

p (θ|data) =
´ x(1)

−∞ p (θ, µ|data) dµ

= K2

(
1
θ

)n
exp

{
−nθ̂θ

}
where 0 < θ <∞

(4.3)

an Inverse Gamma distribution where

K2 =
nn−1

(
θ̂
)n−1

Γ (n− 1)
.

The conditional posterior distribution of θ given µ is given by

p (θ|µ, data) = p(θ,µ|data)
p(µ|data)

= K3

(
1
θ

)n+1
exp

{
−nθ (x̄− µ)

}
where 0 < θ <∞

(4.4)

an Inverse Gamma distribution where

K3 =
{n (x̄− µ)}n

Γ (n)
.

Also the conditional posterior distribution of µ given θ is

p (µ|θ, data) = p(θ,µ|data)
p(θ|data)

= n
θ exp

{
−nθ

(
x(1) − µ

)}
where −∞ < µ < x(1)

(4.5)

The following theorem can now easily be proved:

Theorem 4.1. The distribution of the generalized pivotal quantities Gµ and Gθ de�ned in Equations 2.2

and 2.3 are exactly the same as the posterior distributions p (µ|data) and p (θ|data) given in Equations

4.2 and 4.3.

Proof. The proof is given in Appendix B.
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5 The Predictive Distribution of a Future Sample One-sided

Upper Tolerance Limit

Consider a future sample ofm observations from the two-parameter exponential population: X1f , X2f , . . . , Xmf .
The future sample mean is de�ned as X̄f = 1

m

∑m
j=1Xjf . The smallest value in the sample is denoted

by µ̂f and θ̂f = X̄f − µ̂f . For given θ and µ the following distributions follow (see Equation 2.1):

µ̂f ∼ θ
χ̃2

2

2m
+ µ (5.1)

and

θ̂f ∼
χ̃2

2m−2

2m
θ (5.2)

where χ̃2
2 and χ̃2

2m−2 denote chi-square random variables with 2 and 2m− 2 degrees of freedom.

Therefore
Uf = µ̂f − k̃2θ̂f

is an upper future con�dence limit (tolerance limit) for

qp = µ− θ ln (1− p)

the p quantile of the two-parameter exponential distribution where k̃2 = Efp,α denotes the α quantile of

Efp =
χ̃2

2 + 2m ln (1− p)
χ̃2

2m−2

.

The predictive distribution of Uf can easily be obtained by simulation. From Equations 5.1 and 5.2 it
follows that

Uf |µ, θ ∼ θ
χ̃2
2

2m + µ− k̃2
χ̃2
2m−2

2m θ

∼ µ+ θ
2,

(
χ̃2

2 − k̃2χ̃
2
2m−2

) (5.3)

We are however interested in the unconditional predictive distribution of an upper future tolerance limit,
i.e., of Uf |data. By using either the generalized pivotal quantity approach or the Bayesian procedure it
follows using Equations 2.2 and 2.3 that

Uf |data ∼ µ̂0 −
θ̂0

χ2
2n−2

{
χ2

2 −
n

m

(
χ̃2

2 − k̃2χ̃
2
2m−2

)}
(5.4)

From Equation 5.4 it can be seen that the exact distribution of Uf will be quite complicated. An
approximation of the distribution can however be obtained by using the following Monte Carlo simulation
procedure:

1. Simulate χ2
2, χ̃

2
2, χ

2
2n−2 and χ̃2

2m−2 and substitute the simulated values in Equation 5.4.

2. Repeat (1) a large number of times, say l = 1000000 times.
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Although the exact distribution of Uf is di�cult to obtain analytically, the exact moments of Uf can be
derived.

The following theorem can now be proved:

Theorem 5.1. The exact mean and variance of Uf is given by

E (Uf |data) = µ̂0 −
θ̂0

(n− 2)

{
1− n

m

[
1− k̃2 (m− 1)

]}
(5.5)

and

V ar (Uf |data) =
θ̂2

0

(n− 2) (n− 3)

{
1 +

( n
m

)2 [
1 + k̃2

2 (m− 1)
]

+
1

(n− 2)

{
1− n

m

[
1− k̃2 (m− 1)

]}2
}

(5.6)

Proof. The proof is given in Appendix C.

6 Example

The following data is given in Grubbs (1971) as well as in Krishnamoorthy and Mathew (2009). The
failure mileages given in Table 6.1 �t a two-parameter exponential distribution.

Table 6.1: Failure Mileages of 19 Military Carriers
162 200 271 302 393 508 539 629 706 777
884 1008 1101 1182 1463 1603 1984 2355 2880

For this data, the estimates are µ̂ = x(1) = 162, θ̂ = 1
n

∑n
i=1

(
xi − x(1)

)
= x̄− x(1) = 835.21 and n = 19.

As mentioned in the introductory section the aim of this article is to obtain a control chart for a one-sided
upper tolerance limit in the case of the two-parameter exponential distribution. It was also mentioned
that control charts are based on future observations and Bayesian methods are very natural.

For m = 2, k2 = −70.6745 and by using 10, 000, 000 Monte Carlo simulations, the posterior predictive
distribution of Uf de�ned in Equation 5.4 is given in Figure 1. Figure 1 is therefore the distribution of
an upper future tolerance limit for the mileages of the next two military personal carriers that will fail
in service.

[Figure 1 about here.]

In Table 6.2 it is shown that the calculated means and variances using the simulation method or the
formulae do not di�er much.

Table 6.2: Mean and Variance of Uf
E (Uf |data) V ar (Uf |data)

Simulation 33554 1.2246× 109

Formulae 33565.867 1.2264× 109
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7 Control Chart for a Future One-sided Upper Tolerance Limit

It is well known that statistical quality control is actually implemented in two phases. In Phase I the
primary interest is to assess process stability. The practitioner must therefore be sure that the process
is in statistical control before control limits can be determined for online monitoring of the process in
Phase II.

By using the predictive distribution of Uf a Bayesian procedure will be developed to obtain a control chart
for a future one-sided upper tolerance limit. Assuming that the process remains stable, the predictive
distribution can be used the derive the distribution of the �run-length� and average �run-length�. From
Figure 1 it follows that a 99.73% upper control limit for Uf = µ̂f−k̃2θ̂f is 218550. Therefore the rejection
region of size β (β = 0.0027) for the predictive distribution is

β =

ˆ
R(β)

f (Uf |data) dUf

where R (β) represents those values of Uf that are larger than 218550.

The �run-length� is de�ned as the number of future Uf values (r) until the control chart signals for the
�rst time (Note that r does not include that Uf value when the control chart signals). Given µ and θ
and a stable Phase I process, the distribution of the �run-length� r is geometric with parameter

ψ (µ, θ) =

ˆ
R(β)

f (Uf |µ, θ) dUf

where f (Uf |µ, θ) is the distribution of Uf given that µ and θ are known. The values of µ and θ are
however unknown and the uncertainty of these parameter values are described by their joint posterior
distribution p (θ, µ|data) given in Equation 4.1.

By simulating µ and θ from p (θ, µ|data) the probability density function of f (Uf |µ, θ) as well as the
parameter ψ (µ, θ) can be obtained. This must be done for each future sample. In other words, for each
future sample µ and θ must �rst be simulated from p (θ, µ|data) and then ψ (µ, θ) calculated. Therefore,
by simulating all possible combinations of µ and θ from their joint posterior distribution a large number
of ψ (µ, θ) values can be obtained. Also, a large number of geometric distributions, i.e., a large number of
�run-length� distributions each with a di�erent parameter value (ψ (µ1, θ1) , ψ (µ2, θ2) , . . . , ψ (µm, θm))
can be obtained.

As mentioned the �run-length� r for given µ and θ is geometrically distributed with mean

E (r|µ, θ) =
1− ψ (µ, θ)

ψ (µ, θ)

and variance

V ar (r|µ, θ) =
1− ψ (µ, θ)

ψ2 (µ, θ)
.

The unconditional moments, E (r|data), E
(
r2|data

)
and V ar (r|data) can therefore be obtained by

simulation or numerical integration. For further details refer to Menzefricke (2002, 2007, 2010a,b).

In Figure 2 the predictive distribution of the �run-length� is displayed for the 99.73% upper control
limit. As mentioned, for given µ and θ the �run-length� r is geometric with parameter ψ (µ, θ). The
unconditional �run-length� as displayed in Figure 2 is therefore obtained using the Rao-Blackwell method,
i.e., the average of a large number of conditional �run-lengths�.

[Figure 2 about here.]
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De�ne ψ̄ (µ, θ) = 1
m

∑m
i=1 ψ (µi, θi). From Menzefricke (2002) it follows that if m→∞; then ψ̄ (µ, θ)→

0.0027 and the harmonic mean of r → (0.0027)
−1

= 370. From Figure 2 it can be seen that the harmonic
mean of r is 366.65, which is close to 370.

In Figure 3 the distribution of the average �run-length� is given.

[Figure 3 about here.]

For known µ and θ the expected �run-length� is 1
0.0027 = 370. If µ and θ are unknown and estimated

from the posterior distribution the expected �run-length� will usually be larger than 370, especially if
the sample size is small.

8 Conclusion

This paper develops a Bayesian control chart for monitoring an upper one-sided tolerance limit from the
two-parameter exponential distribution. In the Bayesian approach prior knowledge about the unknown
parameters is formally incorporated into the process of inference by assigning a prior distribution to the
parameters. The information contained in the prior is combined with the likelihood function to obtain
the posterior distribution. By using the posterior distribution the predictive distribution of an upper
one-sided tolerance limit for the two-parameter exponential can be obtained.

This paper has also shown that the use of the Je�reys' prior, posterior distributions of p (µ|data) and
p (θ|data) are exactly equal to the generalized pivotal quantities for µ and θ.

The theory and results described in this paper have been applied to the failure mileages for military
carriers analyzed by Grubbs (1971) and Krishnamoorthy and Mathew (2009). The example illustrates
the �exibility and unique features of the Bayesian simulation method for obtaining posterior distributions
and �run-lengths�. This article also illustrated that the harmonic mean resulted in a mean �run-length�
close to the 370 that is expected from a 99.73% upper control limit.
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Appendices

A Proof of Theorem 3.1

Let

I =

ˆ qp

µ

1

θ
exp

{
− (x− µ)

θ

}
dx.

Substitute (x−µ)
θ = z. Therefore x = θz + µ and dx = θdz

If x = µ it follows that z = 0 and if x = qp it follows that z =
(qp−µ)

θ .

Therefore

I =

ˆ (qp−µ)
θ

0

exp (−z) dz = p

which means that

[− exp (−z)]
(qp−µ)

θ
0 = p

and

− exp

(
− (qp − µ)

θ

)
+ 1 = p.

Therefore
qp = −θ ln (1− p) + µ

B Proof of Theorem 4.1

(a) The posterior distribution p (θ|data) is exactly the same as the distribution of the pivotal quantity

Gθ = 2nθ̂
χ2
2n−2

.

Proof:

Let Z ∼ χ2
2n−2

∴ f (z) = 1
2n−2Γ(n−1)z

n−2 exp
{
− 1

2z
}

We are interested in the distribution of θ = 2nθ̂
Z .

Therefore Z = 2nθ̂
θ and

∣∣dZ
dθ

∣∣ = 2nθ̂
Z .

From this it follows that

f (Gθ) = f (θ) = 1
2n−1Γ(n−1)

(
2nθ̂
θ

)n−2
2nθ̂
θ2 exp

{
−nθ̂θ

}
=

nn−1(θ̂)
n−1

Γ(n−1)

(
1
θ

)n
exp

{
−nθ̂θ

}
= p (θ|data)

See Equation 4.3.
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(b) The posterior distribution p (µ|data) is exactly the same as the distribution of the pivotal quantity

Gµ = µ̂0 − χ2
2

χ2
2n−2

θ̂0.

Proof:

Let F =
χ2
2/2

χ2
2n−2/(2n−2)

∼ F2,2n−2

∴ g (f) =
(

1 + 1
n−1f

)−n
where 0 < f <∞

We are interested in the distribution of µ = µ̂0 − 2θ̂0
2n−2F which means that F = (n−1)

θ̂0
(µ̂0 − µ) and∣∣∣dFdµ ∣∣∣ = (n−1)

θ̂0
.

Therefore

g (µ) =
{

1 + 1
θ̂0

(µ̂0 − µ)
}−n

n−1
θ̂0

= (n− 1) θ̂n−1
0

(
1

x̄−µ

)n
where −∞ < µ < µ̂0

= p (µ|data)

See Equation 4.2.

(c) The posterior distribution of p(µ|θ, data) is exactly the same as the distribution of the pivotal quantity

Gµ|θ = µ̂0 − χ2
2

2nθ (see Equation 2.1).

Proof:

Let Z̃ ∼ χ2
2 then

g (z̃) = 1
2 exp

{
− 1

2 z̃
}
.

Let µ = µ̂− z̃
2nθ, then z̃ = 2n

θ (µ̂0 − µ) and
∣∣∣ dz̃dµ ∣∣∣ = 2n

θ .

Therefore

g (µ|θ) = n
θ exp

{
−nθ (µ̂0 − µ)

}
−∞ < µ < µ̂0

= p (µ|θ, data)

See Equation 4.5.

C Proof of Theorem 5.1

Uf |data ∼ µ̂0 −
θ̂0

χ2
2n−2

{
χ2

2 −
n

m

(
χ̃2

2 − k̃2χ̃
2
2m−2

)}
χ2

2, χ̃
2
2, χ

2
2n−2 and χ̃2

2m−2 are all independently distributed. If expected values are taken with respect to
the chi-square distribution, it follows that

E
(
Uf |χ2

2n−2, data
)

= µ̂0 −
θ̂0

χ2
2n−2

{
2− n

m

[
2− k̃2 (2m− 2)

]}
12



and therefore

E (Uf |data) = µ̂0 − θ̂0
2n−4

{
2− n

m

[
2− k̃2 (2m− 2)

]}
= µ̂0 − θ̂0

(n−2)

{
1− n

m

[
1− k̃2 (m− 2)

]}
Also

V ar
(
Uf |χ2

2n−2, data
)

=
θ̂20

(χ2
2n−2)

2

{
4 +

(
n
m

)2 [
4 + k̃2

22 (2m− 2)
]}

= 4θ̂0

(χ2
2n−2)

2

{
1 +

(
n
m

)2 [
1 + k̃2

2 (m− 1)
]}

The unconditional variance can be obtained by making use of the fact that

V ar (Uf |data) = Eχ2
2n−2

[
V ar

(
Uf |χ2

2n−2, data
)]

+ V arχ2
2n−2

[
E
(
Uf |χ2

2n−2, data
)]

Now

E

[
1(

χ2
2n−2

)2
]

=
1

(2n− 4) (2n− 6)
=

1

4 (n− 2) (n− 3)

Therefore

Eχ2
2n−2

[
V ar

(
Uf |χ2

2n−2, data
)]

=
4θ̂0

(2n− 4) (2n− 6)

{
1 +

( n
m

)2 [
1 + k̃2

2 (m− 1)
]}

(C.1)

Also

V ar
(

1
χ2
2n−2

)
= E

[
1

(χ2
2n−2)

2

]
− E

[
1

χ2
2n−2

]2
= 1

(2n−4)(2n=6) −
1

(2n−4)2
= 1

4(n−2)2(n−3)

and therefore

V arχ2
2n−2

[
E
(
Uf |χ2

2n−2, data
)]

=
θ̂0

4 (n− 2)
2

(n− 3)

{
2− n

m

[
2− k̃2 (2m− 2)

]}2

(C.2)

From Equations C.1 and C.2 it follows that

V ar (Uf |data) =
θ̂20

(n−2)(n−3)

{
1 +

(
n
m

)2 [
1 + k̃2

2 (m− 1)
]}

+
θ̂20

(n−2)2(n−3)

{
1− k̃2 (m− 1)

}2

=
θ̂20

(n−2)(n−3)

{
1 +

(
n
m

)2 [
1 + k̃2

2 (m− 1)
]

+ 1
(n−2)

{
1− n

m

[
1− k̃2 (m− 1)

]}2
}
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Figures

Figure 1: Predictive Density of Uf for n = 19 and m = 2
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Figure 2: Predictive Distribution of the �Run-length� f (r|data) for n = 19 and m = 2
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Figure 3: Distribution of the Average �Run-length�
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