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Abstract

By using data that are the mileages for some military personnel carriers that failed in service given by
Grubbs (1971) and Krishnamoorthy and Mathew (2009) a Bayesian procedure is applied to obtain control
limits for the location and scale parameters, as well as for a one-sided upper tolerance limit in the case
of the two-parameter exponential distribution. A comparison between the assumptions of −∞ < µ <∞
and 0 < µ < ∞ are also made. An advantage of the upper tolerance limit is that it monitors the
location and scale parameter at the same time. By using Je�reys' non-informative prior, the predictive
distributions of future maximum likelihood estimators of the location and scale parameters are derived
analytically. The predictive distributions are used to determine the distribution of the �run-length� and
expected �run-length�. This paper illustrates the �exibility and unique features of the Bayesian simulation
method.

Keywords: Je�reys' prior, two-parameter exponential, Bayesian procedure, run-length, control chart

1 Introduction

In this section the same notation will be used as given in Krishnamoorthy and Mathew (2009) with the
exception that the location parameter can now take on values between −∞ and ∞, similarly as in some
literature, see for example Johnson and Kotz (1970).

Therefore the two-parameter exponential distribution has the probability density function

f (x;µ, θ) =
1

θ
exp

{
− (x− µ)

θ

}
x > µ, −∞ < µ <∞, θ > 0

where µ is the location parameter and θ the scale parameter.

As before, let X1, X2, . . . , Xn be a sample of n observations from the two-parameter exponential distri-
bution. The maximum likelihood estimators for µ and θ are given by

µ̂ = X(1)

and

θ̂ =
1

n

n∑
i=1

(
Xi −X(1)

)
= X̄ −X(1)

where X(1) is the minimum or the �rst order statistic of the sample. It is well known (see Johnson

and Kotz (1970); Lawless (1982); Krishnamoorthy and Mathew (2009)) that µ̂ and θ̂ are independently
distributed with

(µ̂− µ)

θ
∼ χ2

2

2n
and

θ̂

θ
∼
χ2

2n−2

2n
. (1.1)

Let µ̂0 and θ̂0 be observed values of µ̂ and θ̂ then it follows from Equation 1.1 that a generalized pivotal
quantity (GPQ) for µ is given by

Gµ = µ̂0 −
χ2

2

χ2
2n−2

θ̂0 (1.2)

and a GPQ for θ is given by
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Gθ =
2nθ̂0

χ2
2n−2

(1.3)

From a Bayesian perspective it will be shown that Gµ and Gθ are actually the posterior distributions of
µ and θ if the prior p (µ, θ) ∝ θ−1 is used.

2 Bayesian Procedure

In this section it will be shown that the Bayesian procedure is the same as the generalized variable
approach.

If a sample of n observations are drawn from the two-parameter exponential distribution, then the
likelihood function is given by

L (µ, θ|data) =

(
1

θ

)n
exp

{
−1

θ

n∑
i=1

(xi − µ)

}
.

As prior the Je�reys' prior
p (µ, θ) ∝ θ−1

will be used.

The joint posterior distribution of µ and θ is

p (θ, µ|data) ∝ p (µ, θ)L (µ, θ|data)

= K1

(
1
θ

)n+1
exp

{
−nθ (x̄− µ)

}
−∞ < µ < x(1), 0 < θ <∞

(2.1)

It can easily be shown that

K1 =
nn
(
θ̂
)n−1

Γ (n− 1)
where θ̂ = x̄− x(1).

The posterior distribution of µ is

p (µ|data) =
´∞

0
p (θ, µ|data) dθ

= (n− 1)
(
θ̂
)n−1 (

1
x̄−µ

)n
−∞ < µ < x(1)

(2.2)

and the posterior distribution of θ is

p (θ|data) =
´ x(1)

−∞ p (θ, µ|data) dµ

= K2

(
1
θ

)n
exp

{
−nθ̂θ

}
where 0 < θ <∞

(2.3)

an Inverse Gamma distribution where
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K2 =
nn−1

(
θ̂
)n−1

Γ (n− 1)
.

The conditional posterior distribution of θ given µ is given by

p (θ|µ, data) = p(θ,µ|data)
p(µ|data)

= K3

(
1
θ

)n+1
exp

{
−nθ (x̄− µ)

}
where 0 < θ <∞

(2.4)

an Inverse Gamma distribution where

K3 =
{n (x̄− µ)}n

Γ (n)
.

Also the conditional posterior distribution of µ given θ is

p (µ|θ, data) = p(θ,µ|data)
p(θ|data)

= n
θ exp

{
−nθ

(
x(1) − µ

)}
where −∞ < µ < x(1)

(2.5)

The following theorem can now easily be proved:

Theorem 2.1. The distribution of the generalized pivotal quantities Gµ and Gθ de�ned in Equations 1.2

and 1.3 are exactly the same as the posterior distributions p (µ|data) and p (θ|data) given in Equations

2.2 and 2.3.

Proof. The proof is given in Appendix A.

3 The Predictive Distributions of Future Sample Location and

Scale Maximum Likelihood Estimators, µ̂f and θ̂f

Consider a future sample ofm observations from the two-parameter exponential population: X1f , X2f , . . . , Xmf .
The future sample mean is de�ned as X̄f = 1

m

∑m
j=1Xjf . The smallest value in the sample is denoted

by µ̂f and θ̂f = X̄f − µ̂f . To obtain control charts for µ̂f and θ̂f their predictive distributions must
�rst be derived. If −∞ < µ < ∞, then the descriptive statistics, posterior distributions and predictive
distributions will be denoted by a tilde (~).

Theorem 3.1. The predictive distribution of a future sample location maximum likelihood estimator, µ̂f
is given by

f̃ (µ̂f |data) =


K̃∗
[

1
n(x̄−µ̂f )

]n
−∞ < µ̂f < x(1)

K̃∗
[

1

nθ̂+m(µ̂f−x(1))

]n
x(1) < µ̂f <∞

(3.1)

where

K̃∗ =
nn (n− 1)m

n+m

(
θ̂
)n−1

.
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Proof. The proof is given in Appendix B.

The reason why f̃ (µ̂f |data) (Equation 3.1) di�ers from f (µ̂f |data) is that it is assumed that 0 < µ <∞

which results in a posterior distribution of p (µ|data) = (n− 1)

{(
1
θ̂

)n−1

−
(

1
x̄

)n−1
}−1

(x̄− µ)
−n

, while

for Equation 3.1 it is assumed that −∞ < µ < ∞ and the posterior distribution for µ is therefore

p̃ (µ|data) ∝ (n− 1)
(
θ̂
)n−1

(x̄− µ)
−n

.

Theorem 3.2. The mean and variance fo µ̂f is given by

Ẽ (µ̂f |data) = x̄− mn−m− n
m (n− 2)

θ̂ (3.2)

and

˜V ar (µ̂f |data) =
n3 (n− 2) + (mn−m− n)

2

m2 (n− 1) (n− 3) (n− 2)
2

(
θ̂
)2

(3.3)

Proof. By deleting the term
(

1
x̄

)
from results from the previous report where 0 < µ < ∞ Equation 3.2

and Equation 3.3 follows.

Theorem 3.3. The predictive distribution of a future sample scale maximum likelihood estimator, θ̂f is

given by

f̃
(
θ̂f |data

)
=

Γ (m+ n− 2)mm−1
(
nθ̂
)n−1 (

θ̂f

)m−2

Γ (m− 1) Γ (n− 1)
(
mθ̂f + nθ̂

)m+n−2 0 < θ̂f <∞ (3.4)

Proof. The proof is given in Appendix C.

Corollary 3.4. θ̂f |data ∼ θ̂ nm
(m−1)
(n−1) F2m−2,2n−2.

Proof. The proof is given in Appendix D.

Theorem 3.5. The mean and variance of θ̂f is given by

Ẽ
(
θ̂f |data

)
=

(m− 1)

m

n

(n− 2)
θ̂ (3.5)

and

˜var
(
θ̂f |data

)
=

n2 (m− 1)

m2 (n− 2)
2

(n− 3)
(n+m− 3) θ̂2 (3.6)

Proof. By deleting the term
(

1
x̄

)
from results from the previous report where 0 < µ <∞, Equation 3.5

and Equation 3.6 follow.
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4 Example

The following data is given in Grubbs (1971) as well as in Krishnamoorthy and Mathew (2009). The
failure mileages given in Table 4.1 �t a two-parameter exponential distribution.

Table 4.1: Failure Mileages of 19 Military Carriers
162 200 271 302 393 508 539 629 706 777
884 1008 1101 1182 1463 1603 1984 2355 2880

For this data, the maximum likelihood estimates are µ̂ = x(1) = 162, θ̂ = 1
n

∑n
i=1

(
xi − x(1)

)
= x̄−x(1) =

835.21 and n = 19.

As mentioned in the introductory section, the aim of this article is to obtain control charts for location
and scale maximum likelihood estimates as well as for a one-sided upper tolerance limit.

4.1 The Predictive Distribution of µ̂f (−∞ < µ <∞)

By using Equation 3.1 the predictive distribution f̃ (µ̂f |data) for m = 19 future failure mileage data is
illustrated in Figure 4.1.

Figure 4.1: Distribution of µ̂f , n = 19, m = 19

˜mean (µ̂f ) = ˜median (µ̂f ) = ˜mode (µ̂f ) = 162, ˜var (µ̂f ) = 5129.2
˜95% interval (µ̂f ) = (11.2; 312.8)

˜99.73% interval (µ̂f ) = (−154.85; 477.36)
˜96.08% interval (µ̂f ) = (−2; 326)

6



For −∞ < µ <∞, n = 19, m = 19, the predictive distribution p̃ (µ̂f |data) is symmetrical. ˜mean (µ̂f ) =
˜median (µ̂f ) = ˜mode (µ̂f ) = 162. ˜Mode (µ̂f ) for −∞ < µ <∞ is exactly the same as that for 0 < µ <∞.

A further comparison of Figure 4.1 and results from previous report shows that ˜var (µ̂f ) = 5129.2 is
somewhat larger that var (µ̂f ) = 3888.7, when 0 < µ < ∞. Also the predictive intervals are somewhat

wider. A dissatisfactory aspect for −∞ < µ < ∞ is that the ˜99.73% interval (µ̂f ) = (−154.85; 477.36),
i.e., contains negative values.

In Table 4.2 descriptive statistics are given for the run-length and expected run-length.

Table 4.2: Descriptive Statistics for the Run-length and Expected Run-length in the case of µ̂f ; −∞ <
µ <∞ and β = 0.039 for n = 19 and m = 19

Descriptive Statistics
f (r|data) Expected Run-length
Equal Tail Equal Tail

˜mean 367.84 373.34
˜median 44.50 69.93
˜var 6.663× 107 1.414× 108

˜95% interval (0; 740.50) (0; 724.64)

A comparison of Table 4.2 with results from previous report shows that if −∞ < µ < ∞ the expected
(mean) run-length ≈ 370 if β = 0.0392 while this is the case if β = 0.0258 for 0 < µ <∞. Also the 95%
intervals are somewhat shorter for −∞ < µ <∞.

4.2 A Comparison of the Predictive Distributions for θ̂f

In Figure 4.2 comparisons are made between

f̃
(
θ̂f |data

)
=

Γ (m+ n− 2)mm−1
(
nθ̂
)n−1 (

θ̂f

)m−2

Γ (m− 1) Γ (n− 1)
(
mθ̂f + nθ̂

)m+n−2 0 < θ̂f <∞

and

f
(
θ̂f |data

)
= mm−1nn−1 Γ (m+ n− 2)

Γ (m− 1) Γ (n− 1)

{(
1

θ̂

)n−1

−
(

1

x̄

)n−1
}−1 (

θ̂f

)m−2

×


(

1

mθ̂f + nθ̂

)m+n−2

−

(
1

mθ̂f + nx̄

)m+n−2
 0 < θ̂f <∞.

As mentioned f̃
(
θ̂f |data

)
denotes the predictive density function if −∞ < µ < ∞ and f

(
θ̂f |data

)
denotes the predictive density function if 0 < µ <∞.
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Figure 4.2: f
(
θ̂f |data

)
, n = 19, m = 19

In Table 4.3 descriptive statistics are given for f̃
(
θ̂f |data

)
and f

(
θ̂f

)
.

Table 4.3: Descriptive Statistics of f̃
(
θ̂f |data

)
and f

(
θ̂f |data

)
Descriptive Statistics f̃

(
θ̂f |data

)
f
(
θ̂f |data

)
Mean

(
θ̂f

)
884.34 876.98

Median
(
θ̂f

)
835.2 829.1

Mode
(
θ̂f

)
747.3 743.3

V ar
(
θ̂f

)
95037 91991

95% Equal − tail Interval
(
θ̂f

) (430; 1622) (428; 1601)
Length=1192 Length=1173

95% HPD Interval
(
θ̂f

)
(370.8; 1500.5) (369.2; 1482.6)
Length=1129.7 Length=1113.4

Als, the exact means and variances are given by:

Ẽ
(
θ̂f |data

)
=
n (m− 1)

m (n− 2)
θ̂ = 884.34,

˜V ar
(
θ̂f

)
=

n2 (m− 1)

m2 (n− 2)
2

(n− 3)
(n+m− 3) θ̂2 = 95042,
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E
(
θ̂f |data

)
=
n (m− 1)

m (n− 2)
K̃L = 976.98,

V ar
(
θ̂f |data

)
=
n2 (m− 1)

m (n− 1)

{
K̃M

n− 2
− m− 1

m (n− 1)
K̃2L2

}
= 91991

where

K̃ = (n− 1)

{(
1

θ̂

)n−1

−
(

1

x̄

)n−1
}−1

,

L =
1

n− 2

{(
1

θ̂

)n−2

−
(

1

x̄

)n−2
}

and

M =
1

n− 3

{(
1

θ̂

)n−3

−
(

1

x̄

)n−3
}
.

From Figure 4.2 and Table 4.3 it can be seen that f̃
(
θ̂f |data

)
and f

(
θ̂f |data

)
are for all practical

purposes the same. Also the exact means and variances are very much the same as the numerical values.
It therefore seems that whether the assumption is that −∞ < µ <∞ or that 0 < µ <∞ does not play
a big role in the prediction of θ̂f .

In Table 4.4 comparisons are made between the run-lengths and expected run-lengths in the case of θ̂f
for −∞ < µ <∞ and 0 < µ <∞.

Table 4.4: Descriptive Statistics for the Run-length and Expected Run-lengths in the case of θ̂f , −∞ <
µ <∞, 0 < µ <∞ and β = 0.018

Descriptive Statistics
−∞ < µ <∞ 0 < µ <∞

f (r|data) Expected Run-Length f (r|data) Expected Run-Length
Equal Tail Equal Tail Equal Tail Equal Tail

Mean 369.29 370.42 375.25 375.25
Median 122.8 229.28 127.4 238.38
Variance 3.884× 105 1.2572× 105 3.9515× 105 1.2698× 105

95% Interval (0; 1586) (7.423; 1089.7) (0; 1602.5) (7.809; 1096.7)

From Table 4.4 it can be seen that the corresponding statistics for −∞ < µ <∞ and 0 < µ <∞ are for
all practical purposes the same. So with respect to θ̂f it does not really matter whether it is assumed
that µis positive or not.
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5 Phase I Control Chart for the Scale Parameter in the Case

of the Two-parameter Exponential Distribution

Statistical quality control is implemented in two phases. In Phase I the primary interest is to assess
process statbility. Phase I is the so-called retrospective phase and Phase II the prospective or monitoring
phase. The construction of Phase I control charts should be considered as a multiple testing problem.
The distribution of a set of dependent variables (ratios of chi-square random variables) will therefore
be used to calculate the control limits so that the false alarm probability (FAP) is not larger than
FAP0 = 0.05. To obtain control limits in Phase I, more than one sample is needed. Therefore in the
example that follows there will be m = 5 samples for a subgroup each of size n = 10.

Example 5.1

The data in Table 5.1 are simulated data obtaind from the following two-parameter exponential distri-
bution:

f (xij ; θ, µ) =
1

θ
exp

{
−xij − µi

θ

}
, i = 1, 2, . . . ,m, j = 1, 2, . . . , n; xij > µi

θ = 8; µi = 2i; m = 5; n = 10.

Table 5.1: Simulated Data for the Two-parameter Exponential Distribution
µi

2 4 6 8 10

3.6393 18.7809 9.3759 10.7846 16.5907

2.7916 4.2388 32.6582 35.5781 17.7079

18.5094 4.3502 7.3084 18.2721 12.1376

2.749 9.7827 6.5463 32.6032 11.8333

5.6664 5.7823 9.1002 26.6535 23.4186

20.6199 19.6218 8.2193 9.5539 15.7106

12.2267 10.9065 8.3750 10.9127 16.4669

6.8282 4.7042 13.4873 17.1883 13.4918

2.3474 5.8636 9.3791 8.4085 12.7471

2.2859 4.3308 20.1200 34.9469 12.2616

From the simulated data in Table 5.1 we have

θ̂i· = X̄i· −X(1,i) =
[

5.4780 4.5974 5.9107 12.0817 34.023
]
,

m∑
i=1

θ̂i· = 31.4701

and

θ̂ =
1

m

m∑
i=1

θ̂i· = 6.2940.
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It is well known that θ̂i ∼ θ
2nχ

2
2n−2 = θ

2nYi and therefore
∑m
i=1 θ̂i ∼

θ
2n

∑m
i=1 Yi.

Let

Z1 =
θ̂i∑m
i=1 θ̂i

=
θ

2nYi
θ

2n

∑m
i=1 Yi

=
Yi∑m
i=1 Yi

i = 1, 2, . . . ,m

where
Yi ∼ χ2

2n−2.

For further details see also Human, Chakraborti, and Smit (2010).

To obtain a lower control limit for the data in Table 5.1, the distribution of Zmin = min (Z1, Z2, . . . , Zm)
must be obtained.

Figure 5.1: Distribution of Zmin = min (Z1, Z2, . . . , Zm), 100 000 simulations

The distribution of Zmin obtained from 100 000 simulations is illustrated in Figure 5.1. The value
Z0.05 = 0.0844 is calculated such that the FAP is at a level of 0.05. The lower control limit is then
determined as

LCL = Z0.05

m∑
i=1

θ̂i = (0.0844)(31.4701) = 2.656.

Since θ̂i > 2.656 (i = 1, 2, . . . ,m) it can be concluded that the scale parameter is under statistical control.
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6 Lower Control Limit for the Scale Parameter in Phase II

In the �rst part of this section, the lower control limit in a Phase II setting will be derived using the
Bayesian predictive distribution.

The following theorem can easily be proved:

Theorem 6.1. For the two-parameter exponential distribution

f (xij ; θ, µi) =

(
1

θ

)
exp

{
−1

θ
(xij − µi)

}
i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and xij > µi

the posterior distribution of the parameter θ given the data is given by

p (θ|data) =

(
nθ̂
)m(n−1)

Γ (m (n− 1))

(
1

θ

)m(n−1)+1

exp

(
−nθ̂
θ

)
θ > 0

an Inverse Gamma Distribution.

Proof. The proof is given in Appendix E.

Theorem 6.2. Let θ̂f be the maximum likelihood estimator of the scale parameter in a future sample of

n observations, then the predictive distribution fo θ̂f is

f
(
θ̂f |data

)
=

Γ [m (n− 1) + n− 1]

Γ (n− 1) Γ [m (n− 1)]

(
θ̂f

)n−2

(
θ̂f + θ̂

)m(n−1)+n−1
θ̂f > 0

which means that

θ̂f |data ∼
θ̂

m
F2(n−1);2m(n−1)

where

θ̂ =

m∑
i=1

θ̂i.

Proof. The proof is given in Appendix F.

At β = 0.0027 the lower control limit is obtained as θ̂
mF2(n−1);2m(n−1) (0.0027) = 31.4701

5 (0.29945) =
1.8847 for m = 5 and n = 10.

Assuming that the process remains stable, the predictive distribution for θ̂f can als be used to derive
the distribution of the run-length, that is the number of samples until the control chart signals for the
�rst time.

The resulting region of size β using the predictive distribution for the determination of the run-lenght is
de�ned as

β =

ˆ
R(β)

f
(
θ̂f |data

)
dθ̂f
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where
R (β) = (0; 1.8847)

is the lower one-sided control interval.

Given θ and a stable process, the distribution of the run-length r is Geometric with parameter

ψ (θ) =

ˆ
R(β)

f
(
θ̂f |θ

)
dθ̂f

where f
(
θ̂|θ
)
is the distribution of a future sample scale parameter estimator given θ.

The value of the parameter θ is however unknown and its uncertainty is described by the posterior
distribution p (θ|data).

The following theorem can also be proved.

Theorem 6.3. For given θ the parameter of the Geometric distribution is

ψ (θ) = ψ
(
χ2

2m(n−1)

)

for given χ2
2m(n−1) which means that the parameter is only dependent on χ2

2m(n−1) and not on θ.

Proof. The proof is given in Appendix G.

As mentioned, by simulating θ from p (θ|data) the probability density function of f
(
θ̂f |θ

)
as well as the

parameter ψ (θ) can be obtained. This must be done for each future sample. Therefore, by simulating a
large number of θ values from the posterior distribution a large number of ψ (θ) values can be obtained.

A large number of Geometric and run-length distributions with di�erent parameter values (ψ (θ1) , ψ (θ2) , . . . , ψ (θl))
will therefore be available. The unconditional run-length distribution is obtained by using the Rao-
Blackweel method, i.e., the average of the conditional run-length distributions.

In Table 6.1 results for the run-length at β = 0.0027 for n = 10 and di�erent values for m are presented
for the lower control limit of the scale parameter estimator.
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Table 6.1: Two Parameter Exponential Run Lengths Results

n m mean (ARL) median (ARL) Mean (PDF) Median (PDF)
One-sided Two-sided

Low High Low High

10 5 1040.878616 561.9041434 1016.107825 365 120.668063 3285.604745 90.53140623 4875.25148
10 6 859.2946037 528.043143 850.6496099 340 132.1636771 2633.779211 103.814474 3585.574629
10 7 752.7840665 502.7053642 747.964747 330 137.1365507 2163.362738 107.5044166 2913.68755
10 8 692.3117213 478.8131128 688.5627995 320 147.7899272 1904.506951 121.7607631 2547.589774
10 9 644.1233737 467.3792855 640.6357323 310 149.1918895 1707.552491 119.5874038 2198.554651
10 10 616.4008914 456.271994 613.0915372 305 154.9653041 1581.526121 128.5788067 2094.950512
10 11 582.5441167 445.4805119 579.3980237 295 159.4756421 1466.351811 133.3858464 1874.789144
10 12 563.8471571 445.4805119 560.8517002 295 165.742153 1340.987775 139.7090749 1681.424117
10 13 542.293566 440.1999559 539.3968128 290 170.6404787 1264.446813 145.0341248 1534.216048
10 14 523.2584573 429.8629367 520.4260911 285 170.6404787 1193.031076 145.0341248 1466.351811
10 15 514.4424077 429.8629367 511.6810866 285 177.4499555 1142.597024 149.1918895 1381.311827
10 16 498.7108368 424.804032 496.0401877 285 179.2039115 1064.049573 150.6101839 1283.085571
10 17 493.4525335 419.816607 490.7979663 280 179.2039115 1064.049573 154.9653041 1264.446813
10 18 491.9807528 424.804032 489.3787352 285 188.2980341 1019.999561 164.1476967 1228.123456
10 19 479.4053832 414.8994965 476.8198625 280 184.5942927 978.1005367 159.4756421 1175.931545
10 20 470.1638992 410.0515567 467.6270667 275 188.2980341 951.3034035 164.1476967 1110.378304
10 50 408.6804318 386.8108266 406.4862335 265 235.6714776 654.3843849 214.7137467 726.2252763
10 100 389.0488816 377.9609703 386.9577637 260 267.625879 548.0561023 248.3896595 583.4710484
10 500 374.3715597 373.6276458 372.3573508 255 318.8260483 440.1999559 308.3784626 450.8374316
10 1000 372.9795051 373.6276458 370.9756458 255 333.4301277 414.8994965 326.0292806 424.804032
10 5000 371.9360097 373.6276458 369.9394557 255 352.8387861 391.3293518 348.8501358 395.9116345
10 10000 371.7307984 373.6276458 369.7352037 255 356.8826129 386.8108266 356.8826129 386.8108266

mean(ARL) and median(ARL) refer to results obtained from the expected run-length while mean(PDF) and median(PDF) refer to results obtained from the
probability density function of the run-length.
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From Table 6.1 it can be seen that as the number of samples increase (larger m) the mean and median
run-lengths converge to the expected run-length of 370.

Further de�ne ψ̄ (θ) = 1
l

∑l
i=1 ψ (θi). From Menzefricke (2002) it is known that as l →∞, ψ̄ (θ)→ β =

0.0027 and the harmonic mean of the unconditional run-length will be
(

1
β

)
= 1

0.0027 = 370. Therefore

it does not matter how small m and n is, the harmonic mean of the run-length will always be 1
β if

l→∞. In the case of the simulated example the mean run-length is 1040.88 and the median run-length
561.90. The reason for these large values is the uncertainty in the parameter estimate because of the
small sample size and number of samples (n = 10 and m = 5). β however can easily be adjusted to get
a mean run-length of 370.

7 A Comparison of the Predictive Distributions and Control

Charts for a One-sided Upper Tolerance Limit, Uf

A future sample tolerance limit is de�ned as

Uf = µ̂f − k̃2θ̂f where µ̂f > µ and θ̂f > 0.

Also

f (µ̂f |µ, θ) =
(m
θ

)
exp

{
−m
θ

(µ̂f − µ)
}
µ̂f > µ

which means that

f
(
Uf |µ, θ, θ̂f

)
=
(m
θ

)
exp

{
−m
θ

[
Uf −

(
µ− k̃2θ̂f

)]}
Uf > µ− k̃2θ̂f (7.1)

A comparison will be made between f (Uf |data) and f̃ (Uf |data). The di�erence in the simulation
procedure for these two density functions is that in the case of f (Uf |data) it is assumed that 0 < µ <∞

which results in a posterior distribution of p (µ|data) = (n− 1)

{(
1
θ̂

)n−1

−
(

1
x̄

)n−1
}−1

(x̄− µ)
−n

while

for f̃ (Uf |data) it is assumed that −∞ < µ <∞ and the posterior distribution for µ is then p̃ (µ|data) =

(n− 1)
(
θ̂
)n−1

(x̄− µ)
−n

.

In the following �gure comparisons are made between f (Uf |data) and f̃ (Uf |data).
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Figure 7.1: Predictive Densities of f (Uf |data) and f̃ (Uf |data)

The descriptive statistics obtained from Figure 7.1 are presented in Table 7.1.

Table 7.1: Descriptive Statistics of and f (Uf |data) and f̃ (Uf |data)

Descriptive Statistics f (Uf |data) f̃ (Uf |data)

Mean (Uf ) 3394.7 3406.6
Median (Uf ) 3211.5 3225.8

Mode
(
Ûf

)
2900 2907

V ar
(
Ûf

)
1.2317× 106 1.2694× 106

95% Equal-tail Interval (1736.5; 6027) (1738; 6106)
99.73% Equal-tail Interval (1249.05; 7973) (1249.9; 8620)

Also the exact means and variances for f (Uf |data) are

E (Uf |data) = x̄+ K̃L (aH − 1) = 3394.8

and

V ar (Uf |data) =
n2

m2 (n− 1) (n− 2)

{
J +

H2

n− 1

}
K̃M + (1− aH)

2
{
K̃M − K̃2L2

}
= 1.2439× 106
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where
a =

n

m (n− 1)
,

H = 1− k̃2 (m− 1) ,

J = 1 + k̃2
2 (m− 1)

and K̃, L and M de�ned as before.

The exact means and variances for f̃ (Uf |data) are

Ẽ (Uf |data) = x̄+
n− 1

n− 2
(aH − 1) θ̂ = 3415.0

and

˜V ar (Uf |data) =
1

(n− 2) (n− 3)

{
n2

m2

(
J +

H2

n− 1

)
+ (1− aH)

2 n− 1

n− 2

}(
θ̂
)2

= 1.2911× 106.

Ẽ (Uf |data) and ˜V ar (Uf |data) are derived from E (Uf |data) and V ar (Uf |data) by deleting the term(
1
x̄

)
in K̃, L and M .

It seems that the predictive intervals for f̃ (Uf |data) are somewhat wider than in the case of f (Uf |data).

In Table 7.2 comparisons are made between the run-lengths and expected run-lengths in the case of Uf
for −∞ < µ <∞ and 0 < µ <∞.

Table 7.2: Descriptive Statistics for the Run-lengths and Expected Run-lengths in the Case of Uf ;
−∞ < µ <∞; 0 < µ <∞and β = 0.018

Descriptive Statistics
−∞ < µ <∞ 0 < µ <∞

f (r|data) Expected Run-Length f (r|data) Expected Run-Length
Equal Tail Equal Tail Equal Tail Equal Tail

Mean 444.95 444.95 418.68 419.68
Median 136.5 258.12 132.1 248.03
Variance 7.6243× 105 2.8273× 105 5.8236× 105 2.0351× 105

95% Interval (0; 1892.4) (0; 1803.6)

It is clear from Table 10.1 that the corresponding statistics do not di�er much. The mean, median and
variance and 95% interval are however somewhat larger for −∞ < µ <∞.

8 Conclusion

This paper develops a Bayesian control chart for monitoring the scale parameter, location parameter
and upper tolerance limit of a two-parameter exponential distribution. In the Bayesian approach prior
knowledge about the unknown parameters is formally incorporated into the process of inference by
assigning a prior distribution to the parameters. The information contained in the prior is combined
with the likelihood function to obtain the posterior distribution. By using the posterior distribution the
predictive distributions of µ̂f , θ̂f and Uf can be obtained.

The theory and results described in this paper have been applied to the failure mileages for military
carriers analyzed by Grubbs (1971) and Krishnamoorthy and Mathew (2009). The example illustrates
the �exibility and unique features of the Bayesian simulation method for obtaining posterior distributions
and �run-lengths� for µ̂f , θ̂f and Uf .
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Mathematical Appendices

A Proof of Theorem 2.1

(a) The posterior distribution p (θ|data) is the same as the distribution of the pivotal quantityGθ = 2nθ̂
χ2
2n−2

.

Proof:

Let Z ∼ χ2
2n−2

∴ f (z) = 1
2n−2Γ(n−1)z

n−2 exp
{
− 1

2z
}

We are interested in the distribution of θ = 2nθ̂
Z .

Therefore Z = 2nθ̂
θ and

∣∣dZ
dθ

∣∣ = 2nθ̂
Z .

From this it follows that

f (Gθ) = f (θ) = 1
2n−1Γ(n−1)

(
2nθ̂
θ

)n−2
2nθ̂
θ2 exp

{
−nθ̂θ

}
=

nn−1(θ̂)
n−1

Γ(n−1)

(
1
θ

)n
exp

{
−nθ̂θ

}
= p (θ|data)

See Equation 2.3.

(b) The posterior distribution p (µ|data) is the same as the distribution of the pivotal quantity Gµ =

µ̂− χ2
2

χ2
2n−2

θ̂.

Proof:

Let F =
χ2
2/2

χ2
2n−2/(2n−2)

∼ F2,2n−2

∴ g (f) =
(

1 + 1
n−1f

)−n
where 0 < f <∞

We are interested in the distribution of µ = µ̂0 − 2θ̂
2n−2F which means that F = (n−1)

θ̂
(µ̂− µ) and∣∣∣dFdµ ∣∣∣ = (n−1)

θ̂
.

Therefore

g (µ) =
{

1 + 1
θ̂

(µ̂0 − µ)
}−n

n−1
θ̂

= (n− 1) θ̂n−1
(

1
x̄−µ

)n
where −∞ < µ < µ̂

= p (µ|data)

See Equation 2.2.

(c) The posterior distribution of p(µ|θ, data) is the same as the distribution of the pivotal quantity

Gµ|θ = µ̂− χ2
2

2nθ (see Equation 1.1).
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Proof:

Let Z̃ ∼ χ2
2 then

g (z̃) = 1
2 exp

{
− 1

2 z̃
}
.

Let µ = µ̂− z̃
2nθ, then z̃ = 2n

θ (µ̂− µ) and
∣∣∣ dz̃dµ ∣∣∣ = 2n

θ .

Therefore

g (µ|θ) = n
θ exp

{
−nθ (µ̂− µ)

}
−∞ < µ < µ̂

= p (µ|θ, data)

See Equation 2.5.

B Proof of Theorem 3.1

As before
f (µ̂f |µ, θ) =

(m
θ

)
exp

{
−m
θ

(µ̂f − µ)
}

µ̂f > µ

and therefore

f̃ (µ̂f |µ, data) =

ˆ ∞
0

f (µ̂f |µ, θ) p̃ (θ|µ, data) dθ.

Since

p̃ (θ|µ, data) =
{n (x̄− µ)}n

Γ (n)

(
1

θ

)n+1

exp
{
−n
θ

(x̄− µ)
}

it follows that

f̃ (µ̂f |µ, data) =
nn+1 (x̄− µ)

n
m

[m (µ̂f − µ) + n (x̄− µ)]
n+1 µ̂f > µ.

For −∞ < µ < x(1),

p̃ (µ|data) = (n− 1)
(
θ̂
)n−1

(
1

x̄− µ

)n

and

f̃ (µ̂f , µ|data) = f̃ (µ̂f |µ, data) p̃ (µ|data)

=
nn+1m(n−1)(θ̂)

n−1

[m(µ̂f−µ)+n(x̄−µ)]n+1

.

Therefore
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f (µ̂f |data) =
´ µ̂f
−∞ f (µ̂f , µ|data) dµ −∞ < µ̂f < x(1)

=
´ x(1)

−∞ f (µ̂f , µ|data) dµ x(1) < µ̂ <∞

= K̃∗
[

1
n(x̄−µ̂f )

]n
−∞ < µ̂f < x(1)

= K̃∗
[

1

nθ̂+m(µ̂f−x(1))

]n
x(1) < µ̂f <∞

where

K̃∗ =
nn (n− 1)m

(n+m)

(
θ̂
)n−1

.

C Proof of Theorem 3.3

From Equation 1.1 it follows that

θ̂f |θ ∼
χ2

2m−2

2m
θ

which means that

f
(
θ̂f |θ

)
=
(m
θ

)m−1

(
θ̂f

)m−2

exp
(
−mθ θ̂f

)
Γ (m− 1)

0 < θ̂f <∞ (C.1)

The posterior distribution of θ (Equation 2.3) is

p̃ (θ|data) =

(
nθ̂
)n−1

Γ (n− 1)

(
1

θ

)n
exp

(
−n
θ

)
0 < θ <∞.

Therefore

f̃
(
θ̂f |data

)
=

´∞
0
f
(
θ̂f |θ

)
˜p (θ|data) dθ

= mm−1

Γ(m−1)

(nθ̂)
n−1

Γ(n−1)

(
θ̂f

)m−2 ´∞
0

(
1
θ

)m+n−1
exp

{
− 1
θ

(
mθ̂f + nθ̂

)}
dθ

=
Γ(m+n−2)mm−1(nθ̂)

n−1
(θ̂f)

m−2

Γ(m−1)Γ(n−1)(mθ̂f+nθ̂)
m+n−2 0 < θ̂f <∞.

D Proof of Corollary 3.4

θ̂f |θ ∼
χ2

2m−2

2m
θ

and

θ|data ∼ θ̂ 2n

χ2
2n−2

.
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Therefore

θ̂f |data ∼
χ2

2m−2

2m

2n

χ2
2n−2

θ̂,

1

θ̂

2m

2n

2n− 2

2m− 2
θ̂f ∼ F2m−2;2n−2

and

θ̂f ∼ θ̂
n

m

(m− 1)

(n− 1)
F2(m−1);2(n−1).

E Proof of Theorem 6.1

Let

θ̂ =

m∑
i=1

θ̂i.

As mentioned in Section 6 (see also Krishnamoorthy and Mathew (2009)) that it is well known that

θ̂i ∼
θ

2n
χ2

2(n−1)

which means that

θ̂ ∼ θ

2n
χ2

2m(n−1).

Therefore

f
(
θ̂|θ
)

=
(n
θ

)m(n−1)

(
θ̂
)m(n−1)−1

exp
(
−nθ̂θ

)
Γ [m (n− 1)]

= L
(
θ|θ̂
)

i.e, the likelihood function.

As before we will use as prior p (θ) ∝ θ−1.

The posterior distribution

p
(
θ|θ̂
)

= p (θ|data) ∝ L
(
θ|θ̂
)
p (θ)

=
(nθ̂)

m(n−1)

Γ[m(n−1)]

(
1
θ

)m(n−1)+1
exp

(
−nθ̂θ

)

An Inverse Gamma distribution.
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F Proof of Theorem 6.2

θ̂f |θ ∼
θ

2n
χ2

2(n−1).

Therefore

f
(
θ̂f |data

)
=

´∞
0
f
(
θ̂f |θ

)
p (θ|data) dθ

=
´∞

0

(
n
θ

)n−1 (θ̂f)
n−2

exp

(
−
nθ̂f
θ

)
Γ(n−1) ×

(nθ̂)
m(n−1)

Γ[m(n−1)]

(
1
θ

)m(n−1)+1
exp

(
−nθ̂θ

)
dθ

=
(n)n−1(θ̂f)

n−2
(nθ̂)

m(n−1)

Γ(n−1)Γ[m(n−1)]

´∞
0

(
1
θ

)m(n−1)+n
exp

{
−nθ

[
θ̂f + θ̂

]}
dθ

=
Γ[m(n−1)+n−1](θ̂)

m(n−1)

Γ(n−1)Γ[m(n−1)]

(θ̂f)
n−2

(θ̂f+θ̂)
m(n−1)+n−1 θ̂f > 0

From this it follows that

θ̂f |data ∼
θ̂

m
F2(n−1);2m(n−1)

where

θ̂ =

m∑
i=1

θ̂i.

G Proof of Theorem 6.3

For given θ

ψ (θ) = p
(
θ̂f ≤ θ̂

mF2(n−1);2m(n−1) (β)
)

= p
(
θ

2nχ
2
2(n−1) ≤

θ̂
mF2(n−1);2m(n−1) (β)

)
given θ

= p

(
2nθ̂

χ2
2m(n−1)

χ2
2(n−1)

2n ≤ θ̂
mF2(n−1);2m(n−1) (β)

)
given χ2

2m(n−1)

= p

(
χ2

2(n−1) ≤
χ2
2m(n−1)

m F2(n−1);2m(n−1) (β)

)
given χ2

2m(n−1)

= ψ
(
χ2

2m(n−1)

)
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