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Abstract

The piecewise exponential model (PEXM) is one of the most popular and useful models in reliability
and survival analysis.

The PEXM has been widely used to model time to event data in di�erent contexts, such as in reliability
engineering (Kim and Proschan (1991) and Gamerman (1994)) clinical situations such as kidney infections
(Sahu, Dey, Aslanidu, and Sinha (1997), heart transplant data (Aitkin, Laird, and Francis (1983)),
hospital mortality rate data (Clark and Ryan (2002)), economics (Bastos and Gamerman (2006)) and
cancer studies including leukemia (Breslow (1974)). For further details see Demarqui, Loschi, Dey, and
Colosimo (2012).

The PEXM assumes that times between failure are independent and exponentially distributed, but the
mean is allowed to either increase or decrease with each failure. It can also be an appropriate model for
repairable systems. According to Arab, Rigdon, and Basu (2012) there has been an increasing interest in
developing Bayesian methods for repairable systems, due to the �exibility of these methods in accounting
for parameter uncertainty (see for example Hulting and Robinson (1994), Pievatolo and Ruggeri (2004),
Hamada, Wilson, Reese, and Martz (2008), Pan and Rigdon (2009) and Reese, Wilson, Guo, Hamada,
and Johnson (2011)). In this report an objective Bayesian procedure will be applied for analyzing times
between failures from multiple repairable systems.

Keywords: piecewise exponential, Bayes, Je�reys' prior, control charts

1 The Piecewise Exponential Model

The model in its simplest form can be written as

f (xj |µδ) =

(
δ

µ
jδ−1

)−1
exp

− xj(
δ
µj

δ−1
)
 xj > 0.

The piecewise exponential model therefore assumes that the times between failures, X1, X2, . . . , XJ are
independent exponential random variables with

E (Xj) =
δ

µ
jδ−1

where δ > 0 and µ > 0.

For example if δ = 0.71 and µ = 0.0029, then the expected time between the 9th and 10th failure is

E (X10) =
0.71

0.0029
100.71−1 = 125.56.

and the time between the 27th and 28th failure is

E (X28) =
0.71

0.0029
280.71−1 = 93.15.

In the PEXP model, µ is a scale parameter and δ is a shape parameter.
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2 The Piecewise Exponential Model for Multiple Repairable
Systems

Using the same notation as in Arab et al. (2012), let xij denotes the time between failures (j − 1) and j

on system i for j = 1, 2, . . . , ni and i = 1, 2, . . . , k. The 0th failure occurs at time 0. Also let N =
∑k
i=1 ni

denotes the total number of failures. Finally let xi = [xi1,xi2, . . . , xi,ni ]
′
denote the times between failures

for the ith system.

As in Arab et al. (2012) three cases for multiple systems will be considered.

3 Model 1: Identical Systems

Assume that all k systems are identical and that ni failures on the ith system are observed. In other
words µ1 = µ2 = · · · = µk = µ and δ1 = δ2 = · · · = δk = δ. Since failures on separate systems are
independent the likelihood function can be written as

L (δ, µ|x1, x2, . . . , xk) = L (δ, µ|data)

=
∏k
i=1

{∏ni
j=1

(
δ
µj

δ−1
)−1

exp

[
− xij

δ
µ j
δ−1

]}

=
(
δ
µ

)−N {∏k
i=1

∏ni
j=1 j

1−δ
}

exp
{
−µδ

∑k
i=1

∑ni
j=1 xijj

1−δ
}
.

In the Bayesian approach a prior distribution that summarizes a priori uncertainty about the likely values
of the parameters is needed. The prior distribution needs to be formulated based on prior knowledge. This
is usually a di�cult task because such prior knowledge may not be available. In such situations usually a
�non-informative� prior distribution is used. The information contained in the prior is combined with the
likelihood function to obtain the posterior distribution of the parameters. The basic idea behind a �non-
informative� prior is that it should be �at so that the likelihood plays a dominant role in the construction
of the posterior distribution. If the form of the posterior distribution is complicated, numerical methods or
Monte Carlo simulation procedures can be used to solve di�erent complex problems. A �non-informative�
prior may easily be obtained by applying Je�rey's rule. Je�rey's rule states that the prior distribution
for a set of parameters is taken to be proportional to the square root of the determinant of the Fisher
information matrix.

The following theorem can now be stated.

Theorem 3.1. For the piecewise exponential model with identical systems, the Je�reys' prior for the

parameters µ and δ is given by pJ (µ, δ) ∝ µ−1.

Proof. The proof is given in Appendix A.

4 The Joint Posterior Distribution - Identical Systems

Posterior ∝ Likelihood× Prior

Therefore

p (µ, δ|data) ∝ L (µ, δ|data) pJ (µ, δ)

∝
(
δ
µ

)−N {∏k
i=1

∏ni
j=1 j

1−δ
}

exp
{
−µδ

∑k
i=1

∑ni
j=1 xijj

1−δ
}
µ−1.
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From the joint posterior distribution the marginal posterior distribution can easily be obtained. Now

p (δ|data) =
´∞
0
p (µ, δ|data) dµ

= δ−N
∏k
i=1

∏ni
j=1 j

1−δ
{´∞

0
µN−1 exp

[
−µδ

∑k
i=1

∑ni
j=1 xijj

1−δ
]
dµ
}
.

Since ˆ ∞
0

µN−1 exp

−µδ
k∑
i=1

ni∑
j=1

xijj
1−δ

 dµ =

(
δ∑k

i=1

∑ni
j=1 xijj

1−δ

)N
Γ (N)

it follows that

p (δ|data) ∝

 k∑
i=1

ni∑
j=1

xijj
1−δ

−N k∏
i=1

ni∏
j=1

j1−δ δ > 0 (4.1)

and

p (µ|δ, data) =

(
δ∑k

i=1

∑ni
j=1 xijj

1−δ

)−N
1

Γ (N)
µN−1 exp

−µδ
k∑
i=1

ni∑
j=1

xijj
1−δ

 µ>0 (4.2)

- a Gamma density function.

Equation (4.2) follows from the fact that

p (µ, δ|data) = p (δ|data) p (µ|δ, data) .
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5 Example (Arab et al. (2012))

Table 5.1: Time Between Failures for Six Load-Haul-Dump (LHD) Machines
LHD1 LHD3 LHD9 LHD11 LHD17 LHD20
327 637 278 353 401 231
125 40 261 96 36 20
7 197 990 49 18 361
6 36 191 211 159 260
107 54 107 82 341 176
277 53 32 175 171 16
54 97 51 79 24 101
332 63 10 117 350 293
510 216 132 26 72 5
110 118 176 4 303 119
10 125 247 5 34 9
9 25 165 60 45 80
85 4 454 39 324 112
27 101 142 35 2 10
59 184 39 258 70 162
16 167 249 97 57 90
8 81 212 59 103 176
34 46 204 3 11 360
21 18 182 37 5 90
152 32 116 8 3 15
158 219 30 245 144 315
44 405 24 79 80 32
18 20 32 49 53 266

248 38 31 84
140 10 259 218

311 283 122
61 150

24

The data in Table 5.1 are failure data on load-haul-dump (LHD) machines given by Kumar and Klefsjö
(1992) and reported in Hamada, Wilson, Reese, and Martz (2008, page 201).

In Figure 5.1 the posterior distribution of δ,

p (δ|data) ∝

 k∑
i=1

ni∑
j=1

xijj
1−δ

−N k∏
i=1

ni∏
j=1

j1−δ

is illustrated for the data in Table 5.1 and in Figure 5.2 the posterior distribution of µ,

p (µ|data) =

ˆ ∞
0

p (µ|δ, data) p (δ|data) dδ

is displayed. The Gamma density function p (µ|δ, data) is de�ned in Equation (4.1).
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Figure 5.1: Posterior Distribution of δ

mean (δ) = 0.7109, var (δ) = 0.00856, 95% HPD Interval (δ) = (0.5296; 0.8922)

The posterior distribution of δ �ts almost perfectly to a normal distribution with the same mean and
variance.
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Figure 5.2: Posterior Distribution of µ

mean (µ) = 0.002982, var (µ) = 1.1218e−6

95% HPD Interval (µ) = (0.001165; 0.005120)
95% Equal − tail Interval (µ) = (0.00135; 0.00545)

Figure 5.2 is however obtained by using the following simulation procedure:

i. Simulate δ from p (δ|data).

ii. Substitute the simulated δ value in p (µ|δ, data).

iii. Draw the Gamma density function p (µ|δ, data).

Steps (i), (ii) and (iii) are repeated l times and by calculating the average of the l conditional Gamma
density functions, the unconditional posterior distribution p (µ|data) is obtained. As mentioned before,
this method is called the Rao-Blackwell method.

In Arab et al. (2012) a maximum likelihood procedure as well as a hierarchical Bayes method are discussed
for estimating µ and δ. For the maximum likelihood procedure con�dence intervals for the parameters
are obtained using the delta method. Results from the hierarchical Bayes method were obtained using
the Gamma prior

p (µ|a, b) =
baµa−1

Γ (a)
exp (−bµ) µ>0

and OpenBUGS.

In Table 5.2 the estimates of µ and δ as well as their con�dence intervals are compared for the maximum
likelihood, hierarchical Bayes and objective Bayes methods.
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Table 5.2: Point and Interval Estimates for the Parameters of the PEXP Model Assuming Identical
Systems in the LHD Example

Method of Maximum Likelihood

Parameters MLE 95% Con�dence Interval

µ 0.002901 0.002794 0.003011
δ 0.716 0.5563 0.9215

Hierarchical Bayes Method a = 0.1, b = 0.1
Parameters MLE 95% Con�dence Interval

µ 0.002922 0.001264 0.005327
δ 0.705 0.5141 0.8838
Objective Bayes Method p (µ) ∝ µ−1

Parameters MLE 95% Con�dence Interval

µ 0.002982 0.00135 0.00545
δ 0.7109 0.5296 0.8922

From Table 5.2 it is clear that the point and interval estimates for the hierarchical Bayesian and objective
Bayesian methods are very close to the maximum likelihood estimates and asymptotic con�dence intervals
obtained using the classical methods.

6 Simulation of PEXP Models Assuming Identical Systems and
Proper Priors

To determine the capability (suitability) of the prior p (µ, δ) ∝ µ−1 the following simulation study will be
conducted. Ten thousand samples are drawn and each sample represents data from six machines of sizes
n =

[
23 25 27 28 26 23

]
where δ = 0.71 and µ = 0.0029. Each sample will therefore be similar

to the dataset in Table 5.1. For each sample 10000 values are simulated from the posterior distributions
of δ and µ and the means, variances and 95% intervals calculated. Table 6.1 gives the overall means,
medians, modes, variances and coverage probabilities for the following priors:

• Improper Prior: p (µ, δ) ∝ µ−1

• Prior (i): p (µ, δ) ∼ Gamma (a = 0.1, b = 0.1)

• Prior (ii): p (µ, δ) ∼ Gamma (a = 1, b = 0.1)

• Prior (iii): p (µ, δ) ∼ Gamma (a = 1, b = 1)

• Prior (iv): p (µ, δ) ∼ Gamma (a = 2, b = 2)

• Prior (v): p (µ, δ) ∼ Gamma (a = 1, b = 4)
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Table 6.1: Simulation Study Comparing Di�erent Priors

Prior Mean Median
Mode

Var
HPD Interval Equal-Tail Interval

(approx) Coverage Length Coverage Length

δ

Imp. 0.7101 0.7084 0.6970 0.0099 0.9487 0.3890 0.9481 0.3896
(i) 0.7137 0.7122 0.7150 0.0098 0.9543 0.3881 0.9533 0.3884
(ii) 0.7474 0.7455 0.7500 0.0093 0.9256 0.3765 0.9253 0.3780
(iii) 0.7463 0.7433 0.7320 0.0093 0.9263 0.3759 0.9273 0.3778
(iv) 0.7793 0.7763 0.7750 0.0088 0.8765 0.3668 0.8776 0.3680
(v) 0.7458 0.7451 0.7440 0.0093 0.9342 0.3761 0.9322 0.3777

µ

Imp. 0.0033 0.0031 0.0028 1.67e−6 0.9432 0.0046 0.9475 0.0048
(i) 0.0033 0.0031 0.0028 1.68e−6 0.9494 0.0046 0.9548 0.0048
(ii) 0.0037 0.0035 0.0032 1.95e−6 0.9533 0.0050 0.9293 0.0052
(iii) 0.0038 0.0035 0.0031 1.94e−6 0.9531 0.0050 0.9320 0.0052
(iv) 0.0042 0.0039 0.0032 2.23e−6 0.9274 0.0054 0.8790 0.0055
(v) 0.0037 0.0035 0.0031 1.92e−6 0.9536 0.0050 0.9360 0.0051

From Table 6.1 it can be seen that the Je�reys' prior p (µ, δ) ∝ µ−1 gives the best estimates of µ and δ
and also the best coverage; somewhat better than the Gamma prior with a = 0.1 and b = 0.1 used by
Arab et al. (2012).

7 Objective Priors for the Mean

It might be of interest to make inferences about the mean of a piecewise exponential model. In doing so
we will �rst derive (i) the reference prior and (ii) the probability matching prior for the parameter

E (Xl) =
δ

µ
lδ−1 = t (µ, δ) = t (θ) .

7.1 Reference Prior

The reference prior is derived in such a way that it provides as little information as possible about the
parameter. The idea of the reference prior approach is basically to choose the prior which, in a certain
asymptotic sense, maximizes the information in the posterior distribution provided by the data.

Theorem 7.1. The reference prior for the mean E (Xl) = δ
µ l
δ−1 is pR (µ, δ) ∝ µ−1.

Proof. The proof is given in Appendix B.

7.2 Probability Matching Prior

Datta and Ghosh (1995) derived the di�erential equation that a prior must satisfy if the posterior
probability of a one-sided credibility interval for a parametric function and its frequentist probability
agree up to 0

(
n−1

)
where n is the sample size.

The fact that the resulting Bayesian con�dence interval of level 1−α is also a good frequentist con�dence
interval at the same level is a very desirable situation.

Theorem 7.2. The probability matching prior for the mean E (Xl) = δ
µ l
δ−1 is pM (µ, δ) ∝ µ−1.

Proof. The proof is given in Appendix C.
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8 Example: Posterior Distribution of the Mean E (Xl) =
δ
µl
δ−1

Consider again the data in Table 5.1. The expected time between the 9th and 10th failure is E (X10) =
δ
µ10δ−1. In Figure 8.1 the posterior distribution of E (X10) is given.

Figure 8.1: Posterior Distribution of Mean Time to Failure when l = 10

mean = 129.598, median = 129.028, mode = 128.755, var = 112.329
95% Equal − tail Interval = (110.42; 152.06) length = 41.66

95% HPD Interval = (110.27; 151.89) length = 41.53

It is clear from the �gure that the posterior distribution is quite symmetrical.

In Figure 8.2, the posterior distribution of E (X28) is illustrated.
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Figure 8.2: Posterior Distribution of Mean Time to Failure when l = 28

mean = 97.811, median = 96.810, mode = 95.5, var = 149.544
95% Equal − tail Interval = (76.78; 124.64) length = 47.84

95% HPD Interval = (76.15; 123.32) length = 47.17

Since E(δ|data) = 0.7109 < 1 the expected value E (Xj) is a decreasing function of j, which corresponds
to reliability deterioration. It is therefore obvious that E (X28|data) < E (X10|data) .

Figures 8.1 and 8.2 were obtained in the following way:

Let y = δ
µ l
δ−1 = E (Xl).

We are interested in the distribution of y = E (Xl). Now µ = δ
y l
δ−1 and

∣∣∣dµdy ∣∣∣ = 1
y2 l

δ−1.

From the density function p (µ|δ, data) it follows that

p (y|data, δ) =

(
δ∑k

i=1

∑ni
j=1 j

1−δ

)−N
1

Γ (N)

(
1

y
δlδ−1

)N−1
×

exp

−δlδ−1δy

k∑
i=1

ni∑
j=1

xijj
1−δ


(

1

y2
δlδ−1

)
.

∴ p (y|data, δ) =

lδ−1 k∑
i=1

ni∑
j=1

xijj
1−δ

N

1

Γ (N)
exp

−1

y
lδ−1

k∑
i=1

ni∑
j=1

xijj
1−δ

 .

An Inverse Gamma density function.

By using the Rao-Blackwell method p (y|data) can be obtained.
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9 Frequentist Properties of the Credibility Interval for E (Xl|µ, δ) =
δ
µl
δ−1

To determine the frequentist properties (coverage probabilities) of the posterior distribution of E (Xl|µ, δ),
a simulation study as explained in Section 6 is done. In other words, 10,000 samples are drawn and each
sample represents data from six machines of sizes n =

[
23 25 27 28 26 23

]
where δ = 0.71,

µ = 0.0029 and l = 28. Therefore
E (X28|µ, δ) = 93.1504.

In Table 9.1 the coverage percentage of the 95%credibility intervals are given

Table 9.1: Coverage Percentage of the 95% Credibility Interval for E (X28|µ, δ) from 100000 Simulated
Samples

% Coverage Length
Equal-Tail Interval 95.55 48.51

HPD Interval 94.58 46.10

It is clear that the Bayesian credibility intervals have the correct frequentist coverage probabilities.

10 Predictive Distribution of a Future Observation Xf

The predictive distribution of a future observation Xf is

f (xf |data) =

ˆ ∞
0

ˆ ∞
0

f (xf |µ, δ) p (µ, δ|data) dµdδ

where

f (xf |µ, δ) =

(
δ

µ
fδ−1

)−1
exp

− xf(
δ
µf

δ−1
)
 (10.1)

and
p (µ, δ|data) = p (µ|δ, data) p (δ|data)

is the joint posterior distribution.

The posterior distributions of δ and µ|δ are given in Equations (4.1) and (4.2).

The unconditional predictive distribution of Xf can easily be obtained by using the simulation procedure
described in Section 5:

i. Obtain simulated values for δ and µ and substitute them in f (xf |µ, δ).

ii. Draw the exponential distribution f (xf |µ, δ).

iii. Repeat steps (i) and (ii) l times. The average of the l exponential distributions is f (xf |data),
the unconditional predictive distribution of Xf . As mentioned before, this method is called the
Rao-Blackwell procedure.
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In Figure 10.1 the predictive density function of X28 is given for the six load-haul-dump machines.

Figure 10.1: Predictive Density of X28

Mean = 97.96, Median = 68.97, V ar = 9736.8
95% HPD Interval = (0; 317.1)

95% Equal − tail Interval = (2.44; 416.20)
99.73% Equal − tail Interval = (0.1294; 666)
0.27% Left− sided Interval = (0; 0.2605)

11 Control Chart for Xf = X28

It is well known that statistical quality control is actually implemented in two phases. In Phase I the
primary interest is to assess process stability. The practitioner must therefore be sure that the process is
in statistical control before control limits can be determined for online monitoring of the process in Phase
II. By using the predictive distribution a Bayesian procedure will be developed in Phase II to obtain a
control chart for Xf = X28. Assuming that the process remains stable, the predictive distribution can
be used to derive the distribution of the run-length and average run-length.

From Figure 10.1 it follows that for a 99.73% two-sided control chart the lower control limit is LCL=0.1294
and the upper control limit is UCL=666.

Let R (β) represents the values of Xf that are smaller than LCL and larger than UCL. The run-length
is de�ned as the number of future Xf values (r) until the control chart signals for the �rst time (Note
that r does not include the Xf value when the control chart signals). Given µ and δ and a stable Phase
I process, the distribution of the run-length r is geometric with parameter

ψ (µ, δ) =

ˆ
R(β)

f (xf |µ, δ) dxf
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where f (xf |µ, δ) is given in Equation (10.1), i.e., the distribution of Xf given that µ and δ are known.
The values of µ and δ are however unknown and the uncertainty of these parameter values are de-
scribed by their joint posterior distribution p (µ, δ|data). By simulating µ and δ from p (µ, δ|data) =
p (µ|δ, data) p (δ|data) the probability density function of f (xf |µ, δ) as well as the parameter ψ (µ, δ)
can be obtained. This must be done for each future sample. In other words for each future sample µ
and δ must �rst be simulated from p (µ, δ|data) and then ψ (µ, δ) calculated. Therefore, by simulating
all possible combinations of µ and δ from their joint posterior distribution a large number of ψ (µ, δ)
values can be obtained. Also a large number of geometric distributions, i.e., a large number of run-length
distributions each with a di�erent parameter value (ψ (µ1, δ1) , ψ (µ2, δ2) , . . . , ψ (µl, δl)) can be obtained.

As mentioned, the run-length r for given µ and δ is geometrically distributed with mean

E (r|µ, δ) =
1− ψ (µ, δ)

ψ (µ, δ)

and

V ar (r|µ, δ) =
1− ψ (µ, δ)

ψ2 (µ, δ)
.

The unconditional moments E (r|data), E
(
r2|data

)
and V ar (r|data) can therefore be obtained by sim-

ulation or numerical integration. For further details refer to Menzefricke (2002, 2007, 2010a,b).

By averaging the conditional distributions the unconditional distribution of the run-length can be ob-
tained and is illustrated in Figure 11.1.

Figure 11.1: Distribution of Run Length, β = 0.0027, Two-sided Interval

mean (r) = 369.09, median (r) = 239.75, var (r) = 1.5919e5

95% HPD Interval = (0; 1160.7)

The mean run-length of 369.09 corresponds to the value of 1
β = 1

0.0027 ≈ 370.
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In Figure 11.2 the histogram of the expected run-length is given.

Figure 11.2: Expected Run Length, β = 0.0027, Two-sided Interval

mean (r) = 369.87, median (r) = 381.94, var (r) = 1.1407e4

95% HPD Interval = (42.35; 518.16)

At the bottom of Figure 10.1 it is shown that a 0.27% left-sided interval = (0;0.2605). R (β) therefore
represents those values of Xf that are larger than 0 and smaller than 0.2605. The distribution of the
run-length for this one-sided interval is displayed in Figure 11.3 and in Figure 11.4 the distribution of
the expected run-length is given.
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Figure 11.3: Distribution of Run Length, β = 0.0027, One-sided Interval

mean (r) = 376.30, median (r) = 256.9, var (r) = 1.4558e5

95% HPD Interval = (0; 1133.1)
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Figure 11.4: Expected Run Length, β = 0.0027, One-sided Interval

mean (r) = 376.30, median (r) = 372.58, var (r) = 2179.2
95% HPD Interval = (296.14; 517.82)

12 Frequentist Properties of the Predictive Distribution of a
Future Observation Xf = X28

It is also of interest to look at the coverage probability of the predictive distribution f (xf |data). The
simulation study is explained in Sections 6 and 9. The only di�erence is that the simulated 28th obser-
vation of machine six will not form part of the data to obtain the posterior distribution p (µ, δ|data). For
each of the 10000 datasets the 28th observation will therefore be di�erent. An estimate of the coverage
percentage will therefore be obtained from the number of times the predictive interval contains the 28th
observation.

In Table 12.1 the coverage percentage of the 95% prediction interval for X28 from 10000 samples are
given.

Table 12.1: Coverage Percentage of 95% Prediction Interval
% Coverage Length

Equal-Tail Interval 95.52 351.92
HPD Interval 95.46 285.95

From Table 12.1 it is clear that the predictive interval has the correct frequentist coverage percentage.
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13 Model 2: Systems with Di�erent µ's but Common δ

As mentioned by Arab et al. (2012) it might happen that all systems wear out or improve at the same
rate, but that the systems have di�erent scale parameters. In the following theorem the Je�reys' prior
is derived for the case where δ is common to all systems but the µi's di�er across systems.

Theorem 13.1. For the piecewise exponential model with di�erent µ's but comment δ, the Je�reys'

prior for the parameters µ1, µ2, . . . , µk and δ is given by

pJ (µ1, µ2, . . . , µk, δ) ∝
k∏
i=1

µ−1i µi > 0.

Proof. The proof is given in Appendix D.

14 The Joint Posterior Distribution of the Parameters in the
Case of Model 2

The joint posterior distribution

p (µ1, µ2, . . . , µk, δ|data) ∝ L (µ1, µ2, . . . , µk, δ|data)× pJ (µ1, µ2, . . . , µk, δ)

∝
∏k
i=1

{∏ni
j=1

(
δ
µi
jδ−1

)−1
exp

[
− xij(

δ
µi

)
jδ−1

]}∏k
i=1 µ

−1
i .

From this it follows that

p (µi|data, δ) =

(
δ∑ni

j=1 xijj
1−δ

)−ni
µni−1i

Γ (ni)
exp

−µi
δ

ni∑
j=1

xijj
1−δ

 µi > 0, i = 1, 2, . . . , k (14.1)

and

p (δ|data) ∝
k∏
i=1


ni∑
j=1

(
xijj

1−δ)−ni  ni∏
j=1

j1−δ

 δ > 0 (14.2)

The posterior distribution of δ for a piecewise exponential model with di�erent scale parameters di�er
somewhat from the distribution of δ if µ1 = µ2 = · · · = µk = µ (given in Equation (4.1)).

In the �gures below the posterior distributions of δ and µ1, µ2, . . . , µk are displayed for the LHD example
and in Table 14.1 the means variances and 95% credibility intervals are given for µi and δ.
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Figure 14.1: Posterior Density of δ: Model 2

Figure 14.2: Posterior Densities of µ1, µ2, . . . , µ6: Model 2
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Table 14.1: Point Estimates and Credibility Intervals for the Parameters of the PEXP Model in the Case
of Systems with Di�erent µ's and Common δ for the LHD Example

Parameter Mean Variance 95% HPD Interval 95% Equal-Tail Interval
µ1 0.00387 2.34e−6 0.00131-0.00692 0.001625-0.007515
µ2 0.00298 2.52e−6 0.00096-0.00545 0.001180-0.005935
µ3 0.00231 8.39e−7 0.00080-0.00415 0.000960-0.004490
µ4 0.00366 2.37e−6 0.00114-0.00674 0.001445-0.007380
µ5 0.00323 1.71e−6 0.00105-0.00583 0.001335-0.006340
µ6 0.00275 1.31e−6 0.00090-0.00506 0.001085-0.005460
δ 0.71355 0.00868 0.53076-0.89593 0.53077-0.89596

The point estimates and credibility intervals for the di�erent µ's do not di�er much.

15 Simulation Study of the Piecewise Exponential Model As-
suming Systems with Di�erent µ's and Common δ

In this simulation study 3100 samples are drawn and each sample is from six machines of size n =[
23 25 27 28 26 23

]
with one δ and six µ's. For each sample 10000 values are drawn from the

posterior distributions of δ and the µ's. The means, median, modes,variances and 95% credibility intervals
are calculated. Table 14.1 gives the overall means, median, modes, variances and coverage probabilities.
From the table it is clear that the point estimate of δ is for all practical purposes the same as the true
value. The posterior means of the six µ's tend to be larger than the true values. The medians are better
estimates of the µ's than the means. The 95% credibility intervals have the correct frequentist coverage.

Table 15.1: Point Estimates and Credibility Intervals Obtained from a Simulation of the PEXP Model
with Di�erent µ's and Common δ

Parameter
True

Mean Median
Mode

Variance
Value (Approx)

δ 0.71 0.7094 0.7043 0.7000 0.0103
µ1 0.0039 0.0046 0.0042 0.0034 4.215e−6

µ2 0.0030 0.0035 0.0032 0.0025 2.637e−6

µ3 0.0023 0.0027 0.0025 0.0020 1.668e−6

µ4 0.0037 0.0044 0.0039 0.0033 4.007e−6

µ5 0.0032 0.0037 0.0034 0.0029 2.984e−6

µ6 0.0028 0.0033 0.0029 0.0025 2.272e−6

Parameter
Average 95% HPD HPD Interval Equal-Tail

Interval Cover Length Cover Length
δ (0.5205-0.9162) 0.9517 0.39856 0.9512 0.39964
µ1 (0.0019-0.0093) 0.9517 0.00702 0.9471 0.00743
µ2 (0.0013-0.0071) 0.9413 0.00547 0.9426 0.00581
µ3 (0.0010-0.0056) 0.9468 0.00430 0.9504 0.00458
µ4 (0.0016-0.0093) 0.9462 0.00680 0.9368 0.00721
µ5 (0.0014-0.0073) 0.9491 0.00583 0.9591 0.00620
µ6 (0.0012-0.0069) 0.9446 0.00507 0.9488 0.00538

16 Bayes Factors

As explained by Ando (2010) the Bayes factor is a quantity for competing models and for testing hypothe-
ses in the Bayesian framework. It has played a major role in assessing the goodness of �t of competing
models. It allows one to consider a pairwise comparison of models, sayM1 andM2 based on the posterior
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probabilities. Suppose under model Mi, the data are related to parameters θi by a distribution fi
(
y|θi

)
and the prior distribution is πi (θi), i = 1, 2. The posterior odds in favor ofM1 againstM2 can be written
as

P
(
M1|y

)
P
(
M2|y

) =
P (M1)

P (M2)

q1
(
y
)

q2
(
y
) =

P (M1)

P (M2)
B
(
y
)

where B
(
y
)
is known as the Bayes factor (in favor of M1 against M2) and

qi
(
y
)

=

ˆ
πi (θi) fi

(
y|θi

)
dθi

is the marginal likelihood (density) of y under Mi (i = 1, 2). The Bayes factor chooses the model with
the largest value of the marginal likelihood among a set of candidate models. The posterior odds on the
other hand are the prior odds multiplied by the Bayes factor and as mentioned the Bayes factor can be
seen as representing the weight of evidence in the data in favor of M1 against M2. If M1 �ts the data
better than M2, in the sense that q1

(
y
)
> q2

(
y
)
, then B

(
y
)
> 1 and the posterior odds in favor of M1

will be greater than the prior odds.

If improper priors πi (θi) = cihi (θi), i = 1, 2 are used then the Bayes factor

B
(
y
)

=
c1
´
h1 (θi) f1

(
y|θ1

)
dθ1

c2
´
h2 (θ2) f2

(
y|θ2

)
dθ2

depends on the ratio c1
c2

of two unspeci�ed constants.

One approach to improper priors is to make use of a training sample. Berger and Pericchi (1996) proposed
using all possible training samples and averaging the resulting Bayes factors. They call such an average
an intrinsic Bayes factor. O'Hagan (1995) introduces an alternative to intrinsic Bayes factors that avoids
the selection of - and the subsequent averaging over training samples. His idea is to use a fraction b of
the likelihood to make the improper prior, proper. This motivates the alternative de�nition of a Bayes
factor

Bb
(
y
)

=
q1
(
b, y
)

q2
(
b, y
)

where

qi
(
b, y
)

=

´
πi (θi) fi

(
y|θi

)
dθi´

πi (θi) fi
(
y|θi

)b
dθi

i = 1, 2

If πi (θi) = cihi (θi) where hi (θi) is improper, the intermediate constant ci cancels out, leaving

qi
(
b, y
)

=

´
hi (θi) fi

(
y|θi

)
dθi´

hi (θi) fi
(
y|θi

)b
dθi

.

Bb
(
y
)
will be referred to as a Fractional Bayes Factor (FBF).

Another way of writing qi
(
b, y
)
is

qi
(
b, y
)

=
mi

mi (b)
i = 1, 2

and

Bb
(
y
)

= FBF12 =
m1m2 (b)

m2m1 (b)
.
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17 Model Selection: Fractional Bayes Factor

In this section we will determine which one of the following models �ts the LHD machine data, given in
Section 5, the best.

Model 1: One δ and one µ

Model 2: One δ and k µ's

Marginal Likelihoods:

m1 = Γ (N)

ˆ ∞
0


k∏
i=1

ni∏
j=1

j1−δ




k∑
i=1

ni∑
j=1

xijj
1−δ


−N

dδ

m2 =

ˆ ∞
0

k∏
i=1

Γ (ni)

 ni∏
j=1

j1−δ

 ni∑
j=1

xijj
1−δ

−ni dδ

Fractional Marginal Likelihoods:

m1 (b) = Γ (bN)

ˆ ∞
0


k∏
i=1

ni∏
j=1

j1−δ


bb k∑

i=1

ni∑
j=1

xijj
1−δ

−bN dδ

m2 (b) =

ˆ ∞
0

k∏
i=1

Γ (bni)

 ni∏
j=1

j1−δ

bb ni∑
j=1

xijj
1−δ

−bni
 dδ

Fractional Bayes Factor:

FBF12 =
m1m2 (b)

m2m1 (b)

For b = 0.1we have
m1

m2
= 1.2251,

m2 (b)

m1 (b)
= 36.9168

and therefore
FBF12 = 45.2282.

Je�reys (1961) recommended interpreting the Bayes factors as a scale of evidence. Table 17.1 gives
Je�reys' scale. Although the partitions seem to be somewhat arbitrary, it provides some descriptive
statements. Kass and Raftery (1995) also give guidelines for interpreting the evidence from the Bayes
factor.

Table 17.1: Je�reys' Scale of Evidence for Bayes Factor BF12

Bayes Factor Interpretation
BF12 < 1 Negative support for model M1

1 < BF12 < 3 Barely worth mentioning evidence for M1

3 < BF12 < 10 Substantial evidence for M1

10 < BF12 < 30 Strong evidence for M1

30 < BF12 < 100 Very strong evidence for M1

100 < BF12 Decisive evidence for M1
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Since FBF12 = 45.2282 there is very strong evidence for M1, i.e., for the model with one δ and one µ.

Also P (Model 1|data) =
(

1 + 1
FBF12

)−1
= 0.9784.

For further details see Ando (2010).
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Mathematical Appendices

A Proof of Theorem 4.1

To obtain the Je�reys' prior, the Fisher information matrix must �rst be derived. By di�erentiating the
log likelihood function, twice with respect to the unknown parameters and taking expected values the
Fisher information matrix can be obtained:

l = loge L (δ, µ|data) = N loge δ +N loge µ+ (1− δ)
k∑
i=1

ni∑
j=1

loge j −
µ

δ

k∑
i=1

ni∑
j=1

xijj
1−δ.

Now

∂l

∂µ
=
N

µ
− 1

δ

k∑
i=1

ni∑
j=1

xijj
1−δ

and
∂2l

∂µ2
= −N

µ2
.

Therefore

−E
(
∂2l

∂µ2

)
=
N

µ2
.

Also

∂2l

∂µ∂δ
= −

− 1

δ2

k∑
i=1

ni∑
j=1

xijj
1−δ +

1

δ

k∑
i=1

ni∑
j=1

xi (−1) j−δ loge j

 .

This follows from the fact that ∂
∂δ

(
j1−δ

)
= −j1−δ loge j.

Therefore

−E
(

∂2l
∂µ∂δ

)
= −1

δ2

∑k
i=1

∑ni
j=1

(
δ
µj

δ−1
)
j1−δ − 1

δ

∑k
i=1

∑ni
j=1

(
δ
µj

δ−1
)
j1−δ loge j

= − 1
µ

{
N
δ +

∑k
i=1

∑ni
j=1 loge j

}
.

Further

∂l
∂δ = −N

δ −
∑k
i=1

∑ni
j=1 loge j − µ

{
− 1
δ2

∑k
i=1

∑ni
j=1 xijj

1−δ + 1
δ

∑k
i=1

∑ni
j=1 xij (−1) j1−δ loge j

}
= −N

δ −
∑k
i=1

∑ni
j=1 loge j + µ

{
1
δ2

∑k
i=1

∑ni
j=1 xijj

1−δ + 1
δ

∑k
i=1

∑ni
j=1 xijj

1−δ loge j
}

and

∂2l
∂δ2 = N

δ2 + µ{−2δ3
∑k
i=1

∑ni
j=1 xijj

1−δ + 1
δ2

∑k
i=1

∑ni
j=1 xij (−1) j1−δ loge j − 1

δ2

∑j
i=1

∑ni
j=1 xijj

1−δ loge j

+ 1
δ

∑k
i=1

∑ni
j=1 xij (−1) j1−δ (loge j)

2}
= N

δ2 − µ
{

2
δ3

∑k
i=1

∑ni
j=1 xijj

1−δ + 2
δ2

∑k
i=1

∑ni
j=1 xijj

1−δ loge j + 1
δ

∑k
i=1

∑ni
j=1 xijj

1−δ (loge j)
2
}
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Therefore

−E
(
∂2l
∂δ2

)
= −N

δ2 + µ{ 2
δ3

∑k
i=1

∑ni
j=1

(
δ
µj

δ−1
)
j1−δ + 2

δ2

∑k
i=1

∑ni
j=1

(
δ
µj

δ−1
)
j1−δ loge j

+ 1
δ

∑k
i=1

∑ni
j=1

(
δ
µj

δ−1
)
j1−δ (loge j)

2}
= N

δ2 + 2
δ

∑k
i=1

∑ni
j=1 loge j +

∑k
i=1

∑ni
j=1 (loge j)

2
.

The Fisher information matrix is therefore

F (µ, δ) =


−E

(
∂2l
∂µ2

)
−E

(
∂2l
∂µ∂δ

)
−E

(
∂2l
∂δ∂µ

)
−E

(
∂2l
∂δ2

)


And therefore

F (µ, δ) =


N
µ2 − 1

µ

{
N
δ +

∑k
i=1

∑ni
j=1 loge j

}
− 1
µ

{
N
δ +

∑k
i=1

∑ni
j=1 loge j

}
N
δ2 + 2

δ

∑k
i=1

∑ni
j=1 loge j +

∑k
i=1

∑ni
j=1 (loge j)

2

 .

The Je�reys' prior is

PJ (µ, δ) ∝ |F (µ, δ)|
1
2

=

{
N2

µ2δ2 + 2N
µ2δ

∑k
i=1

∑ni
j=1 loge j + N

µ2

∑k
i=1

∑ni
j=1 (loge j)

2 − 1
µ2

(
N
δ +

∑k
i=1

∑ni
j=1 loge j

)2} 1
2

= µ−1
{
N
∑k
i=1

∑ni
j=1 (loge j)

2 −
(∑k

i=1

∑ni
j=1 loge j

)2}

Therefore
PJ (µ, δ) ∝ µ−1.

B Proof of Theorem 8.1

De�ne

A =


∂µ
∂t(θ)

∂µ
∂δ

∂δ
∂t(θ)

∂δ
∂δ



=

 −δt2(θ) l
δ−1 lδ−1

t(θ) (1 + δ loge l)

0 1

 .
The Fisher information matrix for t (θ) and δ is therefor
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F (t (θ) , δ) = A′F (µ, δ)A =

F̃11 F̃12

F̃21 F̃22


where

F̃11 =
N

t2 (θ)
,

F̃12 =
1

t (θ)

k∑
i=1

ni∑
j=1

(loge j − loge l)

and

F̃22 =

k∑
i=1

ni∑
j=1

(loge j − loge l)
2
.

Now

PR (t (θ)) = (F11·2)
1
2 =

{
F̃11 − F̃12F̃

−1
22 F̃21

} 1
2

= 1
t(θ)

[
N −

{∑k
i=1

∑ni
j=1 (loge j − loge l)

}2 {∑k
i=1

∑ni
j=1 (loge l − loge j)

2
}−1] 1

2

.

Therefore

PR (t (θ)) ∝ 1

t (θ)
.

Further

PR (δ|t (θ)) =
(
F̃22

) 1
2 ∝ constant

because F̃22 does not contain δ.

For this it follows that

PR (t (θ) , δ) = PR (t (θ))PR (δ|t (θ))

∝ 1
t(θ) .

The reference prior for the parameter space (µ, δ) is therefore

PR (µ, δ) ∝ µ
δ l

1−δ
∣∣∣dt(θ)dµ

∣∣∣ = µ
δ l

1−δ
∣∣−µ−2δlδ−1∣∣

∝ µ−1.

The reference prior is therefore exactly the same as the Je�reys' prior.
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C Proof of Theorem 8.2

As before E (Xl) = δ
µ l
δ−1 = t (θ).

F−1 (t (θ) , δ) =

F̃ 11 F̃ 12

F̃ 21 F̃ 22

 = F−1 (θ)

and
∇′t (θ) =

[
∂t(θ)
∂t(θ)

∂t(θ)
∂δ

]
=
[
1 0

]
.

Therefore

∇′t (θ)F−1 (θ) =
[
F̃ 11 F̃ 12

]
and

∇′t (θ)F−1 (θ)∇t (θ) = F̃ 11.

De�ne

Υ′ (θ) =
∇′t (θ)F−1 (θ)√
∇′t (θ)F−1 (θ)∇t (θ)

=
[
Υ1 (θ) Υ2 (θ)

]
=
[√

F̃ 11 F̃ 12√
F̃ 11

]
.

From this it follows that

Υ1 (θ) =
√
F̃ 11 =

t (θ)
{∑k

i=1

∑ni
j=1 (loge j − loge l)

2
} 1

2√
Ã

and

Υ2 (θ) =
F̃ 12√
F̃ 11

=

∑k
i=1

∑ni
j=1 (loge l − loge j)√

˜˜
{∑k

i=1

∑ni
j=1 (loge l − loge j)

2
}
A

where

Ã = N

k∑
i=1

ni∑
j=1

(loge l − loge j)
2 −


k∑
i=1

ni∑
j=1

(loge l − loge j)


2

.

As mentioned, Datta and Ghosh (1995) derived the di�erential equation that a prior must satisfy to be
a probability matching prior.

PM (t (θ) , δ) ∝ 1

t (θ)

is a probability matching prior because it satis�es the di�erential equation

∂

∂t (θ)
{Υ1 (θ)PM (t (θ) , δ)}+

∂

∂δ
{Υ2 (θ)PM (t (θ) , δ)} = 0.

Similar to the reference prior it follows that PM (µ, δ) ∝ µ−1.
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D Proof of Theorem 14.1

The likelihood function for the case, δ common to all systems but the µi's di�er across systems is

L (δ, µ1, µ2, . . . , µk|data) =

k∏
i=1


ni∏
j=1

(
δ

µi
jδ−1

)−1
exp

− xij(
δ
µi
jδ−1

)


and the log likelihood function

l = loge L (δ, µ1, µ2, . . . , µk|data)

=
∑k
i=1 ni loge µi −N loge δ + (1− δ)

∑k
i=1

∑ni
j=1 loge j − 1

δ

∑k
i=1 µi

∑ni
j=1 xijj

1−δ

From this it follows that

−E

(
∂2l

(∂µi)
2

)
=
ni
µ2
i

, i = 1, 2, . . . , k,

−E
(

∂2l

∂µi∂δ

)
= − 1

µi

niδ +

ni∑
j=1

loge j

 , i = 1, 2, . . . , k,

−E
(

∂2l

∂µi∂µl

)
= 0, i = 1, 2, . . . , k, l = 1, 2, . . . , k, and i 6= l,

−E

(
∂2l

(∂δ)
2

)
=
N

δ2
+

2

δ

k∑
i=1

ni∑
j=1

loge j +

k∑
i=1

ni∑
j=1

(loge j)
2

and the Fisher information matrix is given by

F (µ1, µ2, . . . , µk, δ) =

F11 F12

F21 F22


where

F11 = diag
[
n1

µ2
1

n2

µ2
2
· · · nk

µ2
k

]
,

F21 = −
[

1
µ1

(
n1

δ2 +
∑n1

j=1 loge j
)

1
µ2

(
n2

δ2 +
∑n2

j=1 loge j
)
· · · 1

µk

(
nk
δ2 +

∑nk
j=1 loge j

)]
= F ′21

and

F22 =
N

δ2
+

2

δ

k∑
i=1

ni∑
j=1

loge j +

k∑
i=1

ni∑
j=1

(loge j)
2
.

The Je�reys' prior is proportional to the square root of the determinant of the Fisher information matrix.
Therefore

29



|F (µ1, µ2, . . . , µk, δ)| = |F11|
∣∣F22 − F21F

−1
11 F21

∣∣
=

(∏k
i=1

ni
µ2
i

){∑k
i=1

∑ni
j=1 (loge j)

2 −
∑k
i=1

1
n1

(∑ni
j=1 loge j

)2}

The Je�rey's prior follows as

PJ (µ1, µ2, . . . , µk, δ) ∝ |F (µ1, µ2, . . . , µk, δ)|
1
2

=
∏k
i=1 µ

−1
i µi > 0; i = 1, 2, . . . , k.
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