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Abstract

Process capability indices have been widely used in the manufacturing industry. They measure the
ability of a manufacturing process to produce items that meet certain speci�cations. A capability index
relates the voice of the customer (speci�cation limits) to the voice of the process. A large value of the
index indicates that the current process is capable of producing items (parts, tablets) that will meet
or exceed the customers' requirements. Capability indices are convenient because they reduce complex
information about the process to a single number and measure relative variability similar to the coe�cient
of variation.

This paper developed a Bayesian method to analyze capability indices. Multiple testing strategies will
be implemented and results will be compared to the frequentist results. Control charts were further
developed using the Bayesian approach for Cpk.

Keywords: capability indices, Bayes, credibility intervals, Tukey, control charts, run lengths

1 Introduction

Process capability indices have been widely used in the manufacturing industry. They measure the
ability of a manufacturing process to produce items that meet certain speci�cations. A capability index
relates the voice of the customer (speci�cation limits) to the voice of the process. A large value of the
index indicates that the current process is capable of producing items (parts, tablets) that will meet
or exceed the customers' requirements. Capability indices are convenient because they reduce complex
information about the process to a single number and measure relative variability similar to the coe�cient
of variation.

Application examples include the manufacturing of semiconductor products (Hoskins, Stuart, and Taylor
(1988)), jet-turbine engine components (Hubele, Shahriari, and Cheng (1991)), wood products (Lyth and
Rabiej (1995)), audio speaker drivers (Chen and Pearn (1997)) and many others.

There is a need to understand and interpret process capability indices. In the literature on statistical
quality control there have been some attempts to study the inferential aspects of these indices. Most of
the existing works in this area has been devoted to classical frequentist large sample theory.

As mentioned by Pearn and Wu (2005) a point estimate of the index is not very useful in making reliable
decisions. An interval estimation approach is in fact more appropriate and widely accepted but the
frequency distributions of these estimators are often very complicated which means that the calculation
of exact con�dence intervals will be di�cult.

An alternative approach to the problem of making inference about capability indices is the Bayesian
approach. As it is well known in the Bayesian approach the information contained in the prior is
combined with the likelihood to obtain the posterior distribution of the parameters. Inferences about
the unknown parameters are based on the posterior distribution.

2 De�nitions and Notations

Four of the commonly used capability indices are:

Cp =
u− l
6σ

,

Cpu =
u− µ

3σ
,
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Cpl =
µ− l
3σ

and

Cpk = min (Cpu, Cpl) .

Cpk is the normalized distance between the process mean and its closest speci�cation limit. It can easily

be veri�ed that Cpk = Cp (1− w) where w = 2|m−µ|
u−l and m = u+l

2 is the midpoint of the speci�cation
limits (u and l). Thus, Cpk modi�es Cp by a standardized measure w of non-centrality of the process
and Cpk = Cp if and only if the process is centered at m.

The larger the value of Cpk, the more capable is the process. In general, if the value of a process capability
index is greater than 1.0 the process is said to be capable. According to Niverthi and Dey (2000), the
thrust these days in the manufacturing industry is to achieve a Cpk value of at least 1.33. The de�nition
of Cpk includes as special case those processes for which only one limit exists, by letting either l→ −∞
or u→∞, in which case it reduces to the appropriate standardized measure.

Let y1, y2, . . . , yn be an independent sample from a manufacturing process. In this paper it will be
assumed that the yi (i = 1, 2, . . . , n) are independent, identically normally distributed random variables
with mean µ and variance σ2. Since both µ and σ2 are unknown and no prior information is available,
the conventional non-informative, Je�reys' prior

p
(
µ, σ2

)
∝ σ−2 (2.1)

will be speci�ed for µ and σ in this section. Using (2.1), it is well known (see for example Zellner (1971))
that the conditional posterior density function of µ is normal:

µ|σ2, y ∼ N
(
ȳ,
σ2

n

)
(2.2)

and in the case of the variance component σ2, the posterior density function is given by

p
(
σ2|y

)
= K

(
σ2
)− 1

2 (n+1)
exp

{
−1

2

(n− 1) s2

σ2

}
σ2 > 0 (2.3)

an Inverted Gamma density function where y =
[
y1 y2 · · · yn

]′
, ȳ = 1

n

∑n
i=1 yi is the sample mean,

s2 = 1
n−1

∑n
i=1 (yi − ȳ)

2
is the sample variance and

K =

{
(n− 1) s2

2

} 1
2 (n−1)

1

Γ
(
n−1

2

) (2.4)

is a normalizing constant.

From (2.3) it follows that

k =
(n− 1) s2

σ2
∼ χ2

n−1 = χ2
v (2.5)
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for a given s2.

As mentioned these indices are used in process evaluation. From a Bayesian point of view the posterior
distributions are of importance. One of the aims of this paper is therefore to derive the exact and
in some cases the conditional posterior distributions of the indices. The method proposed by Ganesh
(2009) for multiple testing will be applied using a Bayesian procedure for Cpl, Cpu and Cpk to determine
whether signi�cant di�erences between four suppliers exist. A Bayesian control chart for Cpk will also
be implemented.

An estimated index will be denoted by �hat� (^). For example Ĉp = u−l
6s , Ĉpl = ȳ−l

3s , Ĉpu = u−ȳ
3s and

Ĉpk = min
(
Ĉpu, Ĉpl

)
.

The following theorems will now be proved.

3 The Posterior Distribution of the Lower Process Capability
Index Cpl =

µ−l
3σ

Theorem 3.1. The posterior distribution of t = Cpl is given by

p
(
t|t̃
)

=
3
√
n exp

{
− 9nt2

2

}
Γ
(
v
2

)√
2π

∞∑
j=0

(
9ntt̃√
v

)j
1

j!

Γ
(
v+j

2

)
2

1
2 j(

1 + 9n
v t̃

2
) v+j

2

−∞ < t <∞ (3.1)

where

t̃ =
ȳ − l
3s

= Ĉpl

and

v = n− 1.

Proof. The proof is given in the Mathematical Appendices to this paper.

Note:

Chou and Owen (1989) derived the distribution of t̃ which is given by

f
(
t̃|t
)

=
3
√
n exp

{
− 9nt2

2

}
√
v
√

2πΓ
(
v
2

) ∞∑
j=0

(
9nt̃t√
v

)j
1

j!

Γ
(
v+j+1

2

)
2

1
2 j(

1 + 9n
v t̃

2
) v+j+1

2

. (3.2)

Equation (3.2) is a non-central t distribution with v degrees of freedom and non-centrality parameter δ
where δ2 = 9nt2.
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4 The Posterior Distribution of Cpk = min (Cpl, Cpu)

When both speci�cation limits are given, the Cp and Cpk indices can be used where

Cpk = min (Cpl, Cpu) .

Unlike Cp, Cpk depends on both µ and σ. The Cpk index has been used in Japan and in the U.S.
automotive companies (see Kane (1986)) and Chou and Owen (1989).

In Theorem 4.1 the posterior distribution of c = Cpk will be derived.

Theorem 4.1. The posterior distribution of c = Cpk is given by

p (c|y) =
3
√
n√

2π

ˆ ∞
c2v
b̃2

exp

−9n

2

[
c− t∗

√
k

v

]2
+ exp

−9n

2

[
c− t̃

√
k

v

]2
 1

2
v
2 Γ
(
v
2

)k v
2−1 exp

(
−k

2

)
dk

(4.1)

where

v = n− 1,

t∗ = Ĉpu =
u− ȳ

3s
,

t̃ = Ĉpl =
ȳ − l
3s

and

b̃ = Ĉp =
u− l

6s
.

Proof. The proof is given in the Mathematical Appendices to this paper.

5 Example: Piston Rings for Automotive Engines (Polansky
(2006))

Consider a company with N = 4 contracted suppliers representing the four processes that produce
piston rings for automobile engines studied by Chou (1994). The edge width of a piston ring after the
preliminary disk grind is a very important quality characteristic in automobile engine manufacturing. The
lower and upper speci�cation limits of the quality characteristic are l = 2.6795mm and u = 2.7205mm
respectively Four potential suppliers (Supplier 1 to Supplier 4) for such rings are under consideration by
one quality control manager. Samples of size n1 = 50, n2 = 75, n3 = 70 and n4 = 75 are taken from
the manufacturing processes of the suppliers. A summary of the results from the samples, Ĉpl, Ĉpu, Ĉpk
values and other statistics are given in Table 5.1.

Table 5.1: Ĉpl, Ĉpu, and Ĉpk Values for the Four Suppliers

Supplier (i) 1 2 3 4
Sample Size (ni) 50 75 70 75
Estimated Mean (ȳi) 2.7048 2.7019 2.6979 2.6972
Estimated Standard Deviation (si) 0.0034 0.0055 0.0046 0.0038

Ĉ
(i)
pl = ȳi−l

3si
2.4804 1.3576 1.3333 1.5526

Ĉ
(i)
pu = u−ȳi

3si
1.5392 1.1273 1.6377 2.0439

Ĉ
(i)
pk = min

(
Ĉ

(i)
pl , Ĉ

(i)
pu

)
1.5392 1.1273 1.3333 1.5526
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Looking at Table 5.1, it is clear that Suppliers 4 and 1 give the two largest values for Ĉpl, Ĉpu and Ĉpk,
suggesting that they are the most capable. This may be because they seem to have the smallest variation
within the speci�ed range. They therefore represent the best two choices of suppliers. Suppliers 3 and
2 are not as capable as the former because of their greater variability. Because the estimated Ĉpk index
for Supplier 1 is close to that of Supplier 4 we might feel that that the di�erence in capability of the
processes between these suppliers is not signi�cant. The same statement may hold true of Suppliers 2
and 3. Statistical methods for the comparison of the suppliers' process capability indices are required
for the quality control manager to draw intelligent conclusion from this data. A Bayesian simulation
procedure will be considered to determine which processes are signi�cantly di�erent from one another.
The potential performance of the proposed method will be compared with the permutation approach by
Polansky (2006).

Before discussion the simulation procedure the posterior distributions of the capability indices will be
looked at.

In the last part of this paper control limits will be calculated for future capability indices. In Figure 5.1
the posterior distributions of Cpk are illustrated using Equation (4.1) and numerical integration.

Figure 5.1: Posterior Distributions of Cpk

Table 5.2: Posterior Means and Variances
Supplier 1 Supplier 2 Supplier 3 Supplier 4

Posterior Mean 1.5314 1.1234 1.3285 1.5474
Posterior Variance 0.0263 0.0100 0.0144 0.0177

From Table 5.2 it can be seen that the posterior means are for all practical purposes the same as the
Ĉpk values given in table 5.1. Further inspection of Figure 5.1 and Table 5.2 shows that Suppliers 4 and
1 have the largest posterior means, suggesting they are the most capable. In the next section a simple
Bayesian solution to the problem of constructing simultaneous credibility intervals for the capability
indices will be discussed.
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6 Simultaneous Credibility Intervals

The method proposed by Ganesh (2009) can be compared to multiple testing, also referred to as the
multiple comparison problem. In multiple testing, the objective is to control the family wise error rate.
Similarly in his paper, Ganesh control the simultaneous coverage rate. If the interest is in constructing
simultaneous credibility intervals for all pairwise di�erences, a Bayesian version of Tukey's simultaneous
con�dence intervals can be used. De�ne

T (2) = max
l

{(
C

(l)
pk − E

(
C

(l)
pk |y

)
|y
)}
−min

l

{
C

(l)
pk − E

(
C

(l)
pk |y

)
|y
}

where T
(2)
α is the upper α percentage point of the distribution of T (2). Simultaneous 100 (1− α) %

credibility intervals for all pairwise di�erences are given by

E
(
C

(i)
pk |y

)
− E

(
C

(j)
pk |y

)
± T (2)

α i = 1, 2, . . . , 4; j = 1, 2, . . . , 4; i 6= j

100,000 Monte Carlo simulations were used to calculate E
(
C

(i)
pk |y

)
, E
(
C

(j)
pk |y

)
and T

(2)
α .

The simulation procedure is as follows:

1. Simulate k from a χ2
n−1 distribution.

2. Calculate σ2∗
i =

(n−1)s2i
k (Equation (2.5)) where (*) indicates a simulated value (i = 1, 2, . . . , 4).

3. σ∗i =
√
σ2∗
i

4. By using the fact that µi|σ2
i , ȳi ∼ N

(
ȳi,

σ2
i

n

)
(Equation (2.2)) simulate µ∗i .

5. From the de�nition of the capability index it follows that C
(i)
pk can be simulated as C

(i)∗
pk =

min
(
u−µ∗

i

3σ∗
i
,
µ∗
i−l

3σ∗
i

)
.

6. Repeat steps 1 to 5 l̃ times. As mentioned, for this example l̃ = 100, 000.

In Figure 6.1 the posterior distribution of T (2) is given and in Table 6.1 credibility intervals for di�erences
in Cpk are given using Ganesh's method.
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Figure 6.1: Distribution of T (2)

T
(2)
0.05 = 0.4823, T

(2)
0.1 = 0.4279 and T

(2)
0.15 = 0.3915

Table 6.1: Credibility Intervals for Di�erences in Cpk - Ganesh Method

E
(
C

(i)
pk |y

)
− E

(
C

(j)
pk |y

)
95% Interval 90% Interval 87.47% Interval

Supplier 1 - Supplier 2 (-0.0734;0.8915) (-0.0187;0.8371) (0;0.8155)
Supplier 1 - Supplier 3 (-0.2779;0.6867) (-0.2234;0.6323) (-0.2058;0.6097)
Supplier 1 - Supplier 4 (-0.4971;0.4675) (-0.4427;0.4131) (-0.4245;0.3910)
Supplier 2 - Supplier 3 (-0.6871;0.2775) (-0.6326;0.2231) (-0.6136;0.2019)
Supplier 2 - Supplier 4 (-0.9063;0.0583) (-0.8519;0.0039) (-0.8323;-0.0168)
Supplier 3 - Supplier 4 (-0.7016;0.2630) (-0.6471;0.2086) (-0.6265;0.1890)

For solving the supplier problem Polansky (2006) used multiple comparison techniques in conjunction
with permutation tests. The multiple comparisons tests used were:

a. The Bonferonni method, which adjusts the signi�cance levels of the pair wise tests.

b. The protected multiple comparison method, which requires that an omnibus test of equality between
all of the process capability indices be rejected before pair-wise tests are performed and does not
require adjustment of the signi�cance level of the pair-wise tests.

Polansky (2006) came to the conclusion that at the 5% signi�cance level suppliers 1,2 and 4 have process
capabilities that are not signi�cantly di�erent. Similarly, suppliers 2 and 3 are not signi�cantly di�erent
from one another, but supplier 2 is signi�cantly di�erent from Supplier 1 and 4.

According to Table 6.1 it is only at signi�cance level of 12.5% that the Bayesian procedure shows
a signi�cant di�erence between Supplier 2 and Suppliers 1 and 4. To see if Ganesh (2009) version
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of Tukey's simultaneous con�dence intervals is somewhat conservative, the following simulation study
has been conducted to evaluate the coverage probability and power of the Bayesian hypothesis testing
procedure.

I. a. Assume that y ∼ N
(
µ1, σ

2
1

)
where µ1 = 2.7048 and σ2

1 = (0.0034)
2
. The parameters µ1 and

σ2
1 are obtained from the sample statistics of Supplier 1.

b. Simulate the su�cient statistics ȳi ∼ N
(
µ1,

σ2
1

n1

)
and (n1 − 1) s2

i ∼ σ2
1χ

2
n1−1 to represent a

data set for the four suppliers where n1 = 50 and i = 1, 2, 3, 4.

c. By doing l̃ = 10000 simulations T
(2)
0.05 can be calculated for our �rst dataset as well as the

credibility intervals as described in Section 6.

d. If any one of the six credibility intervals do not contain zero, the null hypothesis

H0 : C
(1)
pk = C

(2)
pk = C

(3)
pk = C

(4)
pk

will be rejected. Rejection of H0 when it is true is called a Type I error.

e. Steps (a) - (d) are replicated l = 20, 000 times with µ1 = 2.7048, σ2
1 = (0.0034)

2
and n1 = 50

and the estimated Type I error = 1008
20000 = 0.0504 which corresponds well with α = 0.05. It

means that for 1008 datasets one or more of the six credibility intervals did not contain zero.

II. Assume now that y ∼ N
(
µ2, σ

2
2

)
where µ2 = 2.7019, σ2

2 = (0.0054)
2
and n2 = 75. The parameter

values are that of the sample statistics of the second supplier. Repeat steps I (a) - I (e) and also
for Suppliers 3 and 4.

In Table 6.2 the estimated Type I errors for the four cases are given.

Table 6.2: Estimated Type I Error for Di�erent Parameter Combinations and Sample Sizes
n µ σ Type I Error

50 2.7048 0.0034 0.0504
75 2.7019 0.0054 0.0483
70 2.6979 0.0046 0.0521
75 2.6972 0.0038 0.0507

The average Type I error = 0.0504 which as mentioned corresponds well with α = 0.05. It therefore does
not seem that Ganesh Bayesian version of Tukey's simultaneous con�dence interval is too conservative.

7 Type II Error of Ganesh Bayesian Method

Acceptance of H0 when it is false is called a Type II error. In Table 7.1 the sample statistics of Table
5.1 are used as parameter values.

Table 7.1: Cpk Values for the Four Suppliers

Supplier (i) 1 2 3 4
Sample Size (ni) 50 75 70 75
Mean (µi) 2.7048 2.7019 2.6979 2.6972
Standard Deviation (σi) 0.0034 0.0054 0.0046 0.0038

Ĉ
(i)
pk 1.5392 1.1273 1.3333 1.5526

It is clear from Table 7.1 that the Cpk parameters values are all di�erent. To get an estimate of the Type

II error 10 000 data sets were generated with sample sizes as shown in Table 7.1. For each dataset T
(2)
α
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was calculated from 10,000 Monte Carlo simulations. The Type II error was estimated by observing the
number of times that H0 was accepted, i.e., the number of times that all six credibility intervals contain
zero. The process was repeated 5 times and the following estimates of the Type II error were obtained:
0.4240, 0.4163, 0.4212 and 0.4182. The average Type II error estimate is therefore 0.42184 and is the
result of 50,000 datasets. The power of the Bayesian procedure = 1− 0.42184 = 0.57816.

8 Posterior Distributions of Cpl and Cpu

It might be of interest to also look at the posterior distributions of Cpl = µ−l
3σ and Cpu = u−µ

3σ . The
posterior distribution of Cpl is given in Equation (3.1) and can be used for illustration purposes. A much
easier way to obtain the posterior distribution is to simulate a large number of conditional posterior dis-
tributions. The average of these conditional distributions is then the unconditional posterior distribution
of Cpl. This procedure is called the Rao-Blackwell method.

In Figures 8.1 and 8.2 the posterior distributions of Cpl and Cpu are displayed.

Figure 8.1: Posterior Distributions of Cpl
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Figure 8.2: Posterior Distributions of Cpu

In Table 8.1 the posterior means of Cpl and Cpu are given for the four suppliers and in Table 8.2 the
95% credibility intervals for the di�erences between suppliers are given using Ganesh method.

Table 8.1: Posterior Means of Cpl and Cpu
Supplier 1 2 3 4

Cpl 2.4920 1.3615 1.3377 1.5585
Cpu 1.5460 1.1303 1.6431 2.0521

Table 8.2: 95% Credibility Intervals for Di�erences between Suppliers
Cpl Cpu

Supplier 1 - Supplier 2 (0.4910;1.7700) (-0.1281;0.9595)
Supplier 1 - Supplier 3 (0.5148;1.7938) (-0.6408;0.4467)
Supplier 1 - Supplier 4 (0.2940;1.5729) (-1.0498;0.0377)
Supplier 2 - Supplier 3 (-0.6157;0.6633) (-1.0565;0.0310)
Supplier 2 - Supplier 4 (-0.8365;0.4424) (-1.4655;-0.3780)
Supplier 3 - Supplier 4 (-0.8603;0.4187) (-0.9527;0.1348)

According to the Cpl credibility interval Supplier 1 is signi�cantly di�erent from Suppliers 2, 3 and 4.
The other suppliers do not di�er signi�cantly from each other. Inspection of the Cpu intervals shows
that there is a signi�cant di�erence between Suppliers 2 and 4.
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9 The Predictive Distribution of a Future Sample Capability
Index, Ĉ

(f)
pk

To obtain a Bayesian control chart for the capability index Cpk the predictive distribution must �rst be
derived.

Consider a future sample of m observations from the N
(
µ, σ2

)
population, y1f , y2f , . . . , ymf . The future

sample mean is de�ned as ȳf = 1
m

∑m
j=1 yjf and a future sample variance by s

2
f = 1

m−1

∑m
j=1 (yjf − ȳf )

2
.

A future sample capability index is therefore de�ned as

Ĉ
(f)
pk = min

(
Ĉ(f)
pu , Ĉ

(f)
pl

)
where

Ĉ(f)
pu =

u− ȳf
3sf

and

Ĉ
(f)
pl =

ȳf − l
3sf

.

By using the results given in Smit and Chakraborti (2009) or by using similar theoretical derivations as

in Theorem 4.1 it can be shown that the conditional predictive distribution of Ĉ = Ĉ
(f)
pk is given by

f
(
Ĉ|µ, σ2

)
= 3

√
m

m− 1

ˆ m−1

Ĉ2 C2
p

0

{
φ

(
3
√
m

[
C − 2Cp +

√
x

m− 1
Ĉ

])
+ φ

(
3
√
m

[
C −

√
x

m− 1
Ĉ

])}√
xf (x) dx (9.1)

where

f (x) =
1

2
m−1

2 Γ
(
m−1

2

)x 1
2 (m−1)−1 exp

(
−x

2

)
,

φ (z) =
1√
2π

exp

(
−1

2
z2

)
,

C = Cpk = min

(
u− µ

3σ
,
µ− l
3σ

)
and

Cp =
u− l
6σ

.

The unconditional predictive distribution f
(
Ĉ|data

)
can be obtained in the following way:

i. Simulate σ2 and µ from their joint posterior distribution and calculate C and Cp. Since σ
2|data ∼

(n−1)S2

χ2
n−1

and µ|σ2, data ∼ N
(
ȳ, σ

2

n

)
, µ and σ2 can easily be simulated. Let us call these simulated

values µ1 and σ2
1 .

ii. Substitute µ1 and σ2
1 in Equation (9.1) and do the numerical integration to obtain f

(
Ĉ|µ1, σ

2
1

)
.

iii. Repeat (i) and (ii) l times to get f
(
Ĉ|µ1, σ

2
1

)
, f
(
Ĉ|µ2, σ

2
2

)
, . . . , f

(
Ĉ|µl, σ2

l

)
. The unconditional

predictive distribution f
(
Ĉ|data

)
is the average of the conditional predictive distributions (Rao-

Blackwell method).
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9.1 Example

Consider the following sample values: n = 75, ȳ = 2.6972 and s = 0.0038. These sample values are

the statistics for Supplier 4. In Figure 9.1 the predictive distribution of Ĉ = Ĉ
(f)
pk for m = 10 future

observations are given.

Figure 9.1: f
(
Ĉ

(f)
pk |data

)

Mean
(
Ĉ

(f)
pk

)
= 1.6870; Median

(
Ĉ

(f)
pk

)
= 1.598; Mode

(
Ĉ

(f)
pk

)
= 1.456; V ar

(
Ĉ

(f)
pk

)
= 0.2432

95% Equal − tail interval = (0.9936; 2.8954) , length = 1.9018
95% HPD interval = (0.8790; 2.6360) , length = 1.7570

p
(
Ĉ

(f)
pk > 3.923

)
= 0.0027

p
(
Ĉ

(f)
pk > 4.263

)
= 0.00135

p
(
Ĉ

(f)
pk < 0.7905

)
= 0.00135

10 Distribution of the Run-length and Average Run-length

Assuming that the process remains stable, the predictive distribution can be used to derive the distri-
bution of the run-length and average run-length. From Figure 9.1 it follows that for a 99.73% two-sided
control chart the lower control limit is LCL = 0.7905 and the upper control limit is UCL = 4.263. If a
future capability index is smaller than 0.7905 or larger than 4.263, it falls in the rejection region and it

is said that the control chart signals. The run-length is de�ned as the number of future C
(f)
pk indices (r)

until the control chart signals for the �rst time (Note that r does not include that C
(f)
pk index when the

control chart signals). Given µ and σ2 and a stable Phase I process, the distribution of the run-length r
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is Geometric with parameter

ψ
(
µ, σ2

)
=

ˆ
R(β)

f
(
Ĉ

(f)
pk |µ, σ

2
)
dĈ

(f)
pk

where f
(
Ĉ

(f)
pk |µ, σ2

)
is de�ned in Equation (9.1), i.e., the distribution of Ĉ

(f)
pk given that µ and σ2 are

known and R (β) represents those values of C
(f)
pk that are smaller than LCL and larger than UCL. The

values of µ and σ2 are however unknown and the uncertainty of these parameters are described by the
joint posterior distribution p

(
µ, σ2|data

)
= p

(
µ|σ2, data

)
p
(
σ2|data

)
(Equations (2.2) and (2.3)).

By simulating µ and σ2 from p
(
µ, σ2|data

)
the probability density function of f

(
Ĉ

(f)
pk |µ, σ2

)
as well

as the parameter ψ
(
µ, σ2

)
can be obtained. This must be done for each future sample. In other

words, for each future sample µ and σ2 must �rst be simulated from p
(
µ, σ2|data

)
and then ψ

(
µ, σ2

)
calculated. Therefore by simulating all possible combinations of µ and σ2 from their joint posterior
distribution a large number of ψ

(
µ, σ2

)
values can be obtained. Also a large number of Geometric

distributions, i.e., a large number of run-length distributions each with a di�erent parameter value(
ψ
(
µ1, σ

2
1

)
, ψ
(
µ2, σ

2
2

)
, . . . , ψ

(
µl, σ

2
l

))
can be obtained.

As mentioned the run-length r for given µ and σ2 is geometrically distributed with mean

E
(
r|µ, σ2

)
=

1− ψ
(
µ, σ2

)
ψ (µ, σ2)

and variance

V ar
(
r|µ, σ2

)
=

1− ψ
(
µ, σ2

)
ψ2 (µ, σ2)

.

The unconditional moments E (r|data), E
(
r2|data

)
and V ar (r|data) can therefore be obtained by sim-

ulation or numerical integration. For further details see Menzefricke (2002, 2007, 2010b,a) .

The mean of the predictive distribution of the run-length for the 99.73% two-sided control limits is
E (r|data) = 482.263 somewhat larger than the 370 that one would have expected if β = 0.0027. The
median on the other hand is less than 370, Median (r) = 303.01. For the 99.73% one-sided control chart
E (r|data) = 555.174 and Median (r) = 294.31.

See Figures 10.1, 10.2, 10.3 and 10.4 for m = 10 future observations.

De�ne ψ̃
(
µ, σ2

)
= 1

l

∑l
i=1 ψ

(
µi, σ

2
i

)
. From Menzefricke (2002) it follows that if l→∞ then ψ̃ → β and

the harmonic mean of r = 1
β . For β = 0.0027, the harmonic mean = (0.0027)

−1
= 370.
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Figure 10.1: Distribution of Run-length - Two-sided Interval β = 0.0027

Mean (r) = 482.263; Median (r) = 303.01; V ar (r) = 2.8886× 105

95% HPD interval = (0; 1554.5)
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Figure 10.2: Distribution of Expected Run-length - Two-sided Interval β = 0.0027

Mean = 483.263; Median = 527.972, V ar = 2.7907× 104

95% HPD interval = (141.993; 689.429)
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Figure 10.3: Distribution of Run-length - One-sided Interval β = 0.0027

Mean (r) = 555.174; Median (r) = 294.31; V ar (r) = 6.1818× 105

95% HPD interval = (0; 1971.1)
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Figure 10.4: Distribution of Expected Run-length - One-sided Interval β = 0.0027

Mean = 563.578; Median = 436.528, V ar = 2.0013× 105

95% HPD interval = (0; 1384.5)

11 Conclusion

This paper developed a Bayesian method to analyze Cpl, Cpu and Cpk. Multiple testing strategies have
been implemented on data representing four processes from four suppliers that produce piston rings for
automobile engines studied by Chou (1994). The results have been compard to the frequentist results
and it was shown that Tukey's method is somewhat more conservative. Control charts were further
developed using the Bayesian approach for Cpk.

Mathematical Appendix

Proof of Theorem 3.1

Since

µ|σ2, y ∼ N
(
ȳ,
σ2

n

)

and

k =
vS2

σ2
∼ χ2

v
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it follows that

t|t̃, k ∼ N
(
a
√
k,

1

9n

)

where

a =
t̃√
v
.

Therefore

p
(
t|t̃
)

=
´∞

0
f
(
t|t̃, k

)
f (k) dk

= 3
√
n

2
v
2 Γ( v

2 )
√

2π

´∞
0

exp

[
− 9n

2

(
t− a

√
k
)2
]
k

v
2−1 exp

[
−k2
]
dk

=
3
√
n exp

(
− 9nt2

2

)
2

v
2
√

2πΓ( v
2 )

´∞
0
k

v
2−1

(∑∞
j=0

(9nta
√
k)

j

j! exp
[
−k2

(
1 + 9na2

)])
dk.

Since ˆ ∞
0

k
1
2 (v+j)−1 exp

[
−k

2

(
1 + 9na2

)]
dk =

2
1
2 (v+j)Γ

(
v+j

2

)
(1 + 9na2)

1
2 (v+j)

and substituting a = t̃√
v
, the posterior distribution of t = µ−l

3σ = Cpl follows as

p
(
t|t̃
)

=
3
√
n exp

(
− 9nt2

2

)
Γ
(
v
2

)√
2π

∞∑
j=0

(
9ntt̃√
v

)j
1

j!

Γ
(
v+j

2

)
2

1
2 j(

1 + 9n
v t̃

2
) 1

2 (v+j)
−∞ < t <∞.

Proof of Theorem 4.1

The Cpk index can also be written as

C = Cpk =
u− l − 2 |µ−M |

6σ

where

M =
u+ l

2
.

Since

µ|σ2, y ∼ N
(
ȳ,
σ2

n

)
,

it follows that

µ−M ∼ N
(
ζ,
σ2

n

)

where
ζ = ȳ −M.
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Let
w = |µ−M | ,

then

p
(
w|σ2, y

)
=

√
n

σ
√

2π
exp

{
−n

2

(w − ζ)
2

σ2

}
+

n

σ
√

2π
exp

(
−n

2

(w + ζ)
2

σ2

)

(See Kotz and Johnson (1993, page 26)).

Now C = b− ãw, where ã = 1
3σ and b = Cp = u−l

6σ .

Also w = − (C − b) 1
ã and

∣∣dw
dc

∣∣ = 1
ã .

From this it follows that

p
(
C|σ2, y

)
=

√
n

ãσ
√

2π

{
exp

(
− n

2ã2σ2
[C − b+ ãζ]

2
)

+ exp
(
− n

2ã2σ2
[C − b− ãζ]

2
)}

C < b̃ <
S

σ

where b̃ = Ĉp = u−l
6s .

Substituting for ã, b and ζ and making use of the fact that k = vS2

σ2 ∼ χ2
v it follows that

p
(
C|k, y

)
=

3
√
n√

2π

exp

−9n

2

[
C − t∗

√
k

v

]2
+ exp

−9n

2

[
C − t̃

√
k

v

]2
 C < b̃

√
k

v
.

Therefore

p
(
C|y

)
=

3
√
n√

2π

ˆ ∞
C2v
b̃2

exp

−9n

2

[
C − t∗

√
k

v

]2
+ exp

−9n

2

[
C − t̃

√
k

v

]2


× 1

2
v
2 Γ
(
v
2

)k v
2−1 exp

(
−k

2

)
dk.
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