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Abstract 

The most common Bayesian approach for detecting outliers is to assume that outliers are 

observations which have been generated by contaminating models. An alternative idea was 

used by Zellner (1975) and Chaloner (1994). They studied the properties of realized 

regression error terms. Posterior distributions for individual realized errors and for linear 

and quadratic combinations of them were derived. In this note the theory and results 

derived by Chaloner (1994) are extended. Since it is not clear to us what the frequentist 

properties of the Bayesian procedures of Chaloner and Zellner are (i.e. what the size of the 

type I error or the power of their tests are) a Bayesian-frequentist approach is used for 

detecting outliers in a one-way variance components model. For illustration purposes, the 

Sharples (1990) contaminated data are used. It is concluded that the Bayesian frequentist 

approach seems to be more conservative than Chaloner’s method.  
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1. Introduction 

The most common Bayesian approach for detecting outliers is to assume that outliers are 

observations which have been generated by models that are contaminated and which are 

different from the model that has generated the rest of the data. These contaminating 
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models are usually considered to be either mean-shift or inflated-variance models. Previous 

research along these lines are given in Box and Tiao (1968), Freeman (1980), Pettit and 

Smith (1985), Verdinelli and Wasserman (1991) and Hoeting, Raftery and Madigan (1996).  

For approaches of Bayesian model checking, see for example Dey, Gelfand, Swartz and 

Vlachos (1998), O’Hagan (2003), Marshall and Spiegelhalter (2003) and Bayarri and 

Castellanos (2007). 

An alternative idea was used by Zellner (1975). He studied the properties of realized 

regression error terms. Posterior distributions for individual realized errors and for linear 

and quadratic combinations of them were derived. Zellner and Moulton (1985) on the other 

hand used the posterior distributions of the realized error terms to construct a residual plot. 

The approach used by Chaloner and Brant (1988) is an extention of the ideas applied by 

Zellner (1975) and Zellner and Moulton (1985). They defined an outlier to be an observation 

with a large realized error which has been generated by the model under consideration. 

Chaloner and Brant (1988) calculated the exact posterior probability of an observation being 

an outlier as well as the joint posterior probability of any two observations being outliers. 

Let εi ~ N(0, σ
2
), i = 1, 2, …, m, and independently of each other. The ε1, …, εm are realized 

errors or residuals. An outlier is defined as any observation with |εi| > k� for a suitable value 

of �� . If 

 �� � �Φ�� 	0.5 
 �� �0.95 ���� (1.1)   

then the prior probability of no outlier is 0.95. Given the data, the posterior probabilities can 

be calculated. According to Chaloner (1994), any observation with a posterior probability, ���|��| � ��|����� larger than the prior probability 2Φ�!��� would be a possible outlier. 

In this note the theory and results derived by Chaloner (1994) for the balanced one-way 

random effects model will be extended. The data that will be used are the Sharples (1990) 

contaminated data and the possible outliers are indicated by asterisks in Table 1.1. 

 

2. The Model and the Example 

The balanced one-way random effects model is defined as 

"�# � $ 
 �� 
 %�#   �& � 1, … , *, + � 1, … , ,�            (1.2) 

where 

eij ~ N(0, ���)  ;  ri ~ N(0, ���), independently of each other. 
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Also 

-� � *�, ! 1�  ;  -� � * ! 1  ;   "�. � ∑ "�#/#0�   ; 

"1�. � �/ "�.  ;  ".. � ∑ ∑ "�#/#0�2�0�  ;  "1.. � �2/ "..  ; 
-�3� � ∑ ∑ 4"�# ! "1�.5�/#0�2�0�   ;  -�3� � , ∑ �"1�. ! "1..��2�0�  

where -�3� and -�3� are the within and between groups sum of squares respectively. 

Example 1.1  

Table 1.1: Sharples Generated Data with Possible Outliers indicated by an Asterisk  

Group Measurements 678.  
1    24.80     26.90    26.65    30.93    33.77    63.31* 34.39 

2    23.96     28.92    28.19    26.16    21.34    29.46 26.34 

3    18.30     23.67    14.47    24.45    24.89    28.95 22.46 

4    51.42*   27.97    24.76    26.67    17.58    24.29 28.78 

5    34.12     46.87    58.59*  38.11    47.59    44.67 44.99 

              "1.. = 31.39 

* � 5 , , � 6 , -� � *�, ! 1� � 25 , -� � * ! 1 � 4 ,  

-�3� � 2282.0893 , -�3� � 1837.0937 

�>�� � 91.2836 , �>�� � 61.3316 

 

3. Prior and Posterior Distributions 

As prior the Jeffreys’ independent prior 

��$, ���, ���� ∝ �������� 
 ,������  

will be used. See for example Box and Tiao (1973, Ch.5). It can easily be shown that, given 

the variance components, the posterior distribution of %�# � "�# ! $ ! ��  is normal with 

@A%�#B", ���, ���C � "�# ! /DEEFG.HD�EF..D�EH/DEE   and  I��A%�#B", ���, ���C � D�E2/ 	D�EH2/DEED�EH/DEE � (3.1) 

Also, given the variance components, the posterior distribution of ri is normal with 

@A��B", ���, ���C � /DEED�EH/DEE �"�. ! "..�  and  I��A��B", ���, ���C � DEE�2D�EH/DEE�2�D�EH/DEE�  (3.2) 
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The posterior distribution of the variance components is given by 

�����, ���|"� ∝ �������E�J�H������ 
 ,������E�JEH��%K� 	! �� LJ�M�D�E 
 JEMED�EH/DEEN�  

��� � 0  ;  ��� � 0  and ��� 
 ,��� � ���� � ���. (3.3) 

The posterior distribution of the variance components as well as that of 
OGPD�  and 

QGDE are given 

in Chaloner (1994). 

Simulation of the variance components follow easily from (3.3) as follows: 

Since 
J�M�D�E ~SJ��  and 

JEMED�EE ~SJE� , ���, ����  and ��� � D�EE �D�E/  can easily be simulated. If a 

negative value of ��� is obtained, disregard this value as well as the corresponding ��� value. 

It is our opinion that this is the best method to simulate the variance components if the 

percentage of negative ��� values are zero or very small. The simulated values can then be 

substituted in the conditional normal distributions (for example equations (3.1) and (3.2)). 

Repeat the above steps until TU permissible values are obtained. For the Sharples data TU will 

be taken as 100 000. By averaging the TU conditional distributions (Rao-Blackwell method), 

the unconditional posterior distributions can be obtained. 

 

4. The Bayesian Method of Chaloner 

Chaloner (1994) defined two sets of residuals: 

The within-group residuals 
OGPD�  and the 

QGDE between-group residuals. The within-group 

residuals measure how far "�# is from its mean and the between-group residuals measure 

how far �� is from zero. 

The unconditional posterior distributions of these residuals can easily be obtained by 

simulating the variance components from equation (3.3). Using equation (1.1) for a sample 

of size 30 gives �� � 3.14. The prior probability of an observation being an outlier is 

therefore 0.0017.  The posterior probabilities that observations "�V, "W� and "XY are outliers 

are 

(a) Z �[O�\D� [ � ��|"� � 0.43810, (b) Z �[O]�D� [ � ��|"� � 0.04963 and  

(c) Z �[O^_D� [ � ��|"� � 0.00059. The corresponding Bayes factors are  

(i) `ab�V � c.WYd�cc.cc�e � 257.71, (ii) `abW� � c.cWfVYc.cc�e � 29.19 and (iii) `abXY � c.cccXfc.cc�e � 0.35. 
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In the following table, Jeffreys’ interpretation of Bayes factors are given (Jeffreys (1961)). 

Table 4.1: Jeffreys’ Scale of Evidence for Bayes Factor BF12 

Bayes Factor Interpretation 

BF12<1 Negative support for Model M1 

1<BF12<3 Barely worth mentioning support for M1 

3<BF12<10 Substantial evidence for M1 

10<BF12<30 Strong evidence for M1 

30<BF12<100 Very strong evidence for M1 

BF12>100 Decisive evidence for M1 

The posterior probabilities of observations "�V and "W� are larger than 0.0017.  Observations "�V and "W� are therefore possible outliers. The Bayes factors in Table 4.1 also give strong 

and decisive evidence that this is the case. 

Similar results can be obtained for the between-group residuals. Since there are only five 

groups, it follows from equation (1.1) that for 3 � 5, �� � 2.57 the prior probability that 

any one of the groups will be outlying is 0.0102. The posterior probabilities are (a) 

Z �[Q�DE[ � ��|"� � 0.000431, (b) Z �[Q_DE[ � ��|"� � 0.00614 and  

(c) Z �[Q̂DE[ � ��|"� � 0.03393. It therefore seems that Group 5 is a possible outlier because 

its posterior probability is larger than the prior probability of 0.0102.  The corresponding 

Bayes factors are  

(i) `ab� � c.cccWY�c.c�c� � 0.042, (ii) `ab� � c.ccV�Wc.c�c� � 0.60 and (iii) `abY � c.cYYfYc.c�c� � 3.33. 

Since the Bayes factor of Group 5 is between three and ten, then according to Table 4.1 

there is substantial evidence that Group 5 is outlying. 

 

5. A Bayesian-Frequentist Approach for Outlier Detection 

5.1. The Known-Variance Case 

Since it is not clear to us what the frequentist properties of the Bayesian procedures of 

Chaloner and Zellner are (i.e. what the size of the Type I error or the power of their tests 

are) a Bayesian-frequentist approach will be used for detecting outliers in a one-way 

random effects model. According to Bayarri and Berger (2004), statisticians should readily 

use both Bayesians and frequentist ideas. Objective Bayesians and frequentist methods 

often give similar results for normal linear models. See for example the results in Tables 5.1 

and 5.2. Reid and Cox (2014) on the other hand mentioned that "A hybrid method of 

inference that uses Bayesian reasoning with impersonal priors, if the results are well 

calibrated in the frequency sense, may be ideal, but to date the construction of these priors 
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is elusive." It is a very desirable situation if the resulting Bayesian procedure will also have 

good frequentist properties. 

From equation (3.2) it follows that the standardised random effect ��∗ � QG
hijQAQGBD�E,DEE,kjljC 

is also normally distributed with @m��∗|���, ���, ����n � /DE √2
h�D�EH/DEE��2D�EH/DEE� �"�. ! "..� and 

I��m��∗|���, ���, ����n � 1. 

In Table 5.1 the Bayesian results for the random effects are illustrated and in Table 5.2 the 

SAS printout for the Sharples data are given.  Since the true parameter values are not 

known, the point estimates �>�� � 91.2836 and �>�� � 61.3316 are used in the formulae. 

 

Table 5.1: Solution for Random Effects - Bayes Procedure - Variances Known 

Group @m��|���, ���, ����n pI��m��|���, ���, ����n  @m��∗|���, ���, ����n 

1 2.4048 4.6924 0.5125 

2 -4.0492 4.6924 -0.8629 

3 -7.1607 4.6924 -1.5260 

4 -2.0915 4.6924 -0.4457 

5 10.8967 4.6924 2.3222 

       

Table 5.2: Solution for Random Effects – SAS – Satterthwaite Procedure 

Group Estimate Std Err Pred DF t Value Pr>|t| 

1 2.4048 4.6924 6.11 0.51 0.6263 

2 -4.0492 4.6924 6.11 -0.86 0.4207 

3 -7.1607 4.6924 6.11 -1.53 0.1769 

4 -2.0915 4.6924 6.11 -0.45 0.6711 

5 10.8966 4.6924 6.11 2.32 0.0585 

 

A comparison between the two tables show that pI��m��|���, ���, ����n is equal to the 

standard error of a predictor (Std Err Pred) and the expected value of the standardized 

random effect  @m��∗|���, ���, ����n is equal to the t Value in the SAS Printout. 

As mentioned the expected values of the standardised residuals will be used as measures 

for detecting possible outliers. If in a certain data set  

|@m��∗|���, ���, ����n| � ��  then �� will be considered an outlier. The values of ��  will be 

obtained from the predictive distribution of @m��∗|���, ���n. 
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5.2. The Predictive Distribution of rAs8∗Btuv, tvvC � 68∗ 

Let  "�∗ � 
/DE √2�FG.�F..�

h�D�EH/DEE��2D�EH/DEE� 

where "�. �& � 1, … ,5� and ".. are considered to be random variables. The predictive 

distribution of "�∗ will tell us what possible values @m��∗|���, ���n might take on in future 

experiments. The following theorem can now be proved: 

Theorem 5.1 

If H0 is true (i.e if the model is correct) then "∗ � m"�∗ "�∗ … "2∗n′ given the variance 

components is multivariate normally distributed with mean @m"�∗n � 0 and variance 

I��m"�∗n � /�2���DEE�2D�EH/DEE�  �& � 1, … , *�. The correlation coefficient between "x∗ and "M∗ � yx,M �
��2��, T � 1, … , *, 3 � 1, … , *, T z 3. 

The proof is given in Appendix A. 

From Theorem 5.1 it follows that if * � 5, 

�� � 2.57pI��m"�∗n � 2.57h �2���/DEE�2D�EH/DEE� � 2.57h �W��V��V�.YY�V�X�f�.�dYV�HV�V�.YY�V� � 3.4341  

if the point estimates are substituted for the parameter values. 

This means that in 95% of future experiments all the @m��∗|���, ���, ����n, & � 1, … ,5 will fall 

between -3.4341 and 3.4341. In Figure 5.1 the control limits for the Sharples data are 

illustrated. 
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Figure 5.1: Means and 95% Intervals for s8∗, 8 � u, … , { 

According to our method, Group 5 is not an outlying group, because Z�|�X∗| � 3.4341� �0.1441. The mean of Group 5 is 2.32 which is smaller than 3.45. 

 

5.3.  Unknown Variances 

In the unknown variance case, ��  can be obtained by simulation. It was mentioned in Section 

3 that: 

(i) Since 
J�M�D�E ~SJ��  and 

JEMED�EE ~SJE� , ���, ����  and ��� � D�EE �D�E/  can easily be simulated. 

(ii) For each pair of simulated variance components ����, ���� draw "∗ from the 

multivariate normal distribution given in Theorem 5.1. Since "∗ is a singular 

normal distribution, only * ! 1 random variables can be drawn. For the Sharples 

data draw "�∗, "�∗, "Y∗, "W∗ and calculate "X∗ � 0 ! ∑ "x∗Wx0� . 

 

(iii) Calculate "Mj|∗ � max �|"�∗|; & � 1,2, … ,5�. 

 

(iv) Repeat steps (i) – (iii) 100 000 times and draw a histogram of "Mj|∗ . 
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Figure 5.2: Histogram of 6���∗  

 

6���∗�.�{ � �. ���� � ��   (100 000 simulations) 

 

The control limits as well as the means and 95% Bayesian confidence intervals for ��∗ are 

given in Figure 5.3, and in Figure 5.4 the unconditional posterior distributions of ��∗ are 

displayed. The unconditional posterior distributions are obtained by averaging the 

conditional posterior distributions, i.e. the Rao-Blackwell method. 
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Figure 5.3: Means and 95% Intervals for s8∗, 8 � u, … , {, Unknown Variances 

 

 

Figure 5.4: Unconditional Posteriors of s8∗, 8 � u, … , { 

 

In Table 5.3 the means, variances and 95% intervals for ��∗ are given, and in the last column 

the outlying probabilities of the five groups are given. 
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Table 5.3: Probabilities that Groups are outlying 

s8∗ �����s8∗� ��s�s8∗� 95% Interval ������8�s� 

1 0.4507 1.0091 -1.518 – 2.420 0.0004 

2 -0.7589 1.0257 -2.744 – 1.266 0.0012 

3 1.3421 1.0804 -3.379 – 0.695 0.0083 

4 -0.3920 1.0069 -2.359 – 1.575 0.0003 

5 2.0424 1.1862 -0.092 – 4.177 0.0500 

 

Inspection of Table 5.3 shows that the probability that Group 5 is outlying is now 0.0500 

which is smaller than 0.1441, the probability for the known variance case. The estimation of 

the variance components using Monte Carlo simulation leads to more uncertainty and that 

is the reason for the smaller probability. According to the Bayesian-frequentist procedure 

there is no reason to believe that any one of the groups are outlying. 

A possible criticism of the Bayesian-Frequentist procedure so far could have been the 

apparent double use of the data. The same data are used for obtaining the posterior 

distribution of the ��∗ and the predictive distribution of the "�∗. As mentioned by Bayarri and 

Castellanos (2007): “This can result in severe conservatism incapable of detecting clearly 

inappropriate models.” See also Bayarri and Berger (2000) and Bayarri and Morales (2003). 

One way to avoid this double use of the data are to use part of the data for computing the 

posterior distribution and the rest for prediction. This is what we aim to do in the last part of 

this section and in the next section. All the data will be used for obtaining the posterior 

distributions of the standardised random effects and residuals but for prediction purposes 

the possible outliers will be deleted from the data. By deleting "�V, "W� and Group 5 from 

the data set it was found that �� � 3.44. The value given in Figure 5.1 where the point 

estimates are substituted for the variance components is �� � 3.43. These two values are for 

all practical purposes the same. It can therefore be concluded that group 5 is not an outlying 

group. For the unbalanced random effects model the Monte Carlo simulation procedure is 

somewhat more complicated and will be discussed in the next section. 

 

6. Outliers in the Case of Individual Observations 

From equation (3.1) it is clear that the standardised residual %�#∗ � OGP
hijQAOGPBF,D�E,DEEC is 

normally distributed with mean @A%�#∗ B", ���, ���C � FGP� ��EE��E���EEFG.� ��E��E���EEF..
� ��E��E���EE�DEEH��E�� �

     

and variance I��A%�#∗ B", ���, ���C � 1, & � 1, … , *, + � 1, … , ,. 



- 12 - 

 

If for a certain data set B@A%�#∗ B���, ���, "CB � �∗ then %�# will be considered an outlier. As 

before the value of �∗ will be obtained from the predictive distribution of @A%�#∗ B���, ���C. 

6.1. The Predictive Distribution of rA�8�∗ Btuv, tvvC � 68�∗  

Let "�#∗ � FGP� ��EE��E���EEFG.� ��E��E���EEF..
� ��E��E���EE�DEEH��E�� �

 

where "�#, "�. and ".. are considered to be future observations, i.e. random variables. The 

predictive distribution of "�#∗   �& � 1, … , *, + � 1, … , ,� will be an indication of what possible 

values @A%�#∗ B���, ���C might take on in future experiments. The following Theorem can now 

be proved. 

Theorem 6.1 

If the data are generated by the model given in equation (1.2) then "∗ � m"��∗ "��∗ … "2/∗ n′ will be multivariate normally distributed with mean  

@A"�#∗B���, ���C � 0   �& � 1, … , *, + � 1, … , ,� 

I��A"�#∗B���, ���C � �D�EH2/DEE �*�, ! 1����� 
 ,���� 
 ����* ! 1��  

��-A"�#∗ , "xM∗ B���, ���C � �D�ED�EH2/DEE  

��-A"�#∗ , "x#∗B���, ���C � �D�ED�EH2/DEE  

and 

��-A"�#∗ , "�M∗ B���, ���C � !1  

The proof is given in Appendix B. 

To avoid the double use of the data in the simulation procedure of the variance 

components, the possible outliers "�V, "W� and "XY are deleted from the data set. Group 5 

will however not be deleted because it was shown in Section 5 that it is not an outlying 

group. From this it follows that �� � 5, �� � 6, �Y � 6, �W � 5 and �X � 5. To simplify the 

simulation procedure (since the posterior can then be expressed in hierarchical form.) 

  � DEED�E is first simulated and then ���. ��� follows from the product of   and ���. 

Two objective priors will be considered, namely the Probability-matching and Reference 

priors. These priors often lead to procedures with good frequentist properties. An in-depth 

discussion of the nature and merits of the Reference and Probability-matching priors lie 
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outside the scope of this article, but the interested reader should consult Berger and 

Bernardo (1992) as well as Datta and Ghosh (1995). 

The Probability-matching prior for the parameters �$,  , ���� is given by: 

Pr��$,  , ���� ∝ ���� £∑ ¤GE��H¥¤G�E2�0� ! �¤ �∑ ¤G�H¥¤G
2�0� ��¦�E �  ����Pr�� � (6.1) 

which is also a Reference prior for the parameter groupings �$,  , ����, � , $, ���� and � , ���, $�. 

The Reference prior for the parameter groupings  �$, ���,  �, ����,  , $� and ����, $,  � is given 

by: 

Pr��$, ���,  � ∝ ���� 	∑ ¤GE��H¥¤G�E2�0� ��E �  ����Pr�� � (6.2) 

where ∑ ��2�0� � � 

If �� � �� � ⋯ � �� � , both these priors simplify to Jeffreys’ independent prior P�$, ���, ���� ∝ �������� 
 ,������. 

From equations (6.1) and (6.2) it follows that the posterior distributions Pr�4 |"5 and Pr�4 |"5 are given by: 

Pr�4 |"5 ∝ Pr�� � ∏ � ��H¥¤G�
�E2�0� �∑ ¤G�H¥¤G

2�0� ���E ©-�3� 
 ∑ ¤G4FG.�ª«5E
�H¥¤G

2�0� ¬��E�¤���
 (6.3) 

and 

Pr�4 |"5 ∝ Pr�� � ∏ � ��H¥¤G�
�E2�0� �∑ ¤G�H¥¤G

2�0� ���E ©-�3� 
 ∑ ¤G4FG.�ª«5E
�H¥¤G

2�0� ¬��E�¤���
 (6.4) 

ν� � � ! *, ν�3� � ∑ ∑ 4"�# ! "�.5�¤G#0�  2�0� , and $® � ∑ FG. ¯G��°¯G�G±�
∑ ¯G��°¯G�G±�  

In Figure 6.1, the two posterior distributions Pr�� � and Pr�� � are displayed. 

  



- 14 - 

 

Figure 6.1: Posterior Distribution of ²³u4´|65 and ²³v4´|65 

 µ%��� � � 5.0846   ,   µ%�&��� � � 3.318   ,   µ��%� � � 1.67   ,   I��� � � 28.404 

 

From Figure 6.1 it is clear that the posterior distributions Pr�4 |"5 and Pr�4 |"5 are for all 

practical purposes the same. In the Monte Carlo simulation procedure only Pr�4 |"5 will 

therefore be used. 

The join posterior distribution can be written as 

p4$, ���,  |"5 � p4$|���,  , "5p4���| , "5Pr4 |"5 

and the simulation method to obtain �∗ is as follows: 

(i) By using a rejection method simulate   from Pr4 |"5. 

(ii) Given  , ��� has an Inverse Gamma distribution and a simulated value of ��� can 

be obtained from the equation: 

��� � 1S¤���  ·ν�3� 
 ¸ ��4"�. ! $®5�
1 
  ��

2
�0� ¹ 

(iii) From (i) and (ii) it follows that ��� � ��� . 

(iv) For each pair of simulated variance components ����, ���� draw "∗ �
m"��∗ "��∗ … "2/∗ n′ from the multivariate normal distribution defined in 

Theorem 6.1 

0 5 10 15 20 25
0
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(v) Calculate the maximum of the absolute values that have been drawn and call it max B"�#∗ B   & � 1, … , *, + � 1, … , ,. 
(vi) Repeat steps (i) – (v) 100 000 times and draw a histogram of the simulated max B"�#∗ B  values 

 

Figure 6.2: Histogram of º»¼ B68�∗ B   

 

º» ¼B68�∗ B�.�{ � ½. v{�¾ � �∗ 

¿À»Á � {. �u�Â  , ¿ÀÃÄ»Á � {. vuu�  , ¿ÅÃÀ � {  , Æ»³Ä»ÁÇÀ � u. u{�Â 

If the prior p�$, ���, ���� ∝ �������� is used (see for example Bayarri and Castellanos (2007)) 

then �∗ � 7.2649. 

The control limits as well as the means and 95% Bayesian confidence intervals for %�#∗  are 

given in Figure 6.3, and in Figure 6.4, the unconditional posterior distributions are displayed. 

As mentioned, the unconditional posterior distributions are obtained using the Rao-

Blackwell method. 
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Figure 6.3: Means and 95% Intervals for �8�∗ , 8 � u, … , {, � � u, … , Â 

 
Standardised Errors 

 

Figure 6.4: Unconditional Posteriors of �¾u∗ , �{�∗ , �uÂ∗  
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Table 6.1 Probabilities that Individual Observations are Outlying 

�8�∗  ������8�∗ � ��s��8�∗ � 95% Interval ��B�8�∗ B � ½. vÂ� 

41 6.1981 1.7257 3.623 – 8.773 0.2094 

53 4.6637 2.2356 1.773 – 7.954 0.0412 

16 8.3100 2.5608 5.174 – 11.447 0.7451 

 

Since the mean of %�V∗  is larger than �∗ � 7.26, it can be concluded that "�V is an outlying 

observation. This is also clear from Table 6.1 where Z�|%�V∗ | � 7.26� �  0.7451. 

 

7. Conclusion 

In this note the Bayesian procedures of Zellner (1975) and Chaloner (1994) are extended for 

the balanced one-way random effects model. Since it is not clear to us what the frequentist 

properties of their methods are (i.e. what the size of the type I error or the power of their 

tests are), a Bayesian-frequentist approach is used for detecting outliers. The Sharples 

generated data (Sharples (1990) and Chaloner (1994) ) are used for illustration purposes. 

Chaloner (1994) concluded that observations "�V and "W� as well as Group 5 are possible 

outliers, since their posterior probabilities are larger than the prior probability of an 

individual observation or group being an outlier. 

Inspection of Tables 5.3 and 6.1, as well as Figures 5.3 and 6.2 show that only observation "�V is an outlier. 

The Bayesian-frequentist approach therefore seems to be more conservative than 

Chaloner’s method.  
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Appendix A 

 

Proof of Theorem 5.1 

"�∗ � 
/DE√2�FG.�F..�

h�D�EH/DEE��2D�EH/DEE�    & � 1, … , * 

where 

"1�. � �/ ∑ "�#/#0� � �/ ∑ 4$ 
 �� 
 %�#5 � $ 
 �� 
 %�./#0�    

and 

"1.. � �2/ ∑ ∑ "�#/#0�2�0� � �2/ ∑ ∑ 4$ 
 �� 
 %�#5/#0�2�0� � $ 
 �. 
 %..  
Therefore 

@�"1�. ! "1..� � $ ! $ � 0  

Since �� and %�# are uncorrelated it follows that 

I���"1�. ! "1..� � I����� ! �.� 
 I���%�. ! %..� 

  � ��� �2���2 
 ��� �2���2/  

  � �2���2/ ���� 
 ,����    & � 1, … , * 

and therefore 

I���"�∗� � /�2���DEE�2D�EH/DEE�  (A.1) 

Also 

��-�"1x. ! "1..��"1M. ! "1..� � @�"1x. ! "1..��"1M. ! "1..� ! @�"1x. ! "1..�@�"1M. ! "1..�  

      � @�"1x. ! "1..��"1M. ! "1..� 

    � @�m��x ! �.� 
 �%x. ! %..�nm��M ! �.� 
 �%M. ! %..�n� 

    � @m��x ! �.���M ! �.�n 
 @m�%x. ! %..��%M. ! %..�n 

   since the expected values of the cross products are zero. 
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Now @m��x ! �.���M ! �.�n � @m�x�Mn ! @m�x�.n ! @m�.�Mn 
 @A�.�C 

           � 0 ! DEE2 ! DEE2 
 DEE2  

           � �DEE2  

and 

@m�%x. ! %..��%M. ! %..�n � @m%x.%M.n ! @m%x.%..n ! @m%..%M.n 
 @A%..�C  

           � 0 ! D�E2/ ! D�E2/ 
 D�E2/  

           � �D�E2/  

Therefore 

��-�"1x. ! "1..��"1M. ! "1..� � ��2/ ���� 
 ,����  

and 

��-�"x∗, "M∗ � � �/DEE�2D�EH/DEE� , T � 1, … , *, 3 � 1, … , *, T z 3. 

From this it follows that the correlation coefficient between 

"x∗ and "M∗ � yx,M � ��2�� (A.2) 
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Appendix B 

"�#∗ � FGP� ��EE��E���EEFG.� ��E��E���EEF..
� ��E��E���EE�DEEH��E�� �

 ,  & � 1, … , *, + � 1, … , , 

Let "��# � "�# ! /DEED�EH/DEE "�. ! D�ED�EH/DEE ".. 
 � "�# ! �"�. ! È".. 
where � � /DEED�EH/DEE, È � D�ED�EH/DEE and � 
 È � 1 

The model is  

"�# � $ 
 �� 
 %�#   

where eij ~ N(0, ���) and ri ~ N(0, ���) 

(a) we will first derive I���"�#∗ � 

Now I��4"��#5 � I����� ! ��� ! È�.� 
 I���%�# ! �%�. ! È%..� 

since �� and %�#  are independently distributed of each other 

Further 

I����� ! ��� ! È�.� � I��mÈ��� ! �.�n � È���� �2���2    
and 

I��4%�# ! �%�. ! È%..5 � D�E/ L�, ! 1� 
 È� �2��2 �N  

Therefore 

I��4"��#5 � D�E/ 	�, ! 1� 
 D�ED�EH/DEE �2��2 ��  

and I���"�#∗� � �D�EH2/DEE �*�, ! 1����� 
 ,���� 
 ����* ! 1��  (B.1) 

 

 

(b) ��-4"��# , "�xM5 � @4"��#"�xM5 because @4"��#5 � @4"�xM5 � 0 �& � 1, … , *;  + � 1, … , ,; T � 1, … , *;  3 � 1, … , ,; & z T ��� + z 3�  

Therefore ��-4"��# , "�xM5 � @4"�# ! �"�. ! È"..��"xM ! �"x. ! È"..5  

  � @ÉÈ��� ! �.� 
 4%�# ! �%�. ! È%..5Ê�È��x ! �.� 
 �%xM ! �%x. ! È%..�� 

  � È�@��� ! �.���x ! �.� 
 @4%�# ! �%�. ! È%..5�%xM ! �%x. ! È%..� 

Now 

È�@��� ! �.���x ! �.� � �ËEDEE2   
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and 

@4%�# ! �%�. ! È%..5�%xM ! �%x. ! È%..� � �ËED�E2/   

From this it follows that 

��-4"��# , "�xM5 � �ËE
2/ ���� 
 ,���� � 

��D�E�E
2/4D�EH/DEE5 

and 

��-�"�#∗ , "xM∗ � � �D�ED�EH2/DEE  (B.2) 

(c) In a similar way it can be shown that 

��-�"�#∗ , "x#∗ � � �D�ED�EH2/DEE  (B.3)  

(d) ��-4"��# , "��M5 � È�@��� ! �.�� 
 @4%�# ! �%�. ! È%..5�%�M ! �%�. ! È%..� 

� È���� �2���2 ! D�E/ 	�1 ! È�� 
 ËE
2 � � ! D�E/ 	 D�EH2/DEE2�D�EH/DEE��  

and ��-�"�#∗ , "�M∗ � � !1  (B.4) 
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