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Abstract 

The most common Bayesian approach for detecting outliers is to assume that outliers are 
observations which have been generated by contaminating models. An alternative idea was 
used by Zellner (1975) and Chaloner (1994). They studied the properties of realized 
regression error terms. Posterior distributions for individual realized errors and for linear 
and quadratic combinations of them were derived. In this note the theory and results 
derived by Chaloner (1994) are extended. Since it is not clear to us what the frequentist 
properties of the Bayesian procedures of Chaloner and Zellner are (i.e. what the size of the 
Type I error or the power of their tests are) a Bayesian-frequentist approach is used for 
detecting outliers in a one-way random effects model. For illustration purposes, the 
Sharples (1990) contaminated data are used. It is concluded that the Bayesian frequentist 
approach seems to be more conservative than Chaloner’s method.  

Keywords:   Random effects model; posterior distributions; outlying observations; Bayesian-
frequentist approach; predictive distribution; control limits 
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1. Introduction 

The most common Bayesian approach for detecting outliers is to assume that outliers are 
observations which have been generated by contaminating models different from the one 
generating the rest of the data. These contaminating models are usually considered to be 
either mean-shift or inflated-variance models. Previous research along these lines are given 
in Box and Tiao (1968), Freeman (1980), Pettit and Smith (1985), Verdinelli and Wasserman 
(1991) and Hoeting, Raftery and Madigan (1996).  

Approaches for Bayesian checking of hierarchical models are those proposed by Dey, 
Gelfand, Swartz and Vlachos (1998), O’Hagan (2003), Marshall and Spiegelhalter (2003) and 
Bayarri and Castellanos (2007). 

An alternative idea was used by Zellner (1975). He studied the properties of realized 
regression error terms. Posterior distributions for individual realized errors and for linear 
and quadratic combinations of them were derived. Zellner and Moulton (1985) on the other 
hand used the posterior distributions of the realized error terms to construct a residual plot. 
The approach used by Chaloner and Brant (1988) is an extention of the ideas applied by 
Zellner (1975) and Zellner and Moulton (1985). They defined an outlier to be an observation 
with a large realized error, generated by the model under consideration. Chaloner and Brant 
(1988) calculated the exact posterior probability of an observation being an outlier as well 
as the joint posterior probability of any two observations being outliers. Let εi ~ N(0, σ2),                
i = 1, 2, …, m, and independently of each other. The ε1, …, εm are realized errors or residuals. 
An outlier is defined as any observation with |εi| > k� for a suitable value of 𝑘𝑘� . If 

 𝑘𝑘� = 𝜎𝜎Φ−1 �0.5 + 1
2
�0.95

1
𝑚𝑚�� (1.1)                 

then the prior probability of no outlier is 0.95. Given the data, the posterior probabilities can 
be calculated. According to Chaloner (1994), any observation with a posterior probability, 
𝑝𝑝𝑝𝑝(|𝜀𝜀𝑖𝑖| > 𝑘𝑘�|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) larger than the prior probability 2Φ(−𝑘𝑘�) would be a possible outlier. 

In this note the theory and results derived by Chaloner (1994) for the balanced one-way 
random effects model will be extended. The data that will be used are the Sharples (1990) 
contaminated data and the possible outliers are indicated by asterisks in Table 1.1. 

 

2. The Model and the Example 

The balanced one-way random effects model is defined as 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜃𝜃 + 𝑝𝑝𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖  (𝑖𝑖 = 1, … , 𝐼𝐼, 𝑗𝑗 = 1, … , 𝐽𝐽)            (1.2) 

where 
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eij ~ N(0, 𝜎𝜎12)  ;  ri ~ N(0, 𝜎𝜎22), independently of each other. 

Also 

𝑣𝑣1 = 𝐼𝐼(𝐽𝐽 − 1)  ;  𝑣𝑣2 = 𝐼𝐼 − 1  ;   𝑌𝑌𝑖𝑖. = ∑ 𝑌𝑌𝑖𝑖𝑖𝑖
𝐽𝐽
𝑖𝑖=1   ; 

𝑌𝑌�𝑖𝑖. = 1
𝐽𝐽
𝑌𝑌𝑖𝑖.  ;  𝑌𝑌.. = ∑ ∑ 𝑌𝑌𝑖𝑖𝑖𝑖

𝐽𝐽
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1  ;  𝑌𝑌�.. = 1

𝐼𝐼𝐽𝐽
𝑌𝑌..  ; 

𝑣𝑣1𝑚𝑚1 = ∑ ∑ �𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑌𝑌�𝑖𝑖.�
2𝐽𝐽

𝑖𝑖=1
𝐼𝐼
𝑖𝑖=1   ;  𝑣𝑣2𝑚𝑚2 = 𝐽𝐽 ∑ (𝑌𝑌�𝑖𝑖. − 𝑌𝑌�..)2𝐼𝐼

𝑖𝑖=1  

where 𝑣𝑣1𝑚𝑚1 and 𝑣𝑣2𝑚𝑚2 are the within and between groups sum of squares respectively. 

Example 1.1  

Table 1.1: Sharples Generated Data with Possible Outliers indicated by an Asterisk  

Group Measurements 𝒀𝒀�𝒊𝒊.  
1    24.80     26.90    26.65    30.93    33.77    63.31* 34.39 
2    23.96     28.92    28.19    26.16    21.34    29.46 26.34 
3    18.30     23.67    14.47    24.45    24.89    28.95 22.46 
4    51.42*   27.97    24.76    26.67    17.58    24.29 28.78 
5    34.12     46.87    58.59*  38.11    47.59    44.67 44.99 
              𝑌𝑌�.. = 31.39 

𝐼𝐼 = 5 , 𝐽𝐽 = 6 , 𝑣𝑣1 = 𝐼𝐼(𝐽𝐽 − 1) = 25 , 𝑣𝑣2 = 𝐼𝐼 − 1 = 4 ,  

𝑣𝑣1𝑚𝑚1 = 2282.0893 , 𝑣𝑣2𝑚𝑚2 = 1837.0937 

𝜎𝜎�12 = 91.2836 , 𝜎𝜎�22 = 61.3316 

 

3. Prior and Posterior Distributions 

As prior the Jeffreys’ independent prior 

𝑝𝑝(𝜃𝜃,𝜎𝜎12,𝜎𝜎22) ∝ 𝜎𝜎1−2(𝜎𝜎12 + 𝐽𝐽𝜎𝜎22)−1  

will be used. See for example Box and Tiao (1973, Ch.5). It can easily be shown that, given 
the variance components, the posterior distribution of 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝜃𝜃 − 𝑝𝑝𝑖𝑖  is normal with 

𝐸𝐸�𝑒𝑒𝑖𝑖𝑖𝑖�𝑌𝑌,𝜎𝜎12,𝜎𝜎22� = 𝑌𝑌𝑖𝑖𝑖𝑖 −
𝐽𝐽𝜎𝜎22𝑌𝑌𝑖𝑖.+𝜎𝜎12𝑌𝑌..
𝜎𝜎12+𝐽𝐽𝜎𝜎22

  and  𝑉𝑉𝑑𝑑𝑝𝑝�𝑒𝑒𝑖𝑖𝑖𝑖�𝑌𝑌,𝜎𝜎12,𝜎𝜎22� = 𝜎𝜎12

𝐼𝐼𝐽𝐽
�𝜎𝜎1

2+𝐼𝐼𝐽𝐽𝜎𝜎22

𝜎𝜎12+𝐽𝐽𝜎𝜎22
� (3.1) 

Also, given the variance components, the posterior distribution of ri is normal with 

𝐸𝐸�𝑝𝑝𝑖𝑖�𝑌𝑌,𝜎𝜎12,𝜎𝜎22� = 𝐽𝐽𝜎𝜎22

𝜎𝜎12+𝐽𝐽𝜎𝜎22
(𝑌𝑌𝑖𝑖. − 𝑌𝑌..)  and  𝑉𝑉𝑑𝑑𝑝𝑝�𝑝𝑝𝑖𝑖�𝑌𝑌,𝜎𝜎12,𝜎𝜎22� = 𝜎𝜎22(𝐼𝐼𝜎𝜎12+𝐽𝐽𝜎𝜎22)

𝐼𝐼(𝜎𝜎12+𝐽𝐽𝜎𝜎22)
 (3.2) 
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The posterior distribution of the variance components is given by 

𝑝𝑝(𝜎𝜎12,𝜎𝜎22|𝑌𝑌) ∝ (𝜎𝜎12)−
1
2

(𝑣𝑣1+2)(𝜎𝜎12 + 𝐽𝐽𝜎𝜎22)−
1
2

(𝑣𝑣2+2)𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2
�𝑣𝑣1𝑚𝑚1
𝜎𝜎12

+ 𝑣𝑣2𝑚𝑚2
𝜎𝜎12+𝐽𝐽𝜎𝜎22

��  

𝜎𝜎12 > 0  ;  𝜎𝜎22 > 0  and 𝜎𝜎12 + 𝐽𝐽𝜎𝜎22 = 𝜎𝜎122 > 𝜎𝜎12. (3.3) 

The posterior distribution of the variance components as well as that of 
𝑒𝑒𝑖𝑖𝑖𝑖
𝜎𝜎1

 and 𝑟𝑟𝑖𝑖
𝜎𝜎2

 are given 

in Chaloner (1994). 

Simulation of the variance components follow easily from (3.3) as follows: 

Since 𝑣𝑣1𝑚𝑚1
𝜎𝜎12

~𝜒𝜒𝑣𝑣1
2  and 𝑣𝑣2𝑚𝑚2

𝜎𝜎122
~𝜒𝜒𝑣𝑣2

2 , 𝜎𝜎12, 𝜎𝜎122  and 𝜎𝜎22 = 𝜎𝜎122 −𝜎𝜎12

𝐽𝐽
 can easily be simulated. If a 

negative value of 𝜎𝜎22 is obtained, disregard this value as well as the corresponding 𝜎𝜎12 value. 
It is our opinion that this is the best method to simulate the variance components if the 
percentage of negative 𝜎𝜎22 values are zero or very small. If the number of negative 𝜎𝜎22 values 
is less than one percent, this procedure will give correct frequentist coverage. For the data 
in Table 1.1 the percentage of negative simulated  𝜎𝜎22 values was only 0.41%. If on the other 
hand the between group variance, 𝜎𝜎22 is small so that the number of negative simulated 𝜎𝜎22 
values are large, then 𝑝𝑝(𝜃𝜃,𝜎𝜎12,𝜎𝜎22) ∝ 𝜎𝜎1−2𝜎𝜎2−1 might be a better prior to use. It is well known 
that the prior 𝑝𝑝(𝜃𝜃,𝜎𝜎12,𝜎𝜎22) ∝ 𝜎𝜎1−2𝜎𝜎2−2 will give improper posterior distributions. The 
simulated values can then be substituted in the conditional normal distributions (for 
example equations (3.1) and (3.2)). Repeat the above steps until 𝑙𝑙 permissible values are 
obtained. For the Sharples data 𝑙𝑙 will be taken as 100 000. By averaging the 𝑙𝑙 conditional 
distributions (Rao-Blackwell method), the unconditional posterior distributions can be 
obtained. 

 

4. The Bayesian Method of Chaloner 

In this section the results derived by Chaloner (1994) will be illustrated in a different form – 
as a ratio of the prior probability to the posterior probability. No new contributions to the 
existing theory are therefore made in this section. Chaloner (1994) claimed that any 
observation with a posterior probability larger than the prior probability would be a possible 
outlier. 

She defined two sets of residuals: 

The within-group residuals 
𝑒𝑒𝑖𝑖𝑖𝑖
𝜎𝜎1

 and the 𝑟𝑟𝑖𝑖
𝜎𝜎2

 between-group residuals. The within-group 

residuals measure how far 𝑌𝑌𝑖𝑖𝑖𝑖 is from its mean and the between-group residuals measure 
how far 𝑝𝑝𝑖𝑖 is from zero. 
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The unconditional posterior distributions of these residuals can easily be obtained by 
simulating the variance components from equation (3.3). Using equation (1.1) for a sample 
of size 30 gives 𝑘𝑘� = 3.14. The prior probability of an observation being an outlier is 
therefore 0.0017.  The posterior probabilities that observations 𝑌𝑌16, 𝑌𝑌41 and 𝑌𝑌53 are outliers 
are 

(a) 𝑃𝑃 ��𝑒𝑒16
𝜎𝜎1
� > 𝑘𝑘�|𝑌𝑌� = 0.43810, (b) 𝑃𝑃 ��𝑒𝑒41

𝜎𝜎1
� > 𝑘𝑘�|𝑌𝑌� = 0.04963 and  

(c) 𝑃𝑃 ��𝑒𝑒53
𝜎𝜎1
� > 𝑘𝑘�|𝑌𝑌� = 0.00059. The corresponding ratios are 

(i) 𝐵𝐵𝐵𝐵�16 = 0.43810
0.0017

= 257.71, (ii) 𝐵𝐵𝐵𝐵�41 = 0.04963
0.0017

= 29.19 and (iii) 𝐵𝐵𝐵𝐵�53 = 0.00059
0.0017

= 0.35. 

𝑌𝑌16 and 𝑌𝑌41 are therefore possible outliers. 𝐵𝐵𝐵𝐵�  is not a Bayes factor in the true sense of the 
word. It is as mentioned only a ratio and another way to indicate the magnitude of the 
difference between the prior and posterior probabilities.  

Since Jeffreys’ prior is not proper, Bayes factors cannot be calculated in the usual way. 
Partial Bayes factors (intrinsic or fractional) were also not calculated because this was not 
the purpose of the study. 

Similar results can be obtained for the between-group residuals. Since there are only five 
groups, it follows from equation (1.1) that for 𝑚𝑚 = 5, 𝑘𝑘� = 2.57 the prior probability that 
any one of the groups will be outlying is 0.0102. The posterior probabilities are (a) 

𝑃𝑃 ��𝑟𝑟1
𝜎𝜎2
� > 𝑘𝑘�|𝑌𝑌� = 0.000431, (b) 𝑃𝑃 ��𝑟𝑟3

𝜎𝜎2
� > 𝑘𝑘�|𝑌𝑌� = 0.00614 and  

(c) 𝑃𝑃 ��𝑟𝑟5
𝜎𝜎2
� > 𝑘𝑘�|𝑌𝑌� = 0.03393. It therefore seems that Group 5 is a possible outlier because 

its posterior probability is larger than the prior probability of 0.0102.  The corresponding 
ratios are  

(i) 𝐵𝐵𝐵𝐵�1 = 0.000431
0.0102

= 0.042, (ii) 𝐵𝐵𝐵𝐵�2 = 0.00614
0.0102

= 0.60 and (iii) 𝐵𝐵𝐵𝐵�3 = 0.03393
0.0102

= 3.33. 

Chaloner (1994) also mentioned that if the analysis is repeated after deleting the three 
outlying observations, Y16, Y41 and Y53, the outlying nature of Group 5 is even more apparent 
as the approximate posterior probability that Group 5 is outlying is 0.0429. 

In this case 𝐵𝐵𝐵𝐵�5
∗ = 0.0429

0.0102
= 4.25. A comparison with Jeffreys’ scale of evidence for Bayes 

factors (although it is not a fair comparison because 𝐵𝐵𝐵𝐵�5
∗ is not a Bayes factor in the true 

sense of the word) shows that there is evidence that Group 5 is outlying because the value is 
between 3 and 10. 

In our opinion, Group 5 is not an outlying group. It’s t-value given in Table 5.2 is not even 
significant at the 5% level. This is also apparent from Figures 5.1 and 5.3. 
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5. A Bayesian-Frequentist Approach for Outlier Detection 
5.1. The Known-Variance Case 

Since it is not clear to us what the frequentist properties of the Bayesian procedures of 
Chaloner and Zellner are (i.e. what the size of the Type I error or the power of their tests 
are) a Bayesian-frequentist approach will be used for detecting outliers in a one-way 
random effects model. According to Bayarri and Berger (2004), statisticians should readily 
use both Bayesians and frequentist ideas. Objective Bayesians and frequentist methods 
often give similar results for normal linear models. See for example the results in Tables 5.1 
and 5.2. Reid and Cox (2014) on the other hand mentioned that "A hybrid method of 
inference that uses Bayesian reasoning with impersonal priors, if the results are well 
calibrated in the frequency sense, may be ideal, but to date the construction of these priors 
is elusive." It is a very desirable situation if the resulting Bayesian procedure will also have 
good frequentist properties. 

From equation (3.2) it follows that the standardised random effect 𝑝𝑝𝑖𝑖∗ =
𝑟𝑟𝑖𝑖

�𝑉𝑉𝑉𝑉𝑟𝑟�𝑝𝑝𝑖𝑖�𝜎𝜎12,𝜎𝜎22,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
 

is also normally distributed with 𝐸𝐸[𝑝𝑝𝑖𝑖∗|𝜎𝜎12,𝜎𝜎22,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] = 𝐽𝐽𝜎𝜎2 √𝐼𝐼

�(𝜎𝜎12+𝐽𝐽𝜎𝜎22)(𝐼𝐼𝜎𝜎12+𝐽𝐽𝜎𝜎22)
(𝑌𝑌𝑖𝑖. − 𝑌𝑌..) and 

𝑉𝑉𝑑𝑑𝑝𝑝[𝑝𝑝𝑖𝑖∗|𝜎𝜎12,𝜎𝜎22,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] = 1. 

 

In Table 5.1 the Bayesian results for the random effects are illustrated and in Table 5.2 the 
SAS printout for the Sharples data are given.  Since the true parameter values are not 
known, the point estimates 𝜎𝜎�12 = 91.2836 and 𝜎𝜎�22 = 61.3316 are used in the formulae. 

 

Table 5.1: Solution for Random Effects - Bayes Procedure - Variances Known 

Group 𝑬𝑬�𝒓𝒓𝒊𝒊�𝝈𝝈𝟏𝟏𝟐𝟐,𝝈𝝈𝟐𝟐𝟐𝟐,𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅� �𝑽𝑽𝒅𝒅𝒓𝒓�𝒓𝒓𝒊𝒊�𝝈𝝈𝟏𝟏𝟐𝟐,𝝈𝝈𝟐𝟐𝟐𝟐,𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅�  𝑬𝑬�𝒓𝒓𝒊𝒊∗�𝝈𝝈𝟏𝟏𝟐𝟐,𝝈𝝈𝟐𝟐𝟐𝟐,𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅� 

1 2.4048 4.6924 0.5125 
2 -4.0492 4.6924 -0.8629 
3 -7.1607 4.6924 -1.5260 
4 -2.0915 4.6924 -0.4457 
5 10.8967 4.6924 2.3222 
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Table 5.2: Solution for Random Effects – SAS – Satterthwaite Procedure 

Group Estimate Std Err Pred DF t Value Pr>|t| 
1 2.4048 4.6924 6.11 0.51 0.6263 
2 -4.0492 4.6924 6.11 -0.86 0.4207 
3 -7.1607 4.6924 6.11 -1.53 0.1769 
4 -2.0915 4.6924 6.11 -0.45 0.6711 
5 10.8966 4.6924 6.11 2.32 0.0585 

 

A comparison between the two tables show that �𝑉𝑉𝑑𝑑𝑝𝑝[𝑝𝑝𝑖𝑖|𝜎𝜎12,𝜎𝜎22,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] is equal to the 
standard error of a predictor (Std Err Pred) and the expected value of the standardized 
random effect 𝐸𝐸[𝑝𝑝𝑖𝑖∗|𝜎𝜎12,𝜎𝜎22,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑] is equal to the t Value in the SAS Printout. 

As mentioned the expected values of the standardised residuals will be used as measures 
for detecting possible outliers. If in a certain data set  

|𝐸𝐸[𝑝𝑝𝑖𝑖∗|𝜎𝜎12,𝜎𝜎22,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑]| > 𝑘𝑘�  then 𝑝𝑝𝑖𝑖 will be considered an outlier. The values of 𝑘𝑘�  will be 
obtained from the predictive distribution of 𝐸𝐸[𝑝𝑝𝑖𝑖∗|𝜎𝜎12,𝜎𝜎22]. 

5.2. The Predictive Distribution of 𝑬𝑬�𝒓𝒓𝒊𝒊∗�𝝈𝝈𝟏𝟏𝟐𝟐,𝝈𝝈𝟐𝟐𝟐𝟐� = 𝒀𝒀𝒊𝒊∗ 

Let  𝑌𝑌𝑖𝑖∗ = 𝐽𝐽𝜎𝜎2 √𝐼𝐼(𝑌𝑌𝑖𝑖.−𝑌𝑌..)

�(𝜎𝜎12+𝐽𝐽𝜎𝜎22)(𝐼𝐼𝜎𝜎12+𝐽𝐽𝜎𝜎22)
 

where 𝑌𝑌𝑖𝑖. (𝑖𝑖 = 1, … ,5) and 𝑌𝑌.. are considered to be random variables. The predictive 
distribution of 𝑌𝑌𝑖𝑖∗ will tell us what possible values 𝐸𝐸[𝑝𝑝𝑖𝑖∗|𝜎𝜎12,𝜎𝜎22] might take on in future 
experiments. The following theorem can now be proved: 

Theorem 5.1 

If H0 is true (i.e if the model is correct) then 𝑌𝑌∗ = [𝑌𝑌1∗ 𝑌𝑌2∗ … 𝑌𝑌𝐼𝐼∗]′ given the variance 
components is multivariate normally distributed with mean 𝐸𝐸[𝑌𝑌𝑖𝑖∗] = 0 and variance 

𝑉𝑉𝑑𝑑𝑝𝑝[𝑌𝑌𝑖𝑖∗] = 𝐽𝐽(𝐼𝐼−1)𝜎𝜎22

(𝐼𝐼𝜎𝜎12+𝐽𝐽𝜎𝜎22)
  (𝑖𝑖 = 1, … , 𝐼𝐼). The correlation coefficient between 𝑌𝑌𝑙𝑙∗ and 𝑌𝑌𝑚𝑚∗ = 𝜌𝜌𝑙𝑙,𝑚𝑚 =

−1
𝐼𝐼−1

, 𝑙𝑙 = 1, … , 𝐼𝐼, 𝑚𝑚 = 1, … , 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚. 

The proof is given in Appendix A. 

Three cases will be considered in the section to obtain the limit 𝑘𝑘� . In the first case the point 
estimates will be substituted for the parameter values. 

From Theorem 5.1 it follows that if 𝐼𝐼 = 5, 

𝑘𝑘� = 2.57�𝑉𝑉𝑑𝑑𝑝𝑝[𝑌𝑌𝑖𝑖∗] = 2.57� (𝐼𝐼−1)𝐽𝐽𝜎𝜎22

(𝐼𝐼𝜎𝜎12+𝐽𝐽𝜎𝜎22)
= 2.57� (4)(6)(61.3316)

5(91.2836)+6(61.3316)
= 3.4341. 
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This means that in 95% of future experiments all the 𝐸𝐸[𝑝𝑝𝑖𝑖∗|𝜎𝜎12,𝜎𝜎22,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑], 𝑖𝑖 = 1, … ,5 will fall 
between -3.4341 and 3.4341. In Figure 5.1 the control limits for the Sharples data are 
illustrated. 

Figure 5.1: Means and 95% Intervals for 𝒓𝒓𝒊𝒊∗, 𝒊𝒊 = 𝟏𝟏, … ,𝟓𝟓 

According to our method, Group 5 is not an outlying group, because 𝑃𝑃(|𝑝𝑝5∗| > 3.4341) =
0.1441. The mean of Group 5 is 2.32 which is smaller than 3.43. 

 

5.3.  Unknown Variances 

In the second case, the unknown variance case 𝑘𝑘�  can be obtained by simulation. It was 
mentioned in Section 3 that: 

(i) Since 𝑣𝑣1𝑚𝑚1
𝜎𝜎12

~𝜒𝜒𝑣𝑣1
2  and 𝑣𝑣2𝑚𝑚2

𝜎𝜎122
~𝜒𝜒𝑣𝑣2

2 , 𝜎𝜎12, 𝜎𝜎122  and 𝜎𝜎22 = 𝜎𝜎122 −𝜎𝜎12

𝐽𝐽
 can easily be simulated. 

(ii) For each pair of simulated variance components (𝜎𝜎12,𝜎𝜎22) draw 𝑌𝑌∗ from the 
multivariate normal distribution given in Theorem 5.1. Since 𝑌𝑌∗ is a singular 
normal distribution, only 𝐼𝐼 − 1 random variables can be drawn. For the Sharples 
data draw 𝑌𝑌1∗, 𝑌𝑌2∗,𝑌𝑌3∗,𝑌𝑌4∗ and calculate 𝑌𝑌5∗ = 0 − ∑ 𝑌𝑌𝑙𝑙∗4

𝑙𝑙=1 . 
 

(iii) Calculate 𝑌𝑌𝑚𝑚𝑉𝑉𝑚𝑚∗ = max (|𝑌𝑌𝑖𝑖∗|; 𝑖𝑖 = 1,2, … ,5). 
 

(iv) Repeat steps (i) – (iii) 100 000 times and draw a histogram of 𝑌𝑌𝑚𝑚𝑉𝑉𝑚𝑚∗ . 
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Figure 5.2: Histogram of 𝒀𝒀𝒎𝒎𝒅𝒅𝒎𝒎∗  

 

𝒀𝒀𝒎𝒎𝒅𝒅𝒎𝒎∗𝟎𝟎.𝟗𝟗𝟓𝟓 = 𝟑𝟑.𝟖𝟖𝟑𝟑𝟖𝟖𝟑𝟑 = 𝒌𝒌�   (100 000 simulations) 

 

The control limits as well as the means and 95% Bayesian confidence intervals for 𝑝𝑝𝑖𝑖∗ are 
given in Figure 5.3, and in Figure 5.4 the unconditional posterior distributions of 𝑝𝑝𝑖𝑖∗ are 
displayed. The unconditional posterior distributions are obtained by averaging the 
conditional posterior distributions, i.e. the Rao-Blackwell method. 
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Figure 5.3: Means and 95% Intervals for 𝒓𝒓𝒊𝒊∗, 𝒊𝒊 = 𝟏𝟏, … ,𝟓𝟓, Unknown Variances 

 

 

Figure 5.4: Unconditional Posteriors of 𝒓𝒓𝒊𝒊∗, 𝒊𝒊 = 𝟏𝟏, … ,𝟓𝟓 

 

In Table 5.3 the means, variances and 95% intervals for 𝑝𝑝𝑖𝑖∗ are given, and in the last column 
the outlying probabilities of the five groups are given. 
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Table 5.3: Probabilities that Groups are outlying 

𝒓𝒓𝒊𝒊∗ 𝑴𝑴𝑴𝑴𝒅𝒅𝑴𝑴(𝒓𝒓𝒊𝒊∗) 𝑽𝑽𝒅𝒅𝒓𝒓(𝒓𝒓𝒊𝒊∗) 95% Interval 𝑷𝑷(𝑶𝑶𝑶𝑶𝒅𝒅𝑶𝑶𝒊𝒊𝑴𝑴𝒓𝒓) 
1 0.4507 1.0091 -1.518 – 2.420 0.0004 
2 -0.7589 1.0257 -2.744 – 1.266 0.0012 
3 1.3421 1.0804 -3.379 – 0.695 0.0083 
4 -0.3920 1.0069 -2.359 – 1.575 0.0003 
5 2.0424 1.1862 -0.092 – 4.177 0.0500 

 

Inspection of Table 5.3 shows that the probability that Group 5 is outlying is now 0.0500 
which is smaller than 0.1441, the probability for the known variance case. The estimation of 
the variance components using Monte Carlo simulation leads to more uncertainty and that 
is the reason for the smaller probability. According to the Bayesian-frequentist procedure 
there is no reason to believe that any one of the groups are outlying. 

A possible criticism of the Bayesian-Frequentist procedure so far could have been the 
apparent double use of the data. The same data are used for obtaining the posterior 
distribution of the 𝑝𝑝𝑖𝑖∗ and the predictive distribution of the 𝑌𝑌𝑖𝑖∗. As mentioned by Bayarri and 
Castellanos (2007): “This can result in severe conservatism incapable of detecting clearly 
inappropriate models.” See also Bayarri and Berger (2000) and Bayarri and Morales (2003).  

For the third method, all the data were used to calculate the posterior distribution of the 
standardised random effects, but for predictive purposes, 𝑌𝑌16, 𝑌𝑌41 and Group 5 were deleted 
from the dataset. For the unbalanced random effects model the Monte Carlo simulation 
procedure is somewhat more complicated and will be discussed in the next section. It was 
however found that 𝑘𝑘� = 3.44. The value given in Figure 5.1 where the point estimates are 
substituted for the variance components is 𝑘𝑘� = 3.43. These two values are for all practical 
purposes the same. It can therefore be concluded that group 5 is not an outlying group.  

 

6. Outliers in the Case of Individual Observations 

From equation (3.1) it is clear that the standardised residual 𝑒𝑒𝑖𝑖𝑖𝑖∗ = 𝑒𝑒𝑖𝑖𝑖𝑖

�𝑉𝑉𝑉𝑉𝑟𝑟�𝑒𝑒𝑖𝑖𝑖𝑖�𝑌𝑌,𝜎𝜎12,𝜎𝜎22�
 is 

normally distributed with mean 𝐸𝐸�𝑒𝑒𝑖𝑖𝑖𝑖∗ �𝑌𝑌,𝜎𝜎12,𝜎𝜎22� =
𝑌𝑌𝑖𝑖𝑖𝑖−

𝐽𝐽𝜎𝜎2
2

𝜎𝜎1
2+𝐽𝐽𝜎𝜎2

2𝑌𝑌𝑖𝑖.−
𝜎𝜎1
2

𝜎𝜎1
2+𝐽𝐽𝜎𝜎2

2𝑌𝑌..

� 𝜎𝜎1
2

𝜎𝜎1
2+𝐽𝐽𝜎𝜎2

2�𝜎𝜎2
2+

𝜎𝜎1
2

𝐼𝐼𝐽𝐽 �

     

and variance 𝑉𝑉𝑑𝑑𝑝𝑝�𝑒𝑒𝑖𝑖𝑖𝑖∗ �𝑌𝑌,𝜎𝜎12,𝜎𝜎22� = 1, 𝑖𝑖 = 1, … , 𝐼𝐼, 𝑗𝑗 = 1, … , 𝐽𝐽. 

If for a certain data set �𝐸𝐸�𝑒𝑒𝑖𝑖𝑖𝑖∗ �𝜎𝜎12,𝜎𝜎22,𝑌𝑌�� > 𝑘𝑘∗ then 𝑒𝑒𝑖𝑖𝑖𝑖 will be considered an outlier. As 

before the value of 𝑘𝑘∗ will be obtained from the predictive distribution of 𝐸𝐸�𝑒𝑒𝑖𝑖𝑖𝑖∗ �𝜎𝜎12,𝜎𝜎22�. 
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6.1. The Predictive Distribution of 𝑬𝑬�𝑴𝑴𝒊𝒊𝒊𝒊∗ �𝝈𝝈𝟏𝟏𝟐𝟐,𝝈𝝈𝟐𝟐𝟐𝟐� = 𝒀𝒀𝒊𝒊𝒊𝒊∗  

Let 𝑌𝑌𝑖𝑖𝑖𝑖∗ =
𝑌𝑌𝑖𝑖𝑖𝑖−

𝐽𝐽𝜎𝜎2
2

𝜎𝜎1
2+𝐽𝐽𝜎𝜎2

2𝑌𝑌𝑖𝑖.−
𝜎𝜎1
2

𝜎𝜎1
2+𝐽𝐽𝜎𝜎2

2𝑌𝑌..

� 𝜎𝜎1
2

𝜎𝜎1
2+𝐽𝐽𝜎𝜎2

2�𝜎𝜎2
2+

𝜎𝜎1
2

𝐼𝐼𝐽𝐽 �

 

where 𝑌𝑌𝑖𝑖𝑖𝑖, 𝑌𝑌𝑖𝑖. and 𝑌𝑌.. are considered to be future observations, i.e. random variables. The 
predictive distribution of 𝑌𝑌𝑖𝑖𝑖𝑖∗   (𝑖𝑖 = 1, … , 𝐼𝐼, 𝑗𝑗 = 1, … , 𝐽𝐽) will be an indication of what possible 

values 𝐸𝐸�𝑒𝑒𝑖𝑖𝑖𝑖∗ �𝜎𝜎12,𝜎𝜎22� might take on in future experiments. The following Theorem can now 
be proved. 

Theorem 6.1 

If the data are generated by the model given in equation (1.2) then 𝑌𝑌∗ =
[𝑌𝑌11∗ 𝑌𝑌12∗ … 𝑌𝑌𝐼𝐼𝐽𝐽∗ ]′ will be multivariate normally distributed with mean  

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖∗�𝜎𝜎12,𝜎𝜎22� = 0   (𝑖𝑖 = 1, … , 𝐼𝐼, 𝑗𝑗 = 1, … , 𝐽𝐽) 

𝑉𝑉𝑑𝑑𝑝𝑝�𝑌𝑌𝑖𝑖𝑖𝑖∗�𝜎𝜎12,𝜎𝜎22� = 1
𝜎𝜎12+𝐼𝐼𝐽𝐽𝜎𝜎22

{𝐼𝐼(𝐽𝐽 − 1)(𝜎𝜎12 + 𝐽𝐽𝜎𝜎22) + 𝜎𝜎12(𝐼𝐼 − 1)}  

𝐶𝐶𝐶𝐶𝑣𝑣�𝑌𝑌𝑖𝑖𝑖𝑖∗ ,𝑌𝑌𝑙𝑙𝑚𝑚∗ �𝜎𝜎12,𝜎𝜎22� = −𝜎𝜎12

𝜎𝜎12+𝐼𝐼𝐽𝐽𝜎𝜎22
  

𝐶𝐶𝐶𝐶𝑣𝑣�𝑌𝑌𝑖𝑖𝑖𝑖∗ ,𝑌𝑌𝑙𝑙𝑖𝑖∗�𝜎𝜎12,𝜎𝜎22� = −𝜎𝜎12

𝜎𝜎12+𝐼𝐼𝐽𝐽𝜎𝜎22
  

and 

𝐶𝐶𝐶𝐶𝑣𝑣�𝑌𝑌𝑖𝑖𝑖𝑖∗ ,𝑌𝑌𝑖𝑖𝑚𝑚∗ �𝜎𝜎12,𝜎𝜎22� = −1  

The proof is given in Appendix B. 

To avoid the double use of the data in the simulation procedure for obtaining the predictive 
distribution, the possible outliers 𝑌𝑌16, 𝑌𝑌41 and 𝑌𝑌53 are deleted from the data set. Group 5 will 
however not be deleted because it was shown in Section 5 that it is not an outlying group. 
From this it follows that 𝑛𝑛1 = 5,𝑛𝑛2 = 6,𝑛𝑛3 = 6, 𝑛𝑛4 = 5 and 𝑛𝑛5 = 5. Since the sample sizes 
are now unequal, the prior 𝑝𝑝(𝜃𝜃,𝜎𝜎12,𝜎𝜎22) ∝ 𝜎𝜎1−2(𝜎𝜎12 + 𝐽𝐽𝜎𝜎22)−1 cannot be used for predictive 
purposes. To simplify the simulation procedure, the probability-matching prior and 

reference priors PR1(𝜃𝜃, 𝛾𝛾,𝜎𝜎12) and PR2(𝜃𝜃, 𝛾𝛾,𝜎𝜎12) are preferred. If the parameter 𝛾𝛾 = 𝜎𝜎22

𝜎𝜎12
 is 

used instead of 𝜎𝜎22, the posterior distribution can be expressed in hierarchical form. 𝛾𝛾 is first 
simulated and then 𝜎𝜎12. 𝜎𝜎22 follows from the product of 𝛾𝛾 and 𝜎𝜎12. In other words, ordinary 
Monte Carlo simulation can be used and no Gibbs sampling is necessary. These priors often 
lead to procedures with good frequentist properties. An in-depth discussion of the nature 
and merits of the reference and probability-matching priors lie outside the scope of this 
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article, but the interested reader should consult Berger and Bernardo (1992(a) and 1992(b)) 
as well as Datta and Ghosh (1995). 

The Probability-matching prior for the parameters (𝜃𝜃, 𝛾𝛾,𝜎𝜎12) is given by: 

PR1(𝜃𝜃, 𝛾𝛾,𝜎𝜎12) ∝ 𝜎𝜎1−2 �∑
𝑛𝑛𝑖𝑖
2

(1+𝛾𝛾𝑛𝑛𝑖𝑖)2
𝐼𝐼
𝑖𝑖=1 − 1

𝑛𝑛
�∑ 𝑛𝑛𝑖𝑖

1+𝛾𝛾𝑛𝑛𝑖𝑖
𝐼𝐼
𝑖𝑖=1 �

2
�
1
2

=  𝜎𝜎1−2PR1(𝛾𝛾) (6.1) 

which is also a Reference prior for the parameter groupings (𝜃𝜃, 𝛾𝛾,𝜎𝜎12), (𝛾𝛾,𝜃𝜃,𝜎𝜎12) and 
(𝛾𝛾,𝜎𝜎12, 𝜃𝜃). 

The Reference prior for the parameter groupings  (𝜃𝜃,𝜎𝜎12, 𝛾𝛾), (𝜎𝜎12, 𝛾𝛾,𝜃𝜃) and (𝜎𝜎12,𝜃𝜃, 𝛾𝛾) is given 
by: 

PR2(𝜃𝜃, 𝛾𝛾,𝜎𝜎12) ∝ 𝜎𝜎1−2 �∑
𝑛𝑛𝑖𝑖
2

(1+𝛾𝛾𝑛𝑛𝑖𝑖)2
𝐼𝐼
𝑖𝑖=1 �

1
2

=  𝜎𝜎1−2PR2(𝛾𝛾) (6.2) 

where ∑ 𝑛𝑛𝑖𝑖𝐼𝐼
𝑖𝑖=1 = 𝑛𝑛 

The similarity of the priors PR1(𝛾𝛾) and PR2(𝛾𝛾) are illustrated in Figure 6.1. 

Figure 6.1: Prior Distributions of 𝜸𝜸 = 𝝈𝝈𝟐𝟐
𝟐𝟐

𝝈𝝈𝟏𝟏
𝟐𝟐 

 

For further details about the derivations of equations (6.1) and (6.2) see for example van der 
Merwe, Pretorius and Meyer (2006); van der Merwe and Bekker (2006) and Harvey (2012). 
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If 𝑛𝑛1 = 𝑛𝑛2 = ⋯ = 𝑛𝑛𝐼𝐼 = 𝐽𝐽 both these priors simplify to Jeffreys’ independent prior 
P(𝜃𝜃,𝜎𝜎12,𝜎𝜎22) ∝ 𝜎𝜎1−2(𝜎𝜎12 + 𝐽𝐽𝜎𝜎22)−1. 

From equations (6.1) and (6.2) it follows that the posterior distributions PR1�𝛾𝛾|𝑌𝑌� and 
PR2�𝛾𝛾|𝑌𝑌� are given by: 

PR1�𝛾𝛾|𝑌𝑌� = 𝑐𝑐1PR1(𝛾𝛾)∏ � 1
1+𝛾𝛾𝑛𝑛𝑖𝑖

�
1
2𝐼𝐼

𝑖𝑖=1 �∑ 𝑛𝑛𝑖𝑖
1+𝛾𝛾𝑛𝑛𝑖𝑖

𝐼𝐼
𝑖𝑖=1 �

−12 �𝑣𝑣1𝑚𝑚1 + ∑ 𝑛𝑛𝑖𝑖�𝑌𝑌𝑖𝑖.−𝜃𝜃��
2

1+𝛾𝛾𝑛𝑛𝑖𝑖
𝐼𝐼
𝑖𝑖=1 �

−12(𝑛𝑛−1)

 (6.3) 

and 

PR2�𝛾𝛾|𝑌𝑌� = 𝑐𝑐2PR2(𝛾𝛾)∏ � 1
1+𝛾𝛾𝑛𝑛𝑖𝑖

�
1
2𝐼𝐼

𝑖𝑖=1 �∑ 𝑛𝑛𝑖𝑖
1+𝛾𝛾𝑛𝑛𝑖𝑖

𝐼𝐼
𝑖𝑖=1 �

−12 �𝑣𝑣1𝑚𝑚1 + ∑ 𝑛𝑛𝑖𝑖�𝑌𝑌𝑖𝑖.−𝜃𝜃��
2

1+𝛾𝛾𝑛𝑛𝑖𝑖
𝐼𝐼
𝑖𝑖=1 �

−12(𝑛𝑛−1)

 (6.4) 

ν1 = 𝑛𝑛 − 𝐼𝐼, ν1𝑚𝑚1 = ∑ ∑ �𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑌𝑌𝑖𝑖.�
2𝑛𝑛𝑖𝑖

𝑖𝑖=1  𝐼𝐼
𝑖𝑖=1 , and 𝜃𝜃� =

∑ 𝑌𝑌𝑖𝑖.
𝑛𝑛𝑖𝑖

1+𝛾𝛾𝑛𝑛𝑖𝑖
𝐼𝐼
𝑖𝑖=1

∑ 𝑛𝑛𝑖𝑖
1+𝛾𝛾𝑛𝑛𝑖𝑖

𝐼𝐼
𝑖𝑖=1

 

c1 and c2 are the normalising constants.  

In Figure 6.2, the two posterior distributions PR1�𝛾𝛾|𝑌𝑌� and PR2�𝛾𝛾|𝑌𝑌� are displayed. 

Figure 6.2: Posterior Distribution of 𝐏𝐏𝐑𝐑𝟏𝟏�𝜸𝜸|𝒀𝒀� and 𝐏𝐏𝐑𝐑𝟐𝟐�𝜸𝜸|𝒀𝒀� 

 
𝑀𝑀𝑒𝑒𝑑𝑑𝑛𝑛(𝛾𝛾) = 5.0846   ,   𝑀𝑀𝑒𝑒𝑑𝑑𝑖𝑖𝑑𝑑𝑛𝑛(𝛾𝛾) = 3.318   ,   𝑀𝑀𝐶𝐶𝑑𝑑𝑒𝑒(𝛾𝛾) = 1.67   ,   𝑉𝑉𝑑𝑑𝑝𝑝(𝛾𝛾) = 28.404   , 

𝑐𝑐1 = 1.329277468 × 10−38  and 𝑐𝑐2 = 1.472594966 × 10−38 
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The following theorem can also be proved. 

Theorem 6.2 

PR1�𝛾𝛾|𝑌𝑌� and PR2�𝛾𝛾|𝑌𝑌� are both proper posterior distributions. 

The proof is given in Appendix C 

A comparison of the normalising constants c1 and c2 shows that the two posterior 
distributions are not exactly the same. Further calculations to indicate the very small 
differences in the two posteriors are given in Appendix D. 

However, since the two posterior distributions are for all practical purposes the same, only 
PR1�𝛾𝛾|𝑌𝑌� will be used in the Monte Carlo simulation procedure. 

The joint posterior distribution can be written as 

p�𝜃𝜃,𝜎𝜎12, 𝛾𝛾|𝑌𝑌� = p�𝜃𝜃|𝜎𝜎12, 𝛾𝛾,𝑌𝑌�p�𝜎𝜎12|𝛾𝛾,𝑌𝑌�P𝑅𝑅1�𝛾𝛾|𝑌𝑌� 

and the simulation method to obtain 𝑘𝑘∗ is as follows: 

(i) By using a rejection method simulate 𝛾𝛾 from P𝑅𝑅1�𝛾𝛾|𝑌𝑌�. 
(ii) Given 𝛾𝛾, 𝜎𝜎12 has an Inverse Gamma distribution and a simulated value of 𝜎𝜎12 can 

be obtained from the equation: 

𝜎𝜎12 =
1

𝜒𝜒𝑛𝑛−12  
�ν1𝑚𝑚1 + �

𝑛𝑛𝑖𝑖�𝑌𝑌𝑖𝑖. − 𝜃𝜃��
2

1 + 𝛾𝛾𝑛𝑛𝑖𝑖

𝐼𝐼

𝑖𝑖=1
� 

(iii) From (i) and (ii) it follows that 𝜎𝜎22 = 𝜎𝜎12𝛾𝛾. 
(iv) For each pair of simulated variance components (𝜎𝜎12,𝜎𝜎22) draw 𝑌𝑌∗ =

[𝑌𝑌11∗ 𝑌𝑌12∗ … 𝑌𝑌𝐼𝐼𝐽𝐽∗ ]′ from the multivariate normal distribution defined in 
Theorem 6.1 

(v) Calculate the maximum of the absolute values that have been drawn and call it 
max �𝑌𝑌𝑖𝑖𝑖𝑖∗ �   𝑖𝑖 = 1, … , 𝐼𝐼, 𝑗𝑗 = 1, … , 𝐽𝐽. 

(vi) Repeat steps (i) – (v) 100 000 times and draw a histogram of the simulated 
max �𝑌𝑌𝑖𝑖𝑖𝑖∗ �  values 
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Figure 6.3: Histogram of 𝐦𝐦𝐦𝐦𝐦𝐦 �𝒀𝒀𝒊𝒊𝒊𝒊∗ �   

 

𝐦𝐦𝐦𝐦𝐦𝐦�𝒀𝒀𝒊𝒊𝒊𝒊∗ �
𝟎𝟎.𝟗𝟗𝟓𝟓

= 𝟕𝟕.𝟐𝟐𝟓𝟓𝟖𝟖𝟐𝟐 = 𝒌𝒌∗ 

𝐌𝐌𝐌𝐌𝐦𝐦𝐌𝐌 = 𝟓𝟓.𝟑𝟑𝟏𝟏𝟗𝟗𝟑𝟑  , 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐦𝐦𝐌𝐌 = 𝟓𝟓.𝟐𝟐𝟏𝟏𝟏𝟏𝟗𝟗  , 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 = 𝟓𝟓  , 𝐕𝐕𝐦𝐦𝐕𝐕𝐌𝐌𝐦𝐦𝐌𝐌𝐕𝐕𝐌𝐌 = 𝟏𝟏.𝟏𝟏𝟓𝟓𝟎𝟎𝟑𝟑 

If the prior p(𝜃𝜃,𝜎𝜎12,𝜎𝜎22) ∝ 𝜎𝜎1−2𝜎𝜎2−1 is used (see for example Bayarri and Castellanos (2007)) 
then 𝑘𝑘∗ = 7.2649. 

The control limits as well as the means and 95% Bayesian confidence intervals for 𝑒𝑒𝑖𝑖𝑖𝑖∗  are 
given in Figure 6.4, and in Figure 6.5, the unconditional posterior distributions are 
illustrated. As mentioned, the unconditional posterior distributions are obtained using the 
Rao-Blackwell method. 
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Figure 6.4: Means and 95% Intervals for 𝑴𝑴𝒊𝒊𝒊𝒊∗ , 𝒊𝒊 = 𝟏𝟏, … ,𝟓𝟓, 𝒊𝒊 = 𝟏𝟏, … ,𝟑𝟑 

 
Standardised Errors 

 

Figure 6.5: Unconditional Posteriors of 𝑴𝑴𝟐𝟐𝟏𝟏∗ , 𝑴𝑴𝟓𝟓𝟑𝟑∗ , 𝑴𝑴𝟏𝟏𝟑𝟑∗  
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Table 6.1 Probabilities that Individual Observations are Outlying 

𝑴𝑴𝒊𝒊𝒊𝒊∗  𝑴𝑴𝑴𝑴𝒅𝒅𝑴𝑴(𝑴𝑴𝒊𝒊𝒊𝒊∗ ) 𝑽𝑽𝒅𝒅𝒓𝒓(𝑴𝑴𝒊𝒊𝒊𝒊∗ ) 95% Interval 𝑷𝑷(�𝑴𝑴𝒊𝒊𝒊𝒊∗ � > 𝟕𝟕.𝟐𝟐𝟑𝟑) 
41 6.1981 1.7257 3.623 – 8.773 0.2094 
53 4.6637 2.2356 1.773 – 7.954 0.0412 
16 8.3100 2.5608 5.174 – 11.447 0.7451 

 

Since the mean of 𝑒𝑒16∗  is larger than 𝑘𝑘∗ = 7.26, it can be concluded that 𝑌𝑌16 is an outlying 
observation. This is also clear from Table 6.1 where 𝑃𝑃(|𝑒𝑒16∗ | > 7.26) =  0.7451. 

If the null hypothesis is true, only 5% of 𝑚𝑚𝑑𝑑𝑒𝑒|𝑌𝑌𝑖𝑖∗| will be larger than 𝑘𝑘� = 3.44 and only 5% 
of 𝑚𝑚𝑑𝑑𝑒𝑒|𝑌𝑌𝑖𝑖𝑖𝑖∗ | will be larger than 𝑘𝑘� = 7.2649. If these values of 𝑘𝑘�  are used, the Type I error 
rate will be 5%. These results seem to us an improvement on Chaloner’s (1994) and Zellner’s 
(1975) results. We however did not investigate the power of the tests. 

 

7. Conclusion 

In this note the Bayesian procedures of Zellner (1975) and Chaloner (1994) are extended for 
the balanced one-way random effects model. Since it is not clear to us what the frequentist 
properties of their methods are (i.e. what the size of the Type I error or the power of their 
tests are), a Bayesian-frequentist approach is used for detecting outliers. The Sharples 
generated data (Sharples (1990) and Chaloner (1994) ) are used for illustration purposes. 

Chaloner (1994) concluded that observations 𝑌𝑌16 and 𝑌𝑌41 as well as Group 5 are possible 
outliers, since their posterior probabilities are larger than the prior probability of an 
individual observation or group being an outlier. 

Inspection of Tables 5.3 and 6.1, as well as Figures 5.3 and 6.2 show that only observation 
𝑌𝑌16 is an outlier. 

The Bayesian-frequentist approach therefore seems to be more conservative than 
Chaloner’s method.  
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Appendix A 

 

Proof of Theorem 5.1 

𝑌𝑌𝑖𝑖∗ = 𝐽𝐽𝜎𝜎2√𝐼𝐼(𝑌𝑌𝑖𝑖.−𝑌𝑌..)

�(𝜎𝜎12+𝐽𝐽𝜎𝜎22)(𝐼𝐼𝜎𝜎12+𝐽𝐽𝜎𝜎22)
    𝑖𝑖 = 1, … , 𝐼𝐼 

where 

𝑌𝑌�𝑖𝑖. = 1
𝐽𝐽
∑ 𝑌𝑌𝑖𝑖𝑖𝑖
𝐽𝐽
𝑖𝑖=1 = 1

𝐽𝐽
∑ �𝜃𝜃 + 𝑝𝑝𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖� = 𝜃𝜃 + 𝑝𝑝𝑖𝑖 + 𝑒𝑒𝑖𝑖.
𝐽𝐽
𝑖𝑖=1    

and 

𝑌𝑌�.. = 1
𝐼𝐼𝐽𝐽
∑ ∑ 𝑌𝑌𝑖𝑖𝑖𝑖

𝐽𝐽
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 = 1

𝐼𝐼𝐽𝐽
∑ ∑ �𝜃𝜃 + 𝑝𝑝𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖�

𝐽𝐽
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 = 𝜃𝜃 + 𝑝𝑝. + 𝑒𝑒..  

Therefore 

𝐸𝐸(𝑌𝑌�𝑖𝑖. − 𝑌𝑌�..) = 𝜃𝜃 − 𝜃𝜃 = 0  

Since 𝑝𝑝𝑖𝑖 and 𝑒𝑒𝑖𝑖𝑖𝑖 are uncorrelated it follows that 

𝑉𝑉𝑑𝑑𝑝𝑝(𝑌𝑌�𝑖𝑖. − 𝑌𝑌�..) = 𝑉𝑉𝑑𝑑𝑝𝑝(𝑝𝑝𝑖𝑖 − 𝑝𝑝.) + 𝑉𝑉𝑑𝑑𝑝𝑝(𝑒𝑒𝑖𝑖. − 𝑒𝑒..) 

  = 𝜎𝜎22
(𝐼𝐼−1)
𝐼𝐼

+ 𝜎𝜎12
(𝐼𝐼−1)
𝐼𝐼𝐽𝐽

 

  = (𝐼𝐼−1)
𝐼𝐼𝐽𝐽

(𝜎𝜎12 + 𝐽𝐽𝜎𝜎22)    𝑖𝑖 = 1, … , 𝐼𝐼 

and therefore 

𝑉𝑉𝑑𝑑𝑝𝑝(𝑌𝑌𝑖𝑖∗) = 𝐽𝐽(𝐼𝐼−1)𝜎𝜎22

(𝐼𝐼𝜎𝜎12+𝐽𝐽𝜎𝜎22)
  (A.1) 

Also 

𝐶𝐶𝐶𝐶𝑣𝑣(𝑌𝑌�𝑙𝑙. − 𝑌𝑌�..)(𝑌𝑌�𝑚𝑚. − 𝑌𝑌�..) = 𝐸𝐸(𝑌𝑌�𝑙𝑙. − 𝑌𝑌�..)(𝑌𝑌�𝑚𝑚. − 𝑌𝑌�..) − 𝐸𝐸(𝑌𝑌�𝑙𝑙. − 𝑌𝑌�..)𝐸𝐸(𝑌𝑌�𝑚𝑚. − 𝑌𝑌�..)  

      = 𝐸𝐸(𝑌𝑌�𝑙𝑙. − 𝑌𝑌�..)(𝑌𝑌�𝑚𝑚. − 𝑌𝑌�..) 

    = 𝐸𝐸{[(𝑝𝑝𝑙𝑙 − 𝑝𝑝.) + (𝑒𝑒𝑙𝑙. − 𝑒𝑒..)][(𝑝𝑝𝑚𝑚 − 𝑝𝑝.) + (𝑒𝑒𝑚𝑚. − 𝑒𝑒..)]} 

    = 𝐸𝐸[(𝑝𝑝𝑙𝑙 − 𝑝𝑝.)(𝑝𝑝𝑚𝑚 − 𝑝𝑝.)] + 𝐸𝐸[(𝑒𝑒𝑙𝑙. − 𝑒𝑒..)(𝑒𝑒𝑚𝑚. − 𝑒𝑒..)] 

   since the expected values of the cross products are zero. 

  



- 20 - 
 

Now 𝐸𝐸[(𝑝𝑝𝑙𝑙 − 𝑝𝑝.)(𝑝𝑝𝑚𝑚 − 𝑝𝑝.)] = 𝐸𝐸[𝑝𝑝𝑙𝑙𝑝𝑝𝑚𝑚] − 𝐸𝐸[𝑝𝑝𝑙𝑙𝑝𝑝.] − 𝐸𝐸[𝑝𝑝.𝑝𝑝𝑚𝑚] + 𝐸𝐸�𝑝𝑝.
2� 

           = 0 − 𝜎𝜎22

𝐼𝐼
− 𝜎𝜎22

𝐼𝐼
+ 𝜎𝜎22

𝐼𝐼
 

           = −𝜎𝜎22

𝐼𝐼
 

and 

𝐸𝐸[(𝑒𝑒𝑙𝑙. − 𝑒𝑒..)(𝑒𝑒𝑚𝑚. − 𝑒𝑒..)] = 𝐸𝐸[𝑒𝑒𝑙𝑙.𝑒𝑒𝑚𝑚.] − 𝐸𝐸[𝑒𝑒𝑙𝑙.𝑒𝑒..]− 𝐸𝐸[𝑒𝑒..𝑒𝑒𝑚𝑚.] + 𝐸𝐸�𝑒𝑒..
2�  

           = 0 − 𝜎𝜎12

𝐼𝐼𝐽𝐽
− 𝜎𝜎12

𝐼𝐼𝐽𝐽
+ 𝜎𝜎12

𝐼𝐼𝐽𝐽
 

           = −𝜎𝜎12

𝐼𝐼𝐽𝐽
 

Therefore 

𝐶𝐶𝐶𝐶𝑣𝑣(𝑌𝑌�𝑙𝑙. − 𝑌𝑌�..)(𝑌𝑌�𝑚𝑚. − 𝑌𝑌�..) = −1
𝐼𝐼𝐽𝐽

(𝜎𝜎12 + 𝐽𝐽𝜎𝜎22)  

and 

𝐶𝐶𝐶𝐶𝑣𝑣(𝑌𝑌𝑙𝑙∗,𝑌𝑌𝑚𝑚∗ ) = −𝐽𝐽𝜎𝜎22

(𝐼𝐼𝜎𝜎12+𝐽𝐽𝜎𝜎22)
 , 𝑙𝑙 = 1, … , 𝐼𝐼, 𝑚𝑚 = 1, … , 𝐼𝐼, 𝑙𝑙 ≠ 𝑚𝑚. 

From this it follows that the correlation coefficient between 

𝑌𝑌𝑙𝑙∗ and 𝑌𝑌𝑚𝑚∗ = 𝜌𝜌𝑙𝑙,𝑚𝑚 = −1
𝐼𝐼−1

 (A.2) 

 

Appendix B 

 

Proof of Theorem 6.1 

𝑌𝑌𝑖𝑖𝑖𝑖∗ =
𝑌𝑌𝑖𝑖𝑖𝑖−

𝐽𝐽𝜎𝜎2
2

𝜎𝜎1
2+𝐽𝐽𝜎𝜎2

2𝑌𝑌𝑖𝑖.−
𝜎𝜎1
2

𝜎𝜎1
2+𝐽𝐽𝜎𝜎2

2𝑌𝑌..

� 𝜎𝜎1
2

𝜎𝜎1
2+𝐽𝐽𝜎𝜎2

2�𝜎𝜎2
2+

𝜎𝜎1
2

𝐼𝐼𝐽𝐽 �

 ,  𝑖𝑖 = 1, … , 𝐼𝐼, 𝑗𝑗 = 1, … , 𝐽𝐽 

Let 𝑌𝑌�𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 −
𝐽𝐽𝜎𝜎22

𝜎𝜎12+𝐽𝐽𝜎𝜎22
𝑌𝑌𝑖𝑖. −

𝜎𝜎12

𝜎𝜎12+𝐽𝐽𝜎𝜎22
𝑌𝑌.. 

 = 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑌𝑌𝑖𝑖. − 𝑏𝑏𝑌𝑌.. 

where 𝑑𝑑 = 𝐽𝐽𝜎𝜎22

𝜎𝜎12+𝐽𝐽𝜎𝜎22
, 𝑏𝑏 = 𝜎𝜎12

𝜎𝜎12+𝐽𝐽𝜎𝜎22
 and 𝑑𝑑 + 𝑏𝑏 = 1 
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The model is  

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜃𝜃 + 𝑝𝑝𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖  

where eij ~ N(0, 𝜎𝜎12) and ri ~ N(0, 𝜎𝜎22) 

(a) we will first derive 𝑉𝑉𝑑𝑑𝑝𝑝(𝑌𝑌𝑖𝑖𝑖𝑖∗) 

Now 𝑉𝑉𝑑𝑑𝑝𝑝�𝑌𝑌�𝑖𝑖𝑖𝑖� = 𝑉𝑉𝑑𝑑𝑝𝑝(𝑝𝑝𝑖𝑖 − 𝑑𝑑𝑝𝑝𝑖𝑖 − 𝑏𝑏𝑝𝑝.) + 𝑉𝑉𝑑𝑑𝑝𝑝(𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑒𝑒𝑖𝑖. − 𝑏𝑏𝑒𝑒..) 
since 𝑝𝑝𝑖𝑖 and 𝑒𝑒𝑖𝑖𝑖𝑖 are independently distributed of each other 
Further 

𝑉𝑉𝑑𝑑𝑝𝑝(𝑝𝑝𝑖𝑖 − 𝑑𝑑𝑝𝑝𝑖𝑖 − 𝑏𝑏𝑝𝑝.) = 𝑉𝑉𝑑𝑑𝑝𝑝[𝑏𝑏(𝑝𝑝𝑖𝑖 − 𝑝𝑝.)] = 𝑏𝑏2𝜎𝜎22
(𝐼𝐼−1)
𝐼𝐼

   
and 

𝑉𝑉𝑑𝑑𝑝𝑝�𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑒𝑒𝑖𝑖. − 𝑏𝑏𝑒𝑒..� = 𝜎𝜎12

𝐽𝐽
�(𝐽𝐽 − 1) + 𝑏𝑏2 �𝐼𝐼−1

𝐼𝐼
��  

Therefore 

𝑉𝑉𝑑𝑑𝑝𝑝�𝑌𝑌�𝑖𝑖𝑖𝑖� = 𝜎𝜎12

𝐽𝐽
�(𝐽𝐽 − 1) + 𝜎𝜎12

𝜎𝜎12+𝐽𝐽𝜎𝜎22
�𝐼𝐼−1

𝐼𝐼
��  

and 

𝑉𝑉𝑑𝑑𝑝𝑝(𝑌𝑌𝑖𝑖𝑖𝑖∗) = 1
𝜎𝜎12+𝐼𝐼𝐽𝐽𝜎𝜎22

{𝐼𝐼(𝐽𝐽 − 1)(𝜎𝜎12 + 𝐽𝐽𝜎𝜎22) + 𝜎𝜎12(𝐼𝐼 − 1)}  (B.1) 

 
 

(b) 𝐶𝐶𝐶𝐶𝑣𝑣�𝑌𝑌�𝑖𝑖𝑖𝑖,𝑌𝑌�𝑙𝑙𝑚𝑚� = 𝐸𝐸�𝑌𝑌�𝑖𝑖𝑖𝑖𝑌𝑌�𝑙𝑙𝑚𝑚� because 𝐸𝐸�𝑌𝑌�𝑖𝑖𝑖𝑖� = 𝐸𝐸�𝑌𝑌�𝑙𝑙𝑚𝑚� = 0 
(𝑖𝑖 = 1, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽; 𝑙𝑙 = 1, … , 𝐼𝐼;  𝑚𝑚 = 1, … , 𝐽𝐽; 𝑖𝑖 ≠ 𝑙𝑙 𝑑𝑑𝑛𝑛𝑑𝑑 𝑗𝑗 ≠ 𝑚𝑚)  
Therefore 
𝐶𝐶𝐶𝐶𝑣𝑣�𝑌𝑌�𝑖𝑖𝑖𝑖,𝑌𝑌�𝑙𝑙𝑚𝑚� = 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑌𝑌𝑖𝑖. − 𝑏𝑏𝑌𝑌..)(𝑌𝑌𝑙𝑙𝑚𝑚 − 𝑑𝑑𝑌𝑌𝑙𝑙. − 𝑏𝑏𝑌𝑌..�  
  = 𝐸𝐸�𝑏𝑏(𝑝𝑝𝑖𝑖 − 𝑝𝑝.) + �𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑒𝑒𝑖𝑖. − 𝑏𝑏𝑒𝑒..��{𝑏𝑏(𝑝𝑝𝑙𝑙 − 𝑝𝑝.) + (𝑒𝑒𝑙𝑙𝑚𝑚 − 𝑑𝑑𝑒𝑒𝑙𝑙. − 𝑏𝑏𝑒𝑒..)} 
  = 𝑏𝑏2𝐸𝐸(𝑝𝑝𝑖𝑖 − 𝑝𝑝.)(𝑝𝑝𝑙𝑙 − 𝑝𝑝.) + 𝐸𝐸�𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑒𝑒𝑖𝑖. − 𝑏𝑏𝑒𝑒..�(𝑒𝑒𝑙𝑙𝑚𝑚 − 𝑑𝑑𝑒𝑒𝑙𝑙. − 𝑏𝑏𝑒𝑒..) 
Now 

𝑏𝑏2𝐸𝐸(𝑝𝑝𝑖𝑖 − 𝑝𝑝.)(𝑝𝑝𝑙𝑙 − 𝑝𝑝.) = −𝑏𝑏2𝜎𝜎22

𝐼𝐼
  

and 

𝐸𝐸�𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑒𝑒𝑖𝑖. − 𝑏𝑏𝑒𝑒..�(𝑒𝑒𝑙𝑙𝑚𝑚 − 𝑑𝑑𝑒𝑒𝑙𝑙. − 𝑏𝑏𝑒𝑒..) = −𝑏𝑏2𝜎𝜎12

𝐼𝐼𝐽𝐽
  

From this it follows that 

𝐶𝐶𝐶𝐶𝑣𝑣�𝑌𝑌�𝑖𝑖𝑖𝑖,𝑌𝑌�𝑙𝑙𝑚𝑚� = −𝑏𝑏2

𝐼𝐼𝐽𝐽
(𝜎𝜎12 + 𝐽𝐽𝜎𝜎22) = −(𝜎𝜎12)2

𝐼𝐼𝐽𝐽�𝜎𝜎12+𝐽𝐽𝜎𝜎22�
 

and 

𝐶𝐶𝐶𝐶𝑣𝑣(𝑌𝑌𝑖𝑖𝑖𝑖∗ ,𝑌𝑌𝑙𝑙𝑚𝑚∗ ) = −𝜎𝜎12

𝜎𝜎12+𝐼𝐼𝐽𝐽𝜎𝜎22
  (B.2) 

(c) In a similar way it can be shown that 

𝐶𝐶𝐶𝐶𝑣𝑣(𝑌𝑌𝑖𝑖𝑖𝑖∗ ,𝑌𝑌𝑙𝑙𝑖𝑖∗) = −𝜎𝜎12

𝜎𝜎12+𝐼𝐼𝐽𝐽𝜎𝜎22
  (B.3)  
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(d) 𝐶𝐶𝐶𝐶𝑣𝑣�𝑌𝑌�𝑖𝑖𝑖𝑖,𝑌𝑌�𝑖𝑖𝑚𝑚� = 𝑏𝑏2𝐸𝐸(𝑝𝑝𝑖𝑖 − 𝑝𝑝.)2 + 𝐸𝐸�𝑒𝑒𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑒𝑒𝑖𝑖. − 𝑏𝑏𝑒𝑒..�(𝑒𝑒𝑖𝑖𝑚𝑚 − 𝑑𝑑𝑒𝑒𝑖𝑖. − 𝑏𝑏𝑒𝑒..) 

= 𝑏𝑏2𝜎𝜎22
(𝐼𝐼−1)
𝐼𝐼

− 𝜎𝜎12

𝐽𝐽
�(1 − 𝑏𝑏2) + 𝑏𝑏2

𝐼𝐼
� = −𝜎𝜎12

𝐽𝐽
� 𝜎𝜎12+𝐼𝐼𝐽𝐽𝜎𝜎22

𝐼𝐼(𝜎𝜎12+𝐽𝐽𝜎𝜎22)
�  

and 𝐶𝐶𝐶𝐶𝑣𝑣(𝑌𝑌𝑖𝑖𝑖𝑖∗ ,𝑌𝑌𝑖𝑖𝑚𝑚∗ ) = −1  (B.4) 

 

Appendix C 

 

Proof of Theorem 6.2 

We show here that the integrals (on the interval [0,∞)) of 6.3 and 6.4 are convergent. First, 
a few inequalities (valid for all 𝛾𝛾 > 0): 

𝑃𝑃𝑅𝑅2(𝛾𝛾) = �∑ 𝑛𝑛𝑖𝑖2

(1+𝛾𝛾〖𝑛𝑛𝑖𝑖)〗2
𝐼𝐼
𝑖𝑖=1 �

1
2 ≤ �∑ 𝑛𝑛𝑖𝑖2

𝛾𝛾2𝑛𝑛𝑖𝑖2
𝐼𝐼
𝑖𝑖=1 �

1
2 = √𝐼𝐼

𝛾𝛾
.   

∏ � 1
1+𝛾𝛾𝑛𝑛𝑖𝑖

�
1
2 ≤ ∏ � 1

𝛾𝛾𝑛𝑛𝑖𝑖
�
1
2 ≤ ∏ � 1

𝛾𝛾𝑛𝑛′
�
1
2 𝐼𝐼

𝑖𝑖=1
𝐼𝐼
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 = 𝐾𝐾1 �

1
𝛾𝛾
�
𝐼𝐼
2 ,   for a constant 𝐾𝐾1 > 0.  

where 𝑛𝑛′ = min
1≤𝑖𝑖≤𝐼𝐼

𝑛𝑛𝑖𝑖  

�∑ 𝑛𝑛𝑖𝑖
1+𝛾𝛾𝑛𝑛𝑖𝑖

𝐼𝐼
𝑖𝑖=1 �

1
2 ≥ �∑ 𝑛𝑛′

1+𝛾𝛾𝑛𝑛"
𝐼𝐼
𝑖𝑖=1 �

1
2 = � 𝐼𝐼∙𝑛𝑛′

1+𝛾𝛾𝑛𝑛"
,   where 𝑛𝑛" = max

1≤𝑖𝑖≤𝐼𝐼
𝑛𝑛𝑖𝑖   

implying that �∑ 𝑛𝑛𝑖𝑖
1+𝛾𝛾𝑛𝑛𝑖𝑖

𝐼𝐼
𝑖𝑖=1 �

−12 ≤ 1
√𝐼𝐼∙𝑛𝑛′

��1 + 𝛾𝛾𝑛𝑛"� ≤ 𝐾𝐾2�1 + 𝛾𝛾,   for a constant 𝐾𝐾2 > 0.  

In the event that 𝑌𝑌1. = 𝑌𝑌2. = ⋯ = 𝑌𝑌𝐼𝐼., we have that 𝜃𝜃�(𝛾𝛾) = 𝑌𝑌1. = 𝑌𝑌2. = ⋯ = 𝑌𝑌𝐼𝐼. for all         
𝛾𝛾 > 0, whence the expression inside the square brackets of equation (6.4) reduces to 
𝑣𝑣1𝑚𝑚1. Otherwise, there is a non-empty subset 𝐽𝐽 of {1,2,…,I} such that 𝑌𝑌𝑖𝑖. is different from 
𝑌𝑌� = 1

𝐼𝐼
∑ 𝑌𝑌𝑖𝑖.𝐼𝐼
𝑖𝑖=1  for all 𝑖𝑖 ∈ 𝐽𝐽. Select 𝑑𝑑 ∈ 𝐽𝐽 such that 𝑌𝑌𝑡𝑡. < 𝑌𝑌  and 𝑌𝑌 − 𝑌𝑌𝑡𝑡. is as small as 

possible. Similarly, select 𝑠𝑠 ∈ 𝐽𝐽 such that 𝑌𝑌𝑠𝑠. > 𝑌𝑌  and 𝑌𝑌𝑠𝑠. − 𝑌𝑌  is as small as possible. By a 
straightforward application of L’Hospital’s Rule, we find that lim

𝛾𝛾→∞
𝜃𝜃�(𝛾𝛾) = 𝑌𝑌�. Put 𝜏𝜏1 =

1
2�𝑌𝑌 + 𝑌𝑌𝑡𝑡.� and 𝜏𝜏2 = 1

2�𝑌𝑌 + 𝑌𝑌𝑠𝑠.�. Then there exists 𝛾𝛾0 > 0 such that 𝜏𝜏1 < 𝜃𝜃�(𝛾𝛾) < 𝜏𝜏2 for all 

𝛾𝛾 > 𝛾𝛾0. It follows that, with 𝑀𝑀′ = min{(𝑌𝑌 − 𝜏𝜏1)2 , � 𝜏𝜏2 − 𝑌𝑌�
2

} that (𝜃𝜃�(𝛾𝛾) − 𝑌𝑌�𝑖𝑖.)2 > 𝑀𝑀′ for all 

𝛾𝛾 > 𝛾𝛾0 and all 𝑖𝑖 ∈ 𝐽𝐽. Consequently,  ∑ 𝑛𝑛𝑖𝑖�𝑌𝑌𝑖𝑖.−𝜃𝜃��
2

1+𝛾𝛾𝑛𝑛𝑖𝑖
𝐼𝐼
𝑖𝑖=1 ≥ 𝑀𝑀′ ∙ 𝑛𝑛′ ∙ |𝐽𝐽|

1+𝛾𝛾𝑛𝑛"
 for all 𝛾𝛾 > 𝛾𝛾0. Hence, 

�𝑣𝑣1𝑚𝑚1 + ∑ 𝑛𝑛𝑖𝑖�𝑌𝑌𝑖𝑖.−𝜃𝜃��
2

1+𝛾𝛾𝑛𝑛𝑖𝑖
𝐼𝐼
𝑖𝑖=1 �

−12(𝑛𝑛−1)

≤ �|𝐽𝐽|∙𝑀𝑀′∙𝑛𝑛′

1+𝛾𝛾𝑛𝑛"
�
−12(𝑛𝑛−1)

= 𝐾𝐾3 ∙
1

(1+𝛾𝛾𝑛𝑛")(𝑛𝑛−1)/2, 

for a constant  𝐾𝐾3 > 0, and all 𝛾𝛾 > 𝛾𝛾0.  
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From the foregoing, it follows that, for 𝛾𝛾 > 𝛾𝛾0,  

0 ≤ 𝑃𝑃𝑅𝑅2(𝛾𝛾) ∙ ∏ � 1
1+𝛾𝛾𝑛𝑛𝑖𝑖

�
1
2𝐼𝐼

𝑖𝑖=1 ∙ �𝑣𝑣1𝑚𝑚1 + ∑ 𝑛𝑛𝑖𝑖�𝑌𝑌𝑖𝑖.−𝜃𝜃��
2

1+𝛾𝛾𝑛𝑛𝑖𝑖
𝐼𝐼
𝑖𝑖=1 �

−12(𝑛𝑛−1)

  

     ≤  𝐾𝐾 ∙ √𝐼𝐼
𝛾𝛾
∙ 1
𝛾𝛾
𝐼𝐼
2
∙ �1 + 𝛾𝛾 ∙ 1

(1+𝛾𝛾𝑛𝑛")
𝑛𝑛−1
2

=  𝐾𝐾 ∙ 𝜔𝜔(𝛾𝛾), say, for a constant  𝐾𝐾 > 0. 

 

It is straightforward to check that lim
𝛾𝛾→∞

𝛾𝛾2𝜔𝜔 (𝛾𝛾) = 0, even for the special case                𝑌𝑌1. =

𝑌𝑌2. = ⋯ = 𝑌𝑌𝐼𝐼..  Hence 0 ≤ 𝐾𝐾 ∙ 𝜔𝜔(𝛾𝛾) ≤ 𝐾𝐾
𝛾𝛾2

 for all  𝛾𝛾 > 𝛾𝛾1 (say). It follows that the improper 

integral 

∫ 𝑃𝑃𝑅𝑅2(𝛾𝛾) ∙ ∏ � 1
1+𝛾𝛾𝑛𝑛𝑖𝑖

�
1
2𝐼𝐼

𝑖𝑖=1 ∙ �∑ 𝑛𝑛𝑖𝑖
1+𝛾𝛾𝑛𝑛𝑖𝑖

𝐼𝐼
𝑖𝑖=1 �

−12 ∙ �𝑣𝑣1𝑚𝑚1 + ∑ 𝑛𝑛𝑖𝑖�𝑌𝑌𝑖𝑖.−𝜃𝜃��
2

1+𝛾𝛾𝑛𝑛𝑖𝑖
𝐼𝐼
𝑖𝑖=1 �

−12(𝑛𝑛−1)
∞
0 𝑑𝑑𝛾𝛾  

is convergent, as it is well-known that ∫ 1
𝛾𝛾2
𝑑𝑑𝛾𝛾∞

𝛾𝛾2
 is convergent (where we take                        

𝛾𝛾2 = max{𝛾𝛾0,𝛾𝛾1}).  

Since 0 ≤ 𝑃𝑃𝑅𝑅1(𝛾𝛾)≤ 𝑃𝑃𝑅𝑅2(𝛾𝛾) for all γ > 0, we immediately also have that  

� 𝑃𝑃𝑅𝑅1(𝛾𝛾) ∙� �
1

1 + 𝛾𝛾𝑛𝑛𝑖𝑖
�
1
2𝐼𝐼

𝑖𝑖=1
∙ ��

𝑛𝑛𝑖𝑖
1 + 𝛾𝛾𝑛𝑛𝑖𝑖

𝐼𝐼

𝑖𝑖=1
�
−12
∙ �𝑣𝑣1𝑚𝑚1 + �

𝑛𝑛𝑖𝑖�𝑌𝑌𝑖𝑖. − 𝜃𝜃��
2

1 + 𝛾𝛾𝑛𝑛𝑖𝑖

𝐼𝐼

𝑖𝑖=1
�

−12(𝑛𝑛−1)∞

0

𝑑𝑑𝛾𝛾 

is convergent.  

 

Appendix D 

 

Table D1: Differences between 𝐏𝐏𝐑𝐑𝟏𝟏�𝜸𝜸|𝒀𝒀� and 𝐏𝐏𝐑𝐑𝟐𝟐�𝜸𝜸|𝒀𝒀� 

𝜸𝜸 0.4 0.8 1.2 1.6 2 
�Pr1�𝛾𝛾|𝑌𝑌� − Pr2�𝛾𝛾|𝑌𝑌��107 29.5684 31.577 17.609 6.177 -0.489 
 

𝜸𝜸 10 20 30 40 50 
�Pr1�𝛾𝛾|𝑌𝑌� − Pr2�𝛾𝛾|𝑌𝑌��107 -1.2335 -0.2306 -0.07803 -0.035171 -0.018733 
 

𝜸𝜸 60 70 80 90 100 
�Pr1�𝛾𝛾|𝑌𝑌� − Pr2�𝛾𝛾|𝑌𝑌��107 -0.011131 -0.007143 -0.004853 -0.003346 -0.002534 
 

The differences between the two posterior distributions are multiplied by 107. It is clear that 
they are for all practical purposes zero.  
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