

Institute for Environment and Human Security

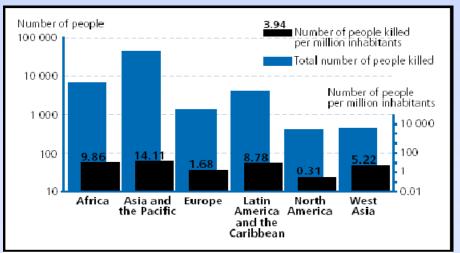
"Advancing human security through knowledge-based approaches to reducing vulnerability and environmental risks"

UNITED NATIONS UNIVERSITY Institute for Environment and Human Security (UNU-EHS)

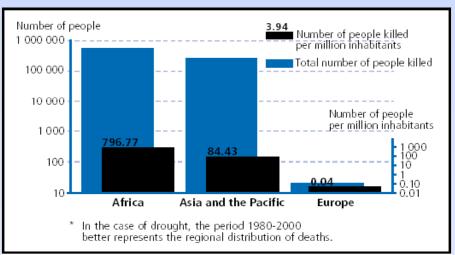
DiMTEC 2nd Annual Conference

Vulnerability of Coupled Socio-Ecological Systems Exposed to Hydro-Climatic Hazards

Fabrice Renaud Associate Director UNU-EHS Bonn, Germany


- 1. Introduction: Example Climate Change, Droughts and Vulnerability
- 2. Links between ecosystems and DRR
- Vulnerability of Coupled Systems: Example of floods in Germany
- 4. Vulnerability of Coupled Systems: Example of droughts and groundwater in I.R. Iran
- 5. Conclusions

Droughts Impacts in Africa



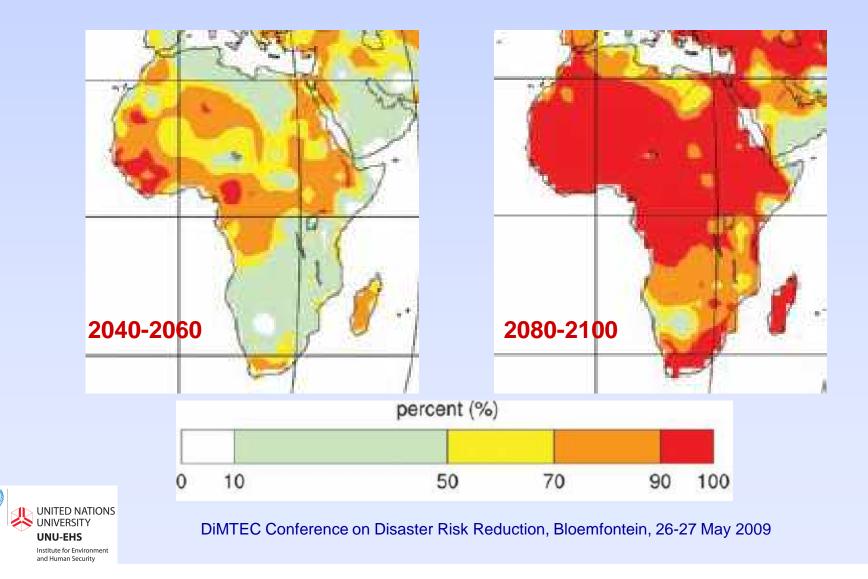
Floods (1990-99)

Source: EM-DAT: The OFDA/CRED International Disaster Database

Droughts (1980-2000)

Source: EM-DAT: The OFDA/CRED International Disaster Database

Potential Effects of Climate Change in Africa

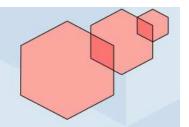

Boko et al. (2007): IPCC Report

- Africa is the most vulnerable continent to climate change with low adaptation capacities
- In rural areas, existing adaptation strategies may not be sufficient or adapted to deal with the future effects of climate change
- Agricultural productivity could be negatively affected with consequences in terms of food security
- Increased risk of flooding, including in coastal areas
- Important negative effects are expected on water resources
- Impacts on ecosystems
- Impacts on human health

Climate Change - Likelihood that future summer average temperatures exceed highest summer temperatures observed on record

Battisti et Naylor (2009): Historical warnings of future food insecurtiy with unprecedented historical heat. Science 323: 240-244

Vulnerability and Climate Change


⁽¹⁾Barnett & Adger (2007): Climate change, human security and violent conflicts. Political Geography 36:639-655

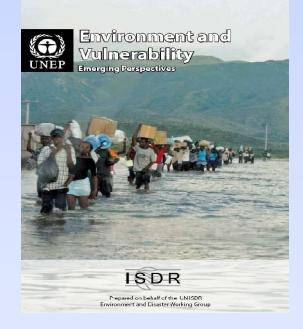
- Vulnerability of people and communities with respect to climate change depends on⁽¹⁾:
 - Their dependence with respect to ecosystem services
 - The impact of climate change on these ecosystems
 - Adaptation capacities of the communities
- Capacity to adapt reduces vulnerability:
 - Societies adapt constantly

Institute for Environment and Human Security

- However, what are their limits when considering climate change?
- Migration is a type of adaptation

Environment and Disaster Risk Reduction

UNEP. 2007. *Environment and vulnerability. Emerging perspectives*. Results from the UN ISDR Working Group on Environment and Disasters. UNEP, 32p.

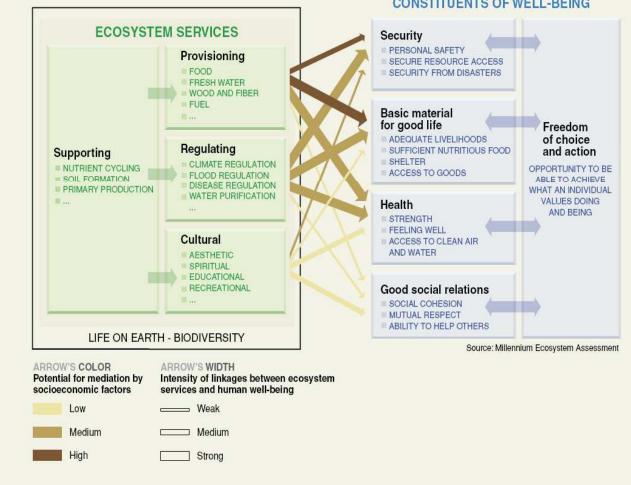

UNU-FHS

Institute for Environment and Human Security

- Hyogo framework for action 2005-2015 "Building the resilience of nations & communities to disasters":
 - Hyogo framework for action \rightarrow Reducing the underlying risk factors
 - Encourage sustainable use and management of ecosystems
 - Integrated environmental management
 - Identification of climate-related risks; specific risk reduction measures
 - Connections between environment and disasters:
 - Degraded ecosystems reduce community resilience
 - Healthy ecosystems often provide natural defences
 - Environmental degradation is a hazard in itself
 - UN/ISDR Partnership on Environment and Disaster Risk Reduction (PEDRR)

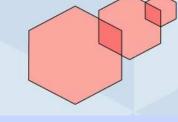
Examples of links between ecosystems and disasters

- Better use of environmental management to reduce disaster risk:
 - Engage environmental managers fully in national disaster risk management mechanisms
 - Assess environmental change as a parameter of risk
 - Engage the scientific community to promote environmental research and innovation
 - Protect and value ecosystem services
 - Consider environmental technologies and designs for structural defences
 - Integrate environmental and disaster risk considerations in spatial planning
 - Prepare for environmental emergencies
 - Strengthen capacities for environmental recovery

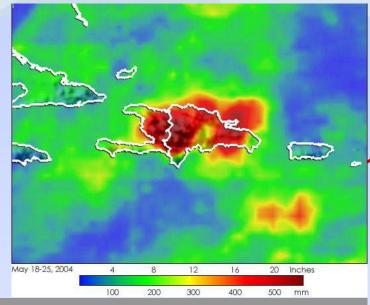


The Notion of Ecosystem Services

Source: Millennium Ecosystem Assessment. 2005. Human Well-being: Synthesis. Island Press, Washington, DC


LINKAGES BETWEEN ECOSYSTEM SERVICES AND HUMAN WELL-BEING

State of our Ecosystems



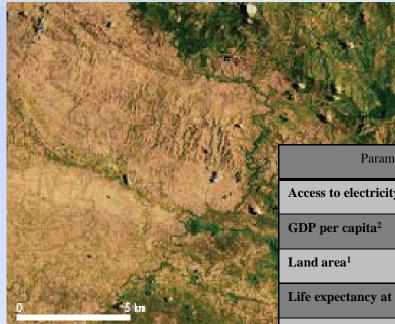
Source: MA, 2005

- We are living beyond our means
- Approx. 60% of the ecosystem services examined are being degraded or used unsustainably, including fresh water, capture fisheries, air and water purification, and the regulation of regional and local climate, natural hazards, and pests.
- Intense vulnerability of the 2 billion people living in dry regions to the loss of ecosystem services, including water supply
- Growing threat to ecosystems from climate change and nutrient pollution
- Impact on the achievement of the Millennium Development Goals

Deforestation – Floods: Haiti in 2004

NASA: http://earthobservatory.nasa.gov/NaturalHazards /natural_hazards_v2.php3?img_id=12156

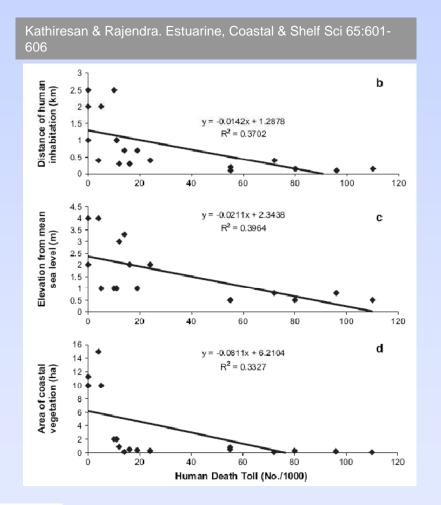
Tropical Storm Jeanne (September 2004): big differential of impacts between two countries


May 2004 floods: Rank 3rd in Dominican Republic with 688 casualties Rank 3rd in Haiti with 2665 casualties (source: EM-DAT)

DiMTEC Conference on Disaster

Deforestation – Floods: Haiti

NASA: http://visibleearth.nasa.gov/v


Deforestation alone? Deforestation and other factors? Need to be careful to ascribe "straightforward" causal relations for extreme events as could limit depth of analysis

Parameter	Year	Unit	Haiti	Domin. Rep.					
Access to electricity ¹	1994-96	%	31,0	66,8					
GDP per capita ²	2004	US \$	1.610	6.640					
Land area ¹	-	km ²	27.560	48.380					
Life expectancy at birth ²	2004	years	52	67					
Population density ¹	2000	inh km ⁻²	295	173					
Population growth rate ²	2004	%	1,9	1,5					
Proportion of irrigated land ¹	1998	%	17,0	8,0					
Proportion of undernourished ¹	1997-99	%	56,0	25,0					
Water quality indicator ¹	-	Rank	101 of 122	76 of 122					
UNESCO. 2003. Water for people, water for life. UNESCO-WAPP, Paris.									

DiMTEC Conference on Dis UNESCO. 2004. Country profile: Haiti

Did Natural Features Limit the Impact of the 2004 Tsunami?

Kerr et al. Estuarine, Coastal & Shelf Sci 67:539-541

- Performed stepwise regression analysis on data from Kathiresan
- Conclusion: vegetation area contributes little to explanation of variation in mortality

Kathiresan & Rajendra. Estuarine, Coastal & Shelf Sci 67:542

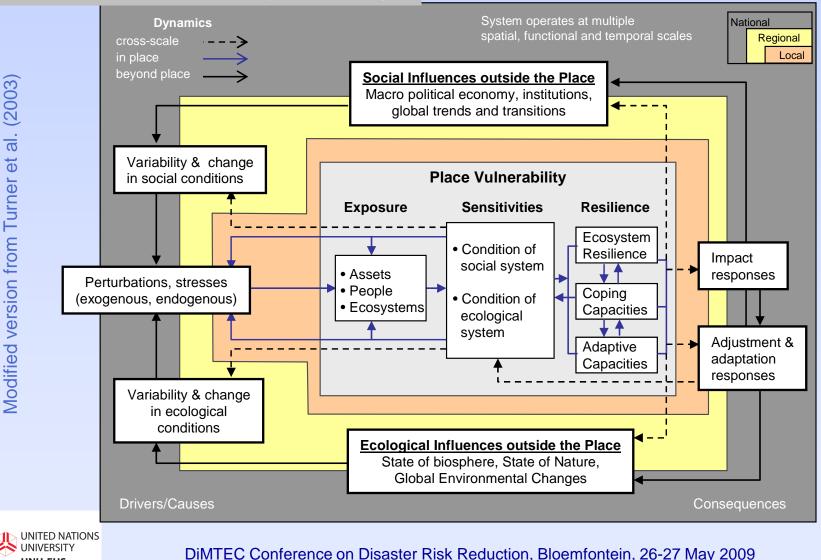
• Did not really address the statistical questions put forward by Kerr et al. but stood by their conclusions

Vermaat & Thampanya. Estuarine, Coastal & Shelf Sci 69:1-3

- Performed an ANOVA with distance and elevation as covariates
- Conclusion: interpretation by Kathiresan and Rajendra holds

Vermaat & Thampanya. Estuarine, Coastal & Shelf Sci (in press)

 Erratum→ Mistake in stats: mortality and property loss were not less behind mangroves



Example of Floods in Germany Conceptual Framework

Source: PhD research of Marion Damm (UNU-EHS) – DISFLOOD Project

UNU-EHS

Institute for Environment and Human Security

14

Indicators

Source: PhD research of Marion Damm (UNU-EHS) – DISFLOOD Project

Agricultural Sector

Exposure (E)

- % farmland (e₁)
- % employees (e₂)

Sensitivity (S)

- unemployment rate of district (sh)
- contamination potential (se₁)
- erosion potential (se₂)
- water quality index (se₃)

Resilience (R)

- Water storage capacity (er₁)
- Filter/buffer capacity (er₂)
 % perm. grasslands (er₃)
- GDP per capita district (c1)
- GDP per capita FS (c₂)
- \bullet side business income (c_3)
- % organic farms (a₁)
 % protected areas (a₂)

• forest type (er₂)

ter Risk F

• forest fragmentation (er₃)

Forest Sector

Exposure (E)

• % forested area (e₁)

• unemployment rate

• % pre-damaged forest (se₁)

• water quality index (se₂)

• % employees (e₂)

Sensitivity (S)

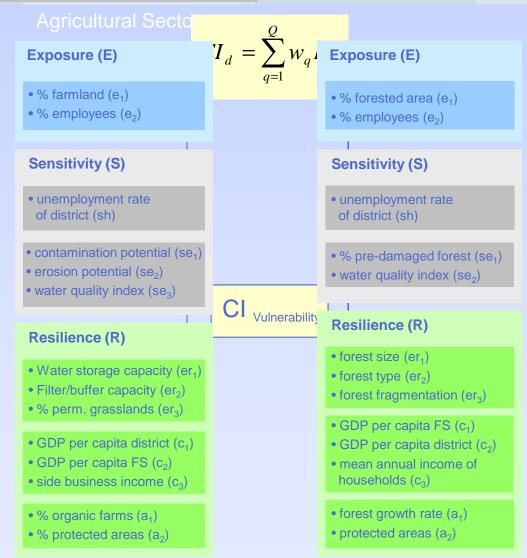
of district (sh)

Resilience (R)

• forest size (er₁)

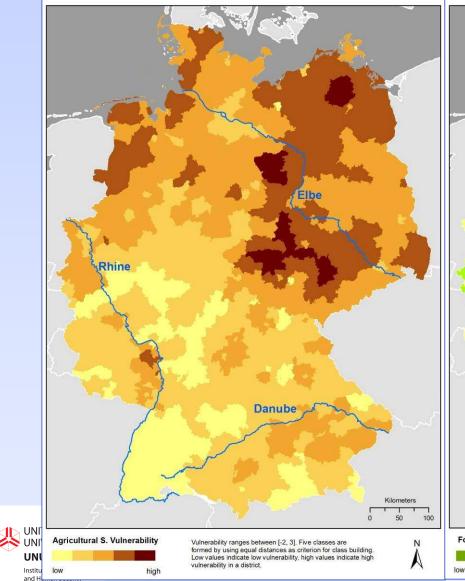
• GDP per capita FS (c₁)

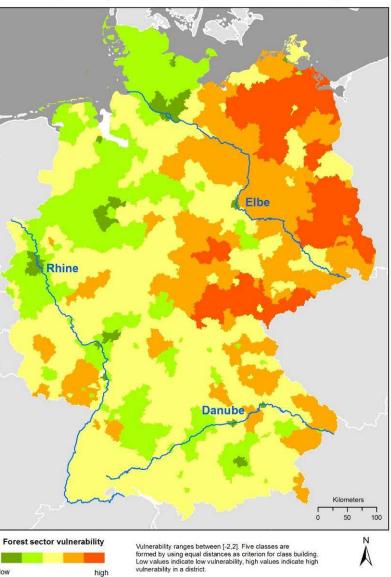
- GDP per capita district (c₂)
 mean annual income of households (c₃)
- forest growth rate (a₁)
- protected areas (a₂)


y 2009

15

Weights and Aggregation

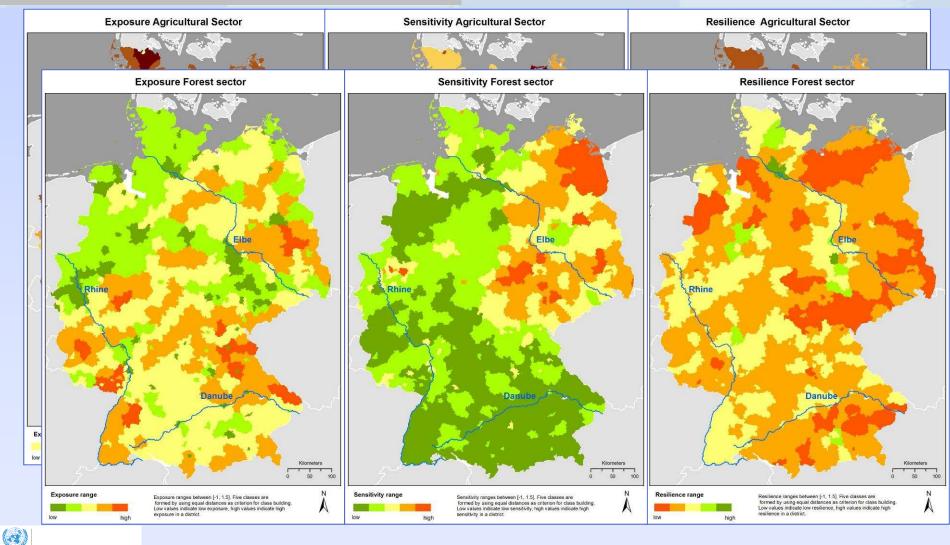

Source: PhD research of Marion Damm (UNU-EHS) - DISFLOOD Project


UNITED NATIONS UNIVERSITY UNU-EHS UNU-EHS

Vulnerability Maps

Source: PhD research of Marion Damm (UNU-EHS) – DISFLOOD Project Vulnerability of the agricultural sector to river flooding

Vulnerability of the forest sector to river flooding


Vulnerability Maps

Source: PhD research of Marion Damm (UNU-EHS) – DISFLOOD Project

UNITED NATIONS UNIVERSITY

> Institute for Environment and Human Security

UNU-EHS

Example of Droughts and Groundwater GWAHS-CS - Objectives

To address (1) the threats to human security and well-being currently posed by water scarcity and water quality degradation and (2) the role of groundwater management and protection in alleviating such threats.

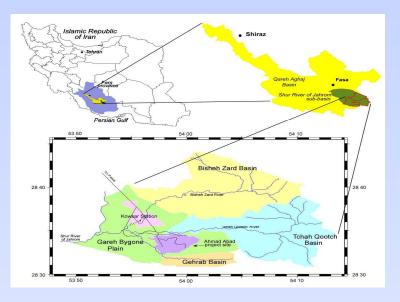
- Adaptation of existing vulnerability and resilience assessment frameworks
- Development of socio-environmental indicators of vulnerability and resilience
- Vulnerability and resilience assessment in the four case study areas
- Groundwater degradation as:
 - A hazard to the communities
 - An element of vulnerability when communities face other hazards
- Coupled socio-ecological system is the element of analysis

GWAHS-CS – Steps

- Understanding of hydrogeology settings at various scales
- Status of groundwater quality
- Groundwater as an ecosystem service
 - Ecosystem maintenance
 - Community reliance

Institute for Environment and Human Security

- Social and economic assessments
 - Household surveys participatory investigations with communities
 - Vulnerability of various economic sectors
 - Statistical data at various scales
 - Policies related to groundwater
 - Discussions with stakeholders


Selected Indicators

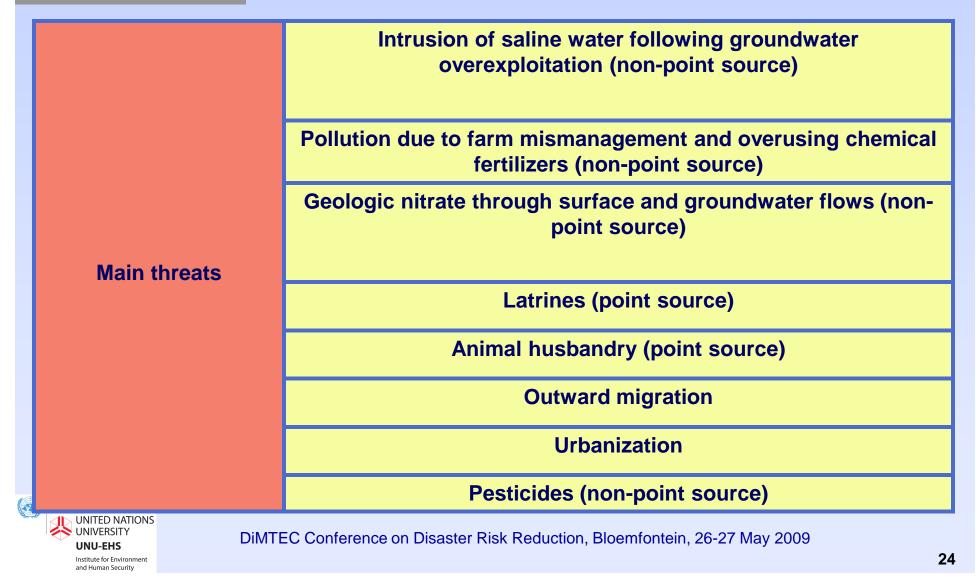
Hazard	Exposure	Sensitivity	Resilience
GW quantity	Dependence of pop on GW	Groundwater (DRASTIC)	Access to alternative sources of water
GW quality	Dependence of eco sectors on GW	Pop density	Access to knowledge of GW deg processes
	GW supporting ecosystems	Household structure	Access to info on GW management
	Well density	Education level	Institutions related to GW management
		Occupation	Legislation
		Ethnicity	GW infrastructure
		Household income	Out-migration
		Access to savings / credit	Participation in social networks
		Years settled in the area	
		Type of house	
		Type of provider system	
UNU-EHS Institute for Environment and Human Security	DiMTEC Conference on Disaster F	Risk Reduction, Bloemfontein, 26-2	27 May 2009

I.R. Iran - Gareh-Bygone Plain

Credit: Dr. Mehrdad Mohammadnia

- 200 km south-east of Shiraz, within 192 km² Bisheh Zard Basin
- Low and highly variable rainfall
- Aquifers tapped for irrigation and drinking water in rural and urban areas
- High concentration of nitrates
- Artifical recharge

Groundwater Balance



Total alluvial aquifer input	5 Mm ³ from upstream watershed (Nowbadegan and Fasa) + Agricultural recycling water = 33.96 Mm ³
Total alluvial aquifer output: production wells discharge	90.42 Mm ³
Alluvial aquifer balance	-56.46 Mm ³
Total Karstic aquifers' input	39.4 Mm³
Total Karstic aquifers' output	29.15 Mm ³
Karstic aquifers' balance	+10.25 Mm ³

UNITED NATIONS UNIVERSITY UNU-EHS Institute for Environment and Human Security

Main Threats to the Aquifers

Credit: Dr. Mehrdad Mohammadnia

Dependency on Groundwater – Hazard & Sensitivity

Credit: Dr Gholamreza Chabokrow

- Dependence on GW for domestic use: 100%
- Dependence of major economic sector on groundwater: Agriculture as the main economic sector (Farming, animal husbandry and horticulture): 96%

Name of villages	Occupation of men
Sennan	Agriculture- Animal husbandry
Miandeh	Agriculture-driver-unskilled worker
Nasir-Abad	Agriculture- Animal husbandry
Bisheh-Zard	Agriculture- Animal husbandry
Chah-Dowlat	Agriculture- Animal husbandry
Fedeshkouyeh	Agriculture- Animal husbandry
Zahed-Shahr	Agriculture- Animal husbandry
Rahim-Abad	Agriculture- Animal husbandry

Name of villages	Occupation of women
Sennan	Carpet weaving
Miandeh	Carpet weaving
Nasir-Abad	Unskilled worker in farm
Bisheh-Zard	Carpet weaving- farm worker
Chah-Dowlat	Carpet weaving- farm worker
Fedeshkouyeh	Carpet weaving- farm worker
Zahed-Shahr	Carpet weaving
Rahim-Abad	Carpet weaving- farm worker

Understanding Elements of Resilience

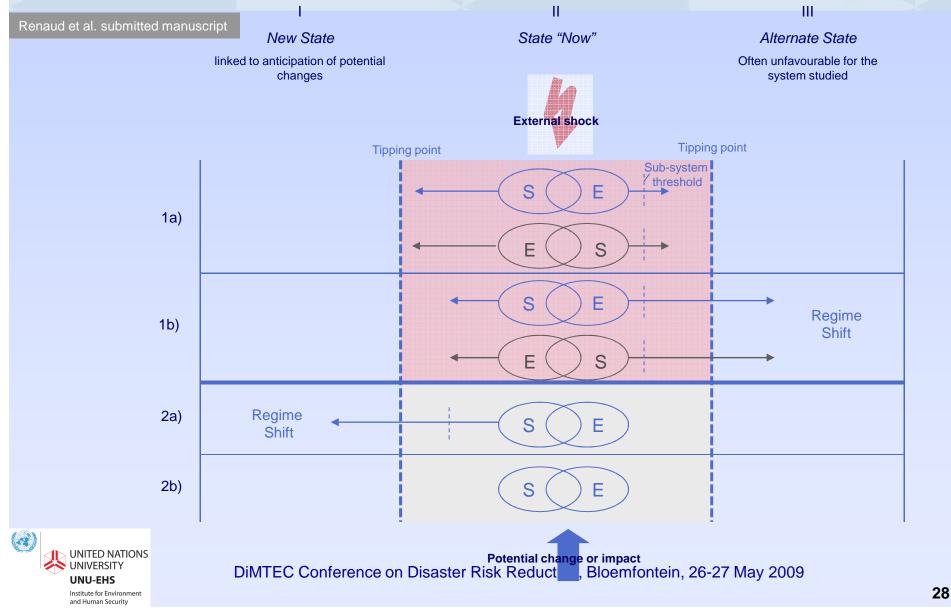
Credit: Dr Gholamreza Chabokrow

Name of villages	Access to information about groundwater degradation process											
	Ye	Yes No Total										
	Number	Number Percent Number Percent Number Percent										
Sennan	22	64.7	12	35.3	34	100						
Miandeh	39	59	27	41	66	100						
Nasir-Abad	4	22.2	14	77.8	18	100						
Bisheh-Zard	1	33.3	2	66.7	3	100						
Chah-Dowlat	-	-	3	100	3	100						
Fedeshkouyeh	56	80	14	20	70	100						
Zahed-Shahr	100	100 66.7 50 33.3 150 100										
Rahim-Abad	2	50	2	50	4	100						

Name of villages	Type of decision making about groundwater degradation process									
	type of cult		cultiv	Reduce of Other jobs cultivated land		r jobs	s migration		Total	
	No	%	No	%	No	%	No	%	No	%
Sennan	15	44.1	9	26.5	6	17.6	4	11.8	34	100
Miandeh	13	19.7	30	45.4	15	22.7	8	12.1	66	100
Nasir-Abad	5	27.7	7	38.9	3	16.7	3	16.7	18	100
Bisheh-Zard	2	66.7	1	33.3	-	-	-	-	3	100
Chah-Dowlat	-	-	3	100	-	-	-	-	3	100
Fedeshkouyeh	16	22.8	19	27.1	17	24.3	18	25.7	70	100
Zahed-Shahr	41	27.3	102	68	4	2.7	3	2	150	100
Rahim-Abad	2	50	2	50	-	-	-	-	4	100
Total	94	27	173	49.8	45	12.9	36	10.3	348	100

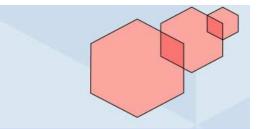
Name of villages	Ways of access to information									
	T.V		Radio		neighbor		No access		Total	
	No	%	No	%	No	%	No	%	No	%
Sennan	14	41.2	2	5.9	6	17.6	12	35.3	34	100
Miandeh	- 30	45.4	5	7.6	4	6	27	40.9	66	100
Nasir-Abad	3	16.7	1	5.5	-	-	14	77.8	18	100
Bisheh-Zard	1	33.3	-	-	-	-	2	66.7	3	100
Chah-Dowlat	-	-	-	-	-	-	3	100	3	100
Fedeshkouyeh	54	77.1	-	-	2	2.9	14	20	70	100
Zahed-Shahr	51	34	29	19.3	20	13.3	50	33.4	150	100
Rahim-Abad	2	50	-	-	-		2	50	4	100
Total	155	44.5	37	10.6	32	9.2	124	35.6	348	100

Name of	Member of a society or group								
villages	Ye	es	N	0	Total				
	Number Percent		Number	Number Percent		Percent			
Sennan	-	-	34	100	34	100			
Miandeh	7	10.6	59	89.4	66	100			
Nasir-Abad	14	77.8	4	22.2	18	100			
Bisheh-Zard	-	-	3	100	3	100			
Chah-Dowlat	1	33.3	2	66.7	3	100			
Fedeshkouyeh	14	20	56	80	70	100			
Zahed-Shahr	15	10	135	90	150	100			
Rahim-Abad	1	25	3	75	4	100			
Total	52	15	296	85	348	100			



Dealing with the Problems

Change of States in Coupled Socio-Ecological Systems


Conclusions

Coupled systems at the centre of the analysis:

- High complexity in terms of agents, scales and interactions
- Indicators is only one way to assess vulnerability. Visualisation of certain key factors via GIS is another possibility
- Identifying thresholds is difficult but
 - Understanding components of the coupled systems might be sufficient to determine their resilience
 - Potential pre-emptive adaptation strategies can be identified
- The outcome of the analyses has to provide useful information to decision-makers
 - The methodology has to be designed to serve this purpose

UNITED NATIONS UNIVERSITY Institute for Environment and Human Security (UNU-EHS)

Hermann-Ehlers-Str. 10 D-53113 Bonn, Germany Phone: ++ 49 (0) 228 815-0200 Fax: ++ 49 (0) 228 815-0299 **E-Mail: renaud@ehs.unu.edu** www.ehs.unu.edu

