Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 July 2018 Photo Leonie Bolleurs
Research informs about sustainable use of fresh water for food production
Conducting research on the topic of water-footprint assessment, are from the left: Dr Enoch Owusu-Sekyere, Dr Henry Jordaan, study leader and Senior Lecturer in the UFS Department of Agricultural Economics, Dr Frikkie Maré (Head of the Department of Agricultural Economics), and Adetoso Adetoro.

The fact that South Africa is a water-scarce country has been highlighted during the past couple of years, and even city dwellers were suddenly very aware of the drought due to the strict water restrictions. These are the words of Dr Frikkie Maré, Head of the Department of Agricultural Economics at the University of the Free State (UFS) and one of the graduates who received his PhD on water-footprint assessment studies at the recent June 2018 graduations.

The department is currently involved in various water-footprint and water-management research projects which assist in providing solutions for better water management in the future. “As department, we want to be at the forefront of research that will assist all agricultural producers with sustainable production practices to ensure economic, environmental, and social sustainable food and fibre products for the society at large,” said Dr Maré.

Research funded by Water Research Commission

The UFS recently conferred two PhD degrees (Drs Enoch Owusu-Sekyere and Frikkie Maré) and one master’s degree (Adetoso Adetoro) in the Department of Agricultural Economics. All three have been working in the field of water-footprint assessment. The research formed part of two different projects that were initiated and funded by the Water Research Commission.

According to Dr Henry Jordaan, Senior Lecturer in this department, four of his students already received their master’s degrees on the topic of water-footprint assessment, while two students are busy with PhDs and three more are working on their master’s degrees.

Topic gains momentum in research community
The water-footprint concept serves as a useful indicator to sensitise society about the impact of the food we eat on scarce freshwater resources – from agricultural producers using water to produce primary food crops and products on the farm, to the end consumer buying the food products in the retail store in town.

“Water-footprint assessment is a relatively new field aimed at informing the sustainable use of fresh water for food production. This topic is gaining momentum in the research community, given the substantial increase in the global population in the context of freshwater resources that is getting increasingly scarce. The challenge is to feed the growing population while still using the scarce freshwater resources sustainably.

Volume of water used to produce food

“In order to inform water users on how to use the resource sustainably, it is important to know the volume of water that was used to produce the required food products. Through our research, we are contributing to this knowledge by assessing the volume of water that was used to produce selected products, and to interpret the water use in the context of water availability to gain insight into the degree of sustainability with which the resource is used. The results are expected to inform water users, water managers, and policy makers regarding the sustainable use of fresh water for food production,” said Dr Jordaan.

News Archive

UFS to host one of three world summits on crystallography
2014-04-15

 
Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, with prof Gautam Desiraju, president of the IUCr (front right) and others to commemorate the Nobel prize winner Max von Laue. (Photo's: Milosz Ruszkowski, Grzegorz Dutkiewicz)

Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, to commemorate the Nobel prize winner Max von Laue at a special Laue Symposium organised by prof Mariusz Jaskolski from the A. Mickiewicz University in Poznan.

Max von Laue, who spent his early childhood in Poznan, was the first scientist to diffract X-rays with a crystal.

2014 has been declared by the United Nations as the International Year of Crystallography, and it was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary-General of the UN, Ban Ki-moon. The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg.

As part of the celebrations, Prof Roodt, president of the European Crystallographic Association, one of the three regional affiliates (Americas, Europe and Africa; Asia and Australasia) of the International Union of Crystallography (IUCr), was invited by the president of the IUCr, Prof Gautam Desiraju, to host one of the three world summits, wherein crystallography is to showcase its achievements and strategise for the future.

The summit and conference will take place on the Bloemfontein Campus of the UFS from 12 to 17 October 2014 and is titled: 'Crystallography as vehicle to promote science in Africa and beyond.' It is an ambitious meeting wherein it is anticipated to bring the French-, English- and Arab-speaking nations of Africa together to strategise how science can be expanded, and to offer possibilities for this as nestled in crystallography. Young and established scientists, and politicians associated with science and science management, are the target audience to be brought together in Bloemfontein.

Dr Thomas Auf der Heyde, acting Director General of the South African Department of Science and Technology (DST), has committed some R500 000 for this effort, while the International Union of Crystallography provided R170 000.

“Crystals and crystallography form an integrated part of our daily lives, form bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more. In spite of this, unfortunately, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the twentieth century. Determining the structure of the DNA was one of the most significant scientific events of the 20th century. It has helped understand how genetic messages are being passed on between cells inside our body – everything from the way instructions are sent to proteins to fight infections, to how life is reproduced.

“At the UFS, crystallography finds application in Chemistry, Physics, Biology, Mathematics, Geology, Engineering and the Medical fields. Crystallography is used by the Curiosity Rover, analysing the substances and minerals on Mars!

“The UFS’s Departments of Chemistry and Physics, in particular, have advanced instruments and important research thrusts wherein X-ray crystallography has formed a central part for more than 40 years.

“Crystallography has produced some 28 Nobel prize winners over the past 100 years and continues to provide the means for fundamental and applied research,” said Prof Roodt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept