Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 July 2018 Photo Leonie Bolleurs
Research informs about sustainable use of fresh water for food production
Conducting research on the topic of water-footprint assessment, are from the left: Dr Enoch Owusu-Sekyere, Dr Henry Jordaan, study leader and Senior Lecturer in the UFS Department of Agricultural Economics, Dr Frikkie Maré (Head of the Department of Agricultural Economics), and Adetoso Adetoro.

The fact that South Africa is a water-scarce country has been highlighted during the past couple of years, and even city dwellers were suddenly very aware of the drought due to the strict water restrictions. These are the words of Dr Frikkie Maré, Head of the Department of Agricultural Economics at the University of the Free State (UFS) and one of the graduates who received his PhD on water-footprint assessment studies at the recent June 2018 graduations.

The department is currently involved in various water-footprint and water-management research projects which assist in providing solutions for better water management in the future. “As department, we want to be at the forefront of research that will assist all agricultural producers with sustainable production practices to ensure economic, environmental, and social sustainable food and fibre products for the society at large,” said Dr Maré.

Research funded by Water Research Commission

The UFS recently conferred two PhD degrees (Drs Enoch Owusu-Sekyere and Frikkie Maré) and one master’s degree (Adetoso Adetoro) in the Department of Agricultural Economics. All three have been working in the field of water-footprint assessment. The research formed part of two different projects that were initiated and funded by the Water Research Commission.

According to Dr Henry Jordaan, Senior Lecturer in this department, four of his students already received their master’s degrees on the topic of water-footprint assessment, while two students are busy with PhDs and three more are working on their master’s degrees.

Topic gains momentum in research community
The water-footprint concept serves as a useful indicator to sensitise society about the impact of the food we eat on scarce freshwater resources – from agricultural producers using water to produce primary food crops and products on the farm, to the end consumer buying the food products in the retail store in town.

“Water-footprint assessment is a relatively new field aimed at informing the sustainable use of fresh water for food production. This topic is gaining momentum in the research community, given the substantial increase in the global population in the context of freshwater resources that is getting increasingly scarce. The challenge is to feed the growing population while still using the scarce freshwater resources sustainably.

Volume of water used to produce food

“In order to inform water users on how to use the resource sustainably, it is important to know the volume of water that was used to produce the required food products. Through our research, we are contributing to this knowledge by assessing the volume of water that was used to produce selected products, and to interpret the water use in the context of water availability to gain insight into the degree of sustainability with which the resource is used. The results are expected to inform water users, water managers, and policy makers regarding the sustainable use of fresh water for food production,” said Dr Jordaan.

News Archive

Unconventional oil and gas extraction – study for Water Research Commission reveals possible impacts
2014-11-05

 

Photo: Legalplanet.org
The Centre for Environmental Management (CEM) at the University of the Free State (UFS) recently completed a three-year project for the Water Research Commission. The purpose was to develop an interactive vulnerability map and monitoring framework for unconventional oil and gas extraction (final report still to be published).

Due to the complexity of this field, a number of participants across different disciplines and universities were involved in this trans-disciplinary study. Contributors included the Departments of Sociology, Physics and Mathematical Statistics from the UFS, the University of Pretoria Natural Hazard Centre, Africa, as well as the Institute of Marine and Environmental Law from the University of Cape Town.

Unconventional oil and gas extraction, its related impacts and the management of this activity to ensure environmental protection, is a controversial issue in many countries worldwide. Since the extraction of oil and gas using unconventional techniques is an unprecedented activity in South Africa, the project focused on understanding this extraction process as well as hydraulic fracturing and identifying possible environmental and socio-economic impacts associated with this activity in the South African context. An understanding of the possible impacts could aid government during the development of policy aimed at protecting the environment.

The researchers subsequently identified indicators to develop an interactive vulnerability map for unconventional oil and gas in South Africa. The vulnerability map focuses on specific mapping themes, which include surface water, groundwater, vegetation, seismicity and socio-economics. In addition, the map provides information on the vulnerability of the specified mapping themes to unconventional gas extraction on a regional scale. This map is intended as a reconnaissance tool to inform decision-makers on areas where additional detail field work and assessments may be required. It can also be used during Environmental Impact Assessments and determining licensing conditions.

Lastly, a monitoring framework was developed, which describes monitoring requirements for specific entities – surface water, groundwater, vegetation, seismicity and socio-economics – for the different phases of unconventional oil and gas extraction. Such monitoring is an important part of environmental protection. It is especially important for South Africa to perform baseline monitoring before exploration starts to ensure that we will have reference conditions to identify what impact oil and gas extraction activities has on the biophysical and socio-economic environments.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept