Latest News Archive

Please select Category, Year, and then Month to display items
Years
2017 2018 2019 2020
Previous Archive
07 June 2018 Photo Supplied
Emotional safety during examinations

Mid-year exams have begun and with crunch time comes emotional upheaval. However, it is manageable and should not deter you from the end-goal of succeeding in your studies while maintaining high mental health standards.

“The exam period is a time when stress and anxiety levels are higher than usual. Stress can be positive and help you stay motivated and focused. However, too much stress can be unhelpful and can make you feel overwhelmed, confused, exhausted and edgy,” says Dr Melissa Barnaschone, Director of Student Counselling and Development at the University of the Free State (UFS).

According to Helpguide.Org: Trusted guide to mental & emotional health, “Mental and emotional health is about being happy, self-confident, self-aware, and resilient. People who are mentally healthy are able to cope with life’s challenges and recover from setbacks. But mental and emotional health requires knowledge, understanding, and effort to maintain. If your mental health isn’t as solid as you’d like it to be, here’s the good news: there are many things you can do to boost your mood, build resilience, and get more enjoyment out of life.”

For further details on topics including: Building Better Mental Health, Emotional Intelligence Toolkit, Benefits of Mindfulness, Improving Emotional Intelligence (EQ), Cultivating Happiness, visit the Help Guide. 

Dr Barnaschone has a few tips on how Kovsies can better approach academic anxiety during the examination period. Here is what she has to say:

News Archive

Student excels at international level with research in Inorganic Chemistry
2015-09-21


Carla Pretorius is currently conducting research in
Inorganic Chemistry at the St Petersburg University,
Russia.

Photo:Supplied

Carla Pretorius completed her PhD in Inorganic Chemistry recently, with a thesis entitled “Structural and Reactivity Study of Rhodium(I) Carbonyl Complexes as Model Nano Assemblies”, and has just received her results. The assessors were very impressed, and she will graduate at the next UFS Summer Graduation in December 2015.

She is currently conducting research in St Petersburg, Russia, by invitation. She is working in the group of Prof Vadim Kukushkin of the St Petersburg University, under a bilateral collaboration agreement between the groups of Prof Kukuskin (SPBU) and Prof André Roodt (Head of the Department of Chemistry at the UFS).

Her research involves the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and potentially for harvesting sun energy. She was one of only three young South African scientists invited to attend the workshop “Hot Topics in Contemporary Crystallography” in Split in Croatia during 2014. More recently, she received the prize for best student poster presentation at the international symposium, Indaba 8 in Skukuza in the Kruger National Park, which was judged by an international panel.

Carla was also one of the few international PhD students invited to present a lecture at the 29th European Crystallographic Meeting (ECM29) in Rovinj, Croatia (23-28 August 2015; more than 1 000 delegates from 51 countries). As a result of this lecture, she has just received an invitation to start a collaborative project with a Polish research group at the European Synchrotron Research Facility (ESRF) in Grenoble, France.

According to Prof Roodt, the ESRF ID09B beam line is the only one of its kind in Europe designed for time-resolved Laue diffraction experiments. It has a time-resolution of up to one tenth of a nanosecond, after activation by a laser pulse 100 times shorter (one tenth of a nanosecond when compared to one second is the equivalent of one second compared to 300 years). The results from these experiments will broaden the knowledge on light-induced transformations of very short processes; for example, as in photochemical reactions associated with sun energy harvesting, and will assist in the development of better materials to capture these.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept